
THE YOGA OF THE CASSELS-TATE PAIRING
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Abstract. Cassels has described a pairing on the 2-Selmer group of an elliptic curve which
shares some properties with the Cassels-Tate pairing. In this article, we prove that the two
pairings are the same.

1. Introduction

Let E be an elliptic curve defined over a number field K, and let S2(K,E) denote its 2-

Selmer group (see Section 2 for a definition). In [3], Cassels defined a pairing on S2(K,E). It

shares some properties with the extension of the Cassels-Tate pairing to S2(K,E). He wrote

“It seems highly probable that the two definitions are always equivalent, but the present

writer is no longer an adept of the relevant yoga.” (see [3, p. 115]). In this article, we prove

that the two pairings are the same.

The Cassels-Tate pairing is an alternating and bilinear pairing on the Shafarevich-Tate

group X(K,E) of E. The fact that it is alternating gives information on the structure of

the Shafarevich-Tate group. For n ≥ 2, its extension from the n-torsion of X(K,E) to the

n-Selmer group Sn(K,E) can be used to determine the image of the n2-Selmer group in the

n-Selmer group. This information can be helpful in determining which elements of the n-

Selmer group come from K-rational points on E and which give rise to non-trivial elements of

the Shafarevich-Tate group. The usual cohomological definitions of the Cassels-Tate pairing

make it difficult to evaluate the pairing in practice. The pairing defined by Cassels on the

2-Selmer group, however, uses more concrete objects like elements of field extensions of K

and functions on a curve, and it is quite straightforward to evaluate. So it is useful to prove

that the two pairings are equal.

We first set some notation and recall the definition of the Selmer and Shafarevich-Tate

groups in Section 2. Then in Section 3, we give the ‘Weil-pairing definition’ and a new

definition of the Cassels-Tate pairing extended to the n-Selmer group, under a hypothesis

that is always satisfied for n a prime. In Section 4 we present the definition of the pairing

defined by Cassels on 2-Selmer groups, or rather, a generalisation of Cassels’ definition due

to Swinnerton-Dyer [13] that gives a pairing between Sn(K,E) and S2(K,E) for arbitrary n.

In Section 5 we present a large diagram and prove it is commutative. We use this diagram
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in Section 6 to prove our main theorem that the pairing defined by Cassels and Swinnerton-

Dyer is the same as the Cassels-Tate pairing. We also discuss why Cassels’ definition does

not easily generalise to n-Selmer groups for n > 2.

2. Notation

In this section, we set some (fairly standard) notation and recall the definition of the

Selmer and Shafarevich-Tate groups.

Let K be a field with separable closure K. We denote by Gal(K/K) the absolute Galois

group of K. If M is a Gal(K/K)-module, then the group Zi(Gal(K/K),M) of continuous

i-cocycles on Gal(K/K) with values in M will be denoted Zi(K,M). The Galois cohomology

group H i(Gal(K/K),M) will likewise be denoted H i(K,M). The class in H i(K,M) of a

cocycle ξ ∈ Zi(K,M) is denoted [ξ]. We write MK for the set of all places of the number field

K. For v ∈MK , the restriction maps Zi(K,M) → Zi(Kv,M) and H i(K,M) → H i(Kv,M)

will be denoted resv.

If E is an elliptic curve defined over K, we denote by [n] the multiplication-by-n map on E

and by E[n] the n-torsion subgroup of E, considered as a Gal(K/K)-module. Similarly, µn

denotes the nth roots of unity as a Gal(K/K)-module. Otherwise, G[n] denotes the n-torsion

subgroup of an abelian group G.

Now let K be a number field. The exact sequence of Galois modules

0 → E[n] → E(K)
[n]→ E(K) → 0

induces a short exact sequence in cohomology:

0 → E(K)

nE(K)
→ H1(K,E[n]) → H1(K,E(K))[n] → 0 .

There are analogous sequences with K replaced by a completion Kv. The restriction maps

induce a map

H1(K,E(K)) →
⊕

v∈MK

H1(Kv, E(Kv))

whose kernel is the Shafarevich-Tate group X(K,E) of E. The n-Selmer group of E,

Sn(K,E), is the preimage of X(K,E)[n] ⊂ H1(K,E(K))[n] in H1(K,E[n]). We then

have the standard short exact sequence

(2.1) 0 → E(K)

nE(K)
→ Sn(K,E) → X(K,E)[n] → 0 .

3. Two definitions of the Cassels-Tate pairing

Let E be an elliptic curve defined over K, a number field. The Cassels-Tate pairing is a

pairing on X(K,E) taking values in Q/Z. We refer to [2] for the original definition. In the

terminology of [6] this is the ‘homogeneous space definition’.

Let n, n′ ≥ 2 be integers. We are interested in the restriction of this pairing to the n-torsion

X(K,E)[n], or more generally to X(K,E)[n] × X(K,E)[n′]. By (2.1) the Cassels-Tate
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pairing extends to a pairing on Selmer groups

(3.1) 〈 , 〉CT : Sn(K,E)× Sn′(K,E) → Q/Z.

By definition this pairing is trivial on the images of E(K)/nE(K) in Sn(K,E) and of

E(K)/n′E(K) in Sn′(K,E).

We recall an alternative definition of the Cassels-Tate pairing, called in [6] the ‘Weil-pairing

definition’. For simplicity we assume that the natural map

(3.2) H2(K,E[n′]) →
∏

v∈MK

H2(Kv, E[n′]),

is injective. This is known for n′ a prime, see [2, Lemma 5.1]. (The injectivity does not

hold for E[n′] replaced by an arbitrary finite Galois module. See [10, III.4.7] for a counter-

example.) From Section 4 onwards we restrict to the case n′ = 2, so our hypothesis will be

automatically satisfied.

Let a ∈ Sn(K,E) and a′ ∈ Sn′(K,E). We apply Galois cohomology over K and its

completions Kv to

0 // E[n′] // E[nn′]
[n′]

//

��

E[n] //

��

0

0 // E[n′] // E
[n′]

// E //// 0

to obtain a commutative diagram

H1(K,E[nn′])
[n′]∗ // H1(K,E[n]) //

��

H2(K,E[n′])

��∏
v∈MK

H1(Kv, E(Kv)) //
∏

v∈MK

H2(Kv, E[n′]) .

By the hypothesis that (3.2) is injective, there exists b ∈ H1(K,E[nn′]) with [n′]∗b = a.

We represent b by a cocycle β ∈ Z1(K,E[nn′]); then α := n′β ∈ Z1(K,E[n]) represents a.

For each place v of K, the cocycle resv(α) in Z1(Kv, E(Kv)) is a coboundary. So there

exists Pv ∈ E(Kv) such that resv(α) = dPv, where dPv is the cocycle σ 7→ σPv − Pv. Take

Qv ∈ E(Kv) such that n′Qv = Pv. Then dQv − resv(β) ∈ Z1(Kv, E[n′]).

The Weil pairing en′ : E[n′]× E[n′] → µn′ induces a cup product pairing

∪e : H1(Kv, E[n′])×H1(Kv, E[n′]) → H2(Kv, µn′).

We define for x, y ∈ H1(Kv, E[n′])

(3.3) 〈x, y〉e,v = invv(x ∪e y)

where invv : H2(Kv, µn′) → Q/Z is the invariant map. Then there is a pairing 〈 , 〉1 :

Sn(K,E)× Sn′(K,E) → Q/Z given by

(3.4) 〈a, a′〉1 =
∑

v∈MK

〈[dQv − resv(β)], resv(a
′)〉e,v.
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Proposition 3.5. Let a ∈ Sn(K,E) and a′ ∈ Sn′(K,E). We have 〈a, a′〉1 = 〈a, a′〉CT. In

particular, 〈a, a′〉1 does not depend on the choices made in the definition.

Proof. See [2, Proof of Lemma 4.1] or [4, §2.2]. ¤

Remark 3.6. The general form of the Weil-pairing definition, avoiding the hypothesis

that (3.2) is injective, is given in [5, p. 97]. This variant is used in [6] to generalise Proposi-

tion 3.5 to abelian varieties.

The definition (3.4) given above is not very practical if one wants to evaluate the pairing

on two given Selmer group elements. In order to get closer to a more workable definition,

we make use of the interpretation of the elements of Sn(K,E) as (isomorphism classes) of

n-coverings of E that have points everywhere locally. We want to replace the multiplication-

by-n′ map relating Pv and Qv in the definition above by a suitable covering. For this, we

have to generalise the notion of n-covering to torsors under E.

Let C and D be torsors (i.e., principal homogeneous spaces) under E. A morphism

π : D → C is called an n-covering if π(P + Q) = nP + π(Q) for all P ∈ E and Q ∈ D.

If C = E is the trivial torsor, this coincides with the usual notion of n-covering of E. For

Q1,Q2 ∈ D we write Q1−Q2 for the point P on E such that P +Q2 = Q1 where + denotes

the action of E on D.

In the case C = E, there is a standard bijection between the n-coverings of E up to

K-isomorphism, and the Galois cohomology group H1(K,E[n]). It is defined as follows. Let

ψ : D → E be an isomorphism of curves over K with [n]◦ψ = π. Then σψ◦ψ−1 is translation

by some ξσ ∈ E[n] and we identify the K-isomorphism class of D with the class of σ 7→ ξσ
in H1(K,E[n]). If D0 ∈ D(K) with π(D0) = 0 then we can take ψ : Q 7→ Q−D0, in which

case D is represented by −dD0.

Note also that if C → E is an n-covering of E and D → C is an n′-covering of C, then the

composition D → E is an nn′-covering of E. If D → E corresponds to c ∈ H1(K,E[nn′]),

then C → E corresponds to [n′]∗c ∈ H1(K,E[n]).

We give a new definition of the Cassels-Tate pairing, again under the hypothesis that (3.2)

is injective. Let C be an n-covering of E over K representing a ∈ Sn(K,E). By the

hypothesis, there exists b ∈ H1(K,E[nn′]) with [n′]∗b = a. Twisting E
[n′]→ E

[n]→ E by these

cohomology classes gives D
π→ C → E where π : D → C is an n′-covering defined over K.

Following [12, Chapter 6] we define the coboundary map

(3.7) δπ : C(K) → H1(K,E[n′]) ; P 7→ dQ := [σ 7→ σQ−Q]

where Q ∈ D(K) with π(Q) = P. Let v be a place of K. The analogue of this map with K

replaced by Kv will be denoted δπ,v. Since the image of a in H1(Kv, E(Kv)) is trivial, there

is a point Pv ∈ C(Kv). We can now define 〈 , 〉2 : Sn(K,E)× Sn′(K,E) → Q/Z by

(3.8) 〈a, a′〉2 =
∑

v∈MK

〈δπ,v(Pv), resv(a
′)〉e,v.

The main advantage of this definition is that it uses the Kv-points Pv on C rather than the

Kv-points Pv on E. We will see that Cassels’ version will allow us to replace the cohomology

classes by more concrete objects.
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Proposition 3.9. Let a ∈ Sn(K,E) and a′ ∈ Sn′(K,E). We have 〈a, a′〉2 = 〈a, a′〉1. In

particular 〈a, a′〉2 does not depend on the choice of the Pv or on the covering D → C.

Proof. Let C0 ∈ C(K) and D0 ∈ D(K) such that C0 covers 0 on E and D0 covers C0. Since

n′(dD0) = dC0 represents −a, we can take the element β ∈ Z1(K,E[nn′]), appearing in

the definition (3.4) of the pairing 〈 , 〉1, to be −dD0. For each place v of K we are given

Pv ∈ C(Kv). Let Pv = Pv − C0, then dPv = −dC0; this represents resv(a) in H1(Kv, E[n]).

Take Qv ∈ E(Kv) with n′Qv = Pv. Then dQv − resv(β) = d(Qv + D0) and π(Qv + D0) =

Pv +C0 = Pv. Hence δπ,v(Pv) is represented by the cocycle dQv− resv(β), and by inspection

of the definitions (3.4) and (3.8) it follows that 〈a, a′〉1 = 〈a, a′〉2. ¤

4. The Cassels pairing

In [3], Cassels defined a bilinear pairing 〈 , 〉Cas on S2(K,E) taking values in µ2 and having

the following properties. The element a ∈ S2(K,E) is in the image of S4(K,E) precisely

when 〈a, a′〉Cas = +1 for all a′ ∈ S2(K,E). For all a ∈ S2(K,E) we have 〈a, a〉 = +1. These

are properties of the Cassels-Tate pairing on a 2-Selmer group as well (where we replace µ2

with 1
2
Z/Z). The pairing is defined in terms of quadratic Hilbert norm residue symbols.

A mild generalisation of Cassels’ construction, due to Swinnerton-Dyer [13], gives a pairing

Sn(K,E) × S2(K,E) → µ2. We work with this generalised form of the pairing, which we

continue to denote 〈 , 〉Cas. It reduces to Cassels’ definition in the case n = 2.

We need some preparations for the definition of the pairing. The group S2(K,E) is a

subgroup of H1(K,E[2]). Let A be the finite étale algebra that is the Galois module of maps

from E[2]\0 toK. Then µ2(A) is the Galois module of maps from E[2]\0 to µ2. Let A denote

the Gal(K/K)-invariants of A. If E is given by y2 = F (x) where F (x) = x3 +a2x
2 +a4x+a6

with ai ∈ K, then A ∼= K[T ]/(F (T )). Let θ1, θ2, θ3 be the three roots of F (x) in K. We

have A ∼=
∏♦K(θj) where

∏♦ denotes taking the product over one element from each

Gal(K/K)-orbit of the set of θj’s. Let Tj = (θj, 0) ∈ E[2] \ 0 and define

w : E[2] → µ2(A), w(P ) = (Tj 7→ e2(P, Tj)).

Then w induces an injective homomorphism

w∗ : H1(K,E[2]) → H1(K,µ2(A)).

Let rj be the map from H1(K,µ2(A)) to H1(K(θj), µ2) given by restriction and evaluation

at Tj. Shapiro’s Lemma shows that the map

r =
∏♦

rj : H1(K,µ2(A)) → H1(A, µ2) :=
∏♦

H1(K(θj), µ2)

is an isomorphism. For each j, we have a Kummer isomorphism from H1(K(θj), µ2) to

K(θj)
×/(K(θj)

×)2. This induces an isomorphism

k =
∏♦

kj : H1(A, µ2) → A×/(A×)2.

Composing the three maps w∗, r and k gives an injective group homomorphism

(4.1) w1 = k ◦ r ◦ w∗ : H1(K,E[2]) → A×/(A×)2.
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This is the map that is used in 2-descent computations to represent cohomology classes by

elements of A×, which are much easier to handle. Note that the image of w1 is equal to the

kernel of the norm map from A×/(A×)2 to K×/(K×)2.

We are now ready to give the definition of 〈 , 〉Cas. Let a ∈ Sn(K,E) and a′ ∈ S2(K,E).

The element a ∈ Sn(K,E) is represented by an n-covering C (which Cassels denotes DΛ)

of E. Swinnerton-Dyer [13] shows that there are rational functions fj on C, defined over

K(θj), with the following three properties

(i) div(fj) = 2Dj where [Dj] 7→ Tj = (θj, 0) under the isomorphism of Pic0(C) and E,

(ii) each K-isomorphism of K(θi) to K(θj) sending θi to θj sends fi to fj,

(iii) the product f1f2f3 is a square in K(C), say f1f2f3 = h2.

He then shows that a 2-covering D of C may be defined by setting fj = u2
j for an indetermi-

nate uj (j = 1, 2, 3), together with u1u2u3 = h. If we define the Galois action on the function

field of D in such a way that it permutes the uj in the same way as the θj, then the covering

D → C is defined over K. (If C = E, this generalises the usual choice of fj = x − θj that

is used in 2-descent computations.) In the case n = 2, Cassels gives an explicit construction

of the fj (which he denotes
Lj

L0
); this makes it practical to compute the pairing. We write f

for the element of A⊗K K(C) given by Tj 7→ fj.

Let v be a place of K. For γj, δj ∈ Kv(θj)
×/(Kv(θj)

×)2 we let (γj, δj)Kv(θj) denote the

quadratic Hilbert norm residue symbol. Let Av = A ⊗K Kv and Av = A ⊗K Kv be its

Gal(Kv/Kv)-invariants. Then Av
∼=

∏♦Kv(θj), where this
∏♦ is taken over Gal(Kv/Kv)-

orbits. Let

(γ, δ)Av =
∏♦

(γj, δj)Kv(θj)

where γ, δ ∈ A×v/(A
×
v )2 and γj, δj are their images in Kv(θj)

×/(Kv(θj)
×)2. Since A ⊂ Av it

also makes sense for ( , )Av to take an element of A×/(A×)2 as one of its arguments. Since

C represents an element in Sn(K,E), there is a point Pv ∈ C(Kv) (which Cassels calls Cv).

Now Cassels and Swinnerton-Dyer define 〈 , 〉Cas : Sn(K,E)× S2(K,E) → µ2 by

(4.2) 〈a, a′〉Cas =
∏

v∈MK

(f(Pv), w1(a
′))Av

where w1 is the map defined in (4.1). Cassels shows that the value of the pairing does not

depend on the choice of f or on the choice of the Pv. This will also follow from our main

result Theorem 6.3 below.

The advantage of this definition is that it allows us to work with w1(a
′) ∈ A×/(A×)2,

which is how a′ is usually represented when we compute the 2-Selmer group, and that it uses

objects like f and Pv coming directly from the geometric representation C of a.

5. The main diagram

Now let us introduce Figure 5.1 which shows a diagram that relates the pairing 〈 , 〉e,v
defined in (3.3) with the quadratic Hilbert symbol ( , )Av used in the definition of Cassels’

pairing (4.2). We will show that the diagram commutes. This will then enable us to identify

the Cassels and Cassels-Tate pairings, see Section 6 below.
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(5.1) H1(Kv, E[2])

w∗,v

��

× H1(Kv, E[2])

w∗,v

��

∪e // H2(Kv, µ2)

QQQQQQQQQQQQ

QQQQQQQQQQQQ

(1)

H1(Kv, µ2(Av))

rv ∼=
��

× H1(Kv, µ2(Av))

rv ∼=
��

∪m // H2(Kv, µ2(Av))

r′v ∼=
��

N∗ // H2(Kv, µ2)

inv′

��

H1(Av, µ2)

kv
∼=

��

× H1(Av, µ2)

kv
∼=

��

∪ //

(2)

H2(Av, µ2)Q♦ inv′j
��

(3)

A×v/(A
×
v )2 × A×v/(A

×
v )2

Q♦( , )Kv(θj)
//

(4) ∏♦ µ2
ν // µ2

Let us explain the various maps occurring in the diagram.

The maps w∗, r and k defined in the last section have local analogues, denoted by w∗,v, rv

and kv.

We identify µ2 ⊗ µ2 = µ2 via (−1)p ⊗ (−1)q = (−1)pq. Since µ2(Av) is the Galois module

of maps from E[2] \ 0 to µ2, this identification induces a map

m : µ2(Av)⊗ µ2(Av) → µ2(Av).

Let ∪m be the cup product map induced by m.

We define

N : µ2(Av) → µ2 ; (T 7→ β(T )) 7→
∏

T∈E[2]\0

β(T ),

and let N∗ be the map it induces on H2’s.

In the same way as above for the H1’s in the global situation, let r′j be the map from

H2(Kv, µ2(Av)) to H2(Kv(θj), µ2) obtained by restriction and evaluation at Tj. Shapiro’s

Lemma shows again that the map

r′v =
∏♦

r′j : H2(Kv, µ2(Av)) → H2(Av, µ2) :=
∏♦

H2(Kv(θj), µ2)

is an isomorphism.

Let ∪j be the cup product map from H1(Kv(θj), µ2) × H1(Kv(θj), µ2) to H2(Kv(θj), µ2)

(using the identification µ2 ⊗ µ2 = µ2 again) and ∪ =
∏♦ ∪j.

Let inv′ : H2(Kv, µ2) → µ2 be the composition of the invariant map with the isomorphism

of 1
2
Z/Z and µ2, and likewise for inv′j : H2(Kv(θj), µ2) → µ2.

Finally let ν :
∏♦ µ2 → µ2 be the usual product in µ2.

Theorem 5.2. The diagram in Figure 5.1 is commutative.

We prove this theorem using the following lemmas. The first of these is simple but crucial.

Lemma 5.3. Identify µ2 ⊗ µ2 = µ2 as above. Then for all P,Q ∈ E[2] we have

e2(P,Q) =
∏

T∈E[2]\0

e2(P, T )⊗ e2(Q, T ).

Proof. True by a simple case by case calculation. ¤
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Lemma 5.4. Diagram (1) in Figure 5.1 is commutative.

Proof. Let ξ, ψ ∈ H1(Kv, E[2]) be represented by cocycles which, for ease of notation, we

also write as ξ and ψ. We have ξ ∪e ψ : (σ, τ) 7→ e2(ξσ,
σψτ ).

Now w(ξ) : σ 7→ (T 7→ e2(ξσ, T )) for T ∈ E[2] \ 0 and similarly for w(ψ). Thus

N∗
(
w(ξ) ∪m w(ψ)

)
: (σ, τ) 7→ N∗

(
m

(
(S 7→ e2(ξσ, S))⊗σ(T 7→ e2(ψτ , T ))

))
= N∗

(
m

(
(S 7→ e2(ξσ, S))⊗ (T 7→ σe2(ψτ ,

σ−1

T ))
))

= N∗
(
m

(
(S 7→ e2(ξσ, S))⊗ (T 7→ e2(

σψτ , T ))
))

= N∗
(
T 7→ e2(ξσ, T )⊗ e2(

σψτ , T )
)

=
∏

T∈E[2]\0

e2(ξσ, T )⊗ e2(
σψτ , T ) ∈ µ2 ⊗ µ2.

By Lemma 5.3 this is the same as ξ ∪e ψ. ¤

Lemma 5.5. Diagram (2) in Figure 5.1 is commutative

Proof. Let ξ, ψ ∈ H1(Kv, µ2(Av)). As in the proof of the previous lemma, we use the same

symbols for cocycles representing these classes. Let Tj = (θj, 0) ∈ E[2] \ 0. We must show

that r′j(ξ ∪m ψ) and rj(ξ) ∪j rj(ψ) are equal in H2(Kv(θj), µ2 ⊗ µ2). We find that they are

represented by cocycles (σ, τ) 7→ ξσ(Tj) ⊗ (σψτ )(Tj) and (σ, τ) 7→ ξσ(Tj) ⊗ σ(ψτ (Tj)). Since

σ(Tj) = Tj for all σ ∈ Gal(Kv/Kv(θj)), these cocycles are equal. ¤

Lemma 5.6. Diagram (3) in Figure 5.1 is commutative.

Proof. Let Nj denote the norm induced by taking the product over each element in the

Gal(Kv/Kv)-orbit of θj. Recall that ν :
∏♦ µ2 → µ2 is the usual product in µ2, and let ν∗

be the map it induces on H2’s. Then the map N∗ in Figure 5.1 factors as the composite of∏♦Nj,∗ and ν∗.

We have Av =
∏♦Kv(θj) where Kv(θj) := Kv(θj) ⊗Kv Kv. Abusing notation slightly

by writing r′j for the corresponding map on H2(Kv, µ2(Kv(θj)), we obtain the following

commutative diagram

H2(Kv, µ2(Av))

r′v
��

=
∏♦H2(Kv, µ2(Kv(θj)))Q♦ r′j

��

Q♦ Nj,∗ // ∏♦H2(Kv, µ2)Q♦ inv′

��

ν∗ // H2(Kv, µ2)

inv′

��
H2(Av, µ2) =

∏♦H2(Kv(θj), µ2)

Q♦ inv′j //

(5) ∏♦ µ2

(6)

ν // µ2.

Diagram (5) commutes by the next lemma. That Diagram (6) commutes is obvious. This

proves the commutativity of Diagram (3). ¤

Lemma 5.7. Let Xj be the Gal(Kv/Kv)-orbit of Tj. There is a commutative diagram

H2(Kv,Map(Xj, µ2∞))
Nj,∗ //

r′j ∼=
��

H2(Kv, µ2∞)

inv
��

H2(Kv(θj), µ2∞)
invj // Q/Z.
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Proof. Let ι : H2(Kv, µ2∞) → H2(Kv,Map(Xj, µ2∞)) be induced by the inclusion of the

constant maps. Then r′j ◦ ι is the restriction map from the 2-primary part of the Brauer

group of Kv to the 2-primary part of the Brauer group of Kv(θj). By [9, §1 Theorem 3] it

is multiplication by dj on the invariants, where dj = [Kv(θj) : Kv] = #Xj, and is therefore

surjective. Since r′j is an isomorphism (by Shapiro’s Lemma), it follows that ι is surjective.

Then for η ∈ H2(Kv, µ2∞) we compute

(inv ◦Nj,∗)(ι(η)) = djinv(η) = (invj ◦ r′j)(ι(η)).

(Alternatively, the definitions in [1, Chapter III,§9] show that Nj,∗ ◦ (r′j)
−1 is corestriction,

and the lemma then reduces to a well known property of the invariant maps.) ¤

Lemma 5.8. Diagram (4) in Figure 5.1 is commutative.

Proof. This is [8, XIV.2 Prop. 5] applied to each constituent field of Av. ¤

Lemmas 5.4, 5.5, 5.6 and 5.8 together prove Theorem 5.2. Composing the maps in the last

row of (5.1) gives the pairing ( , )Av defined at the end of Section 4. Let w1,v = kv ◦ rv ◦w∗,v
be the local analogue of the map (4.1). We obtain

Corollary 5.9. Let s, s′ ∈ H1(Kv, E[2]). We have (−1)2〈s,s′〉e,v = (w1,v(s), w1,v(s
′))Av .

This result allows us to express the pairing 〈 , 〉e,v in terms of the quadratic Hilbert symbol

( , )Av . This will be the key for the proof of the main theorem in the next section.

6. The main theorem

Let C be a torsor under E and choose f ∈ A⊗K K(C) as described in Section 4. Let π :

D → C be the 2-covering obtained from f . The following lemma is a variant of Theorem 2.3

in [7].

Lemma 6.1. We have w1(δπ(P)) = f(P) mod (A×)2 for all P ∈ C(K), away from the

zeroes and poles of the fj.

Proof. Let Q ∈ D(K) with π(Q) = P. We recall from Section 4 that r =
∏♦ rj and

k =
∏♦ kj. So by (3.7) and (4.1) it suffices to show that for each j,

kjrjw(dQ) = fj(P) mod (K(θj)
×)2.

We have rjw(dQ) = (σ 7→ e2(
σQ−Q, Tj)) in H1(K(θj), µ2). The construction of D gives

that fj ◦ π = g2
j for some rational function gj on D, defined over K(θj). We claim that

(6.2) e2(S, Tj) = gj(S + X)/gj(X)

for any X ∈ D(K) for which the numerator and denominator are well-defined and non-zero.

Indeed, since the Weil pairing is a geometric construction, we may identify (by a suitable

choice of base points on C and D, defined over K) the torsors C and D with E, and the

2-covering map π : D → C with multiplication-by-2 on E. Note that identifying D and E

as torsors means that the action of E on D becomes the group law on E. Our claim now

reduces to the definition of the Weil pairing in [11, Chapter III, §8].
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Putting S = σQ−Q and X = Q in (6.2) gives

e2(
σQ−Q, Tj) = gj(

σQ)/gj(Q) = σ(gj(Q))/gj(Q)

for any σ ∈ Gal(K/K(θj)). Then rjw(dQ) = (σ 7→ σ(gj(Q))/gj(Q)) and therefore

kjrjw(dQ) = g2
j (Q) = fjπ(Q) = fj(P)

as required. ¤

The same statement holds over Kv, with the same proof.

Recall the pairings 〈 , 〉CT, 〈 , 〉1, 〈 , 〉2 and 〈 , 〉Cas, defined in (3.1), (3.4), (3.8) and (4.2),

respectively. We can now prove our main result.

Theorem 6.3. Let K be a number field and E an elliptic curve over K. Let a ∈ Sn(K,E)

and a′ ∈ S2(K,E). We have

〈a, a′〉Cas = (−1)2〈a,a′〉CT .

Proof. The equality 〈a, a′〉Cas = (−1)2〈a,a′〉2 is immediate from Corollary 5.9, the local ana-

logue of Lemma 6.1, and the observation that w1,v(resv a
′) is the image of w1(a

′) ∈ A×/(A×)2

in A×v/(A
×
v )2. Propositions 3.5 and 3.9 show that 〈a, a′〉2 = 〈a, a′〉1 = 〈a, a′〉CT. ¤

It would be desirable to have a definition of the Cassels-Tate pairing along the lines of

Cassels’ definition that does not require one of the arguments to be in the 2-Selmer group.

Let us discuss why there is no obvious generalisation. Consider the pairing on Sn(K,E). The

nth power Hilbert symbol is only defined when µn ⊂ K, so let us assume this is the case. The

heart of our proof is the commutativity of the diagram (5.1), leading to Corollary 5.9. Here

an essential ingredient is Lemma 5.3, which only works for n = 2. For any n, the pairing

∪e is symmetric (the antisymmetry of the Weil pairing cancels that of the cup product),

and the Hilbert symbol is antisymmetric. So for n > 2, it is impossible to relate them in a

similarly direct way as in Corollary 5.9.
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