
ON THE NUMBER OF RATIONAL SQUARES
AT FIXED DISTANCE FROM A FIFTH POWER

MICHAEL STOLL

Abstract. The main result of this note is that there are at most seven rational
points (including the one at infinity) on the curve CA with the affine equation
y2 = x5 +A (where A is a tenth power free integer) when the Mordell-Weil rank
of the Jacobian of CA is one. This bound is attained for A = 182.

1. Introduction

Let A 6= 0 be a rational number. We are interested in the number of rational
solutions (x, y) to the equation y2 = x5 + A. In more geometric terms, this
amounts to counting the (affine) rational points on the curve CA given by the
(affine) equation

CA : y2 = x5 + A .

In this note, we take up ideas from [St2] and apply them to this family of genus 2
curves. In the following, CA will denote a smooth projective model of the curve in
question. With respect to rational points, this means that there is one additional
rational point “at infinity”, which we will denote ∞ in what follows.

Let JA be the Jacobian of CA, and denote by rA the Mordell-Weil rank of JA(Q).
Since CA and CB are isomorphic when the quotient A/B is a tenth power, we can
(and will) assume that A is an integer, not divisible by the tenth power of any
prime. Let nA be half the number of “non-trivial” points in CA(Q), i.e., finite
points with non-vanishing x and y coordinates. Then #CA(Q) = 2 nA +dA, where
dA = 1, 2, 3, or 4 if A is neither a square nor a fifth power, a fifth power but
A 6= 1, a square but A 6= 1, or A = 1, respectively. Since r1 = 0, we have dA ≤ 3
if rA ≥ 1.

The numbers we are interested in are nA and #CA(Q) = dA + 2nA. The result we
will prove is as follows.
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Theorem 1.1. Let A be a tenth power free integer, and assume that rA = 1.

Then nA ≤ 2 and therefore #CA(Q) ≤ 7. Furthermore, #CA(Q) = 7 only when

A = 182.

Let S be the set of tenth power free integers. If we define

N(r) = max{nA : A ∈ S, rA = r} ,

B(r) = max{#CA(Q) : A ∈ S, rA = r} ,

then the theorem says that N(1) = 2, B(1) = 7.

For r = 0, we obtain N(0) = 1, B(0) = 4. This is because the torsion points
on CA are known to be (see for example [Poo])

∞ , (−ζk 5
√

A, 0) , (0,±
√

A) and (ζk 5
√

4A,±
√

5A) ,

where ζ is a primitive fifth root of unity. The only nontrivial points in this list are
of the form given last. But there is only one value of A, namely A = 28 ·55, such
that this leads to a pair of rational points on CA. We have rA = 0 and nA = 1
in this case (but dA = 1, so #CA(Q) = 3). For all other A such that rA = 0, we
must have nA = 0, hence #CA(Q) = dA ≤ 4. The maxmimum is attained for the
unique A with dA = 4, namely A = 1.

Since the method of proof can be applied only when rA < g(CA) = 2, we can-
not obtain exact values for higher ranks. However, we have found the following
examples, thus obtaining lower bounds.

r N(r) B(r) A with max. N(r) A with max. B(r)

0 1 4 28 ·55 1

1 2 7 22 ·34 22 ·34

2 ≥ 3 ≥ 9 22 ·34 ·74 22 ·34 ·74

3 ≥ 4 ≥ 11 22 ·32 ·54 ·74 22 ·32 ·54 ·74

4 ≥ 6 ≥ 15 34 ·74 ·194 34 ·74 ·194

For these examples, the rank rA was determined by first computing an upper
bound using 2-descent as described in [St1] and then exhibiting sufficiently many
independent points in the Mordell-Weil group (which are here provided by the
rational points on CA).

2. The method

We will apply Chabauty’s method with a twist, as explained in [St2]. In that
paper, we were only considering sufficiently large primes. In our situation, we
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obtain the following result in this way. In the following, vp denotes the normalized
p-adic valuation.

Proposition 2.1. Suppose that rA = 1. Then nA ≤ 1 in the following cases.

(1) vp(A) = 5 for some prime p ≥ 7.

(2) vp(A) ∈ {2, 4, 6, 8} for some prime p ≥ 11.

(3) vp(A) ∈ {1, 3, 7, 9} for some prime p ≥ 17.

Proof: We use the main result of [St2], applied to CA with Γ taken to be (1) µ2

acting on y, (2) µ5 acting on x, and (3) µ2×µ5 acting on (y, x), respectively. Note
that in each case, CA is a Γ-twist of CA/pvp(A) , which has good reduction at p. 2

In principle, this reduces the cases that we have to check to a finite number.
However, the number of cases is large (a priori, there are 103 ·9 ·52 = 225 000
curves; we can expect close to half of them to have rA = 1), and dealing with
them one by one would require a very large amount of computation.

We therefore want to use the method at the small primes, too. This will reduce
the cases we have to look at to a manageable number.

The basic setup is as follows. If rA = 1, then there is a differential

ω =
(α + β x) dx

2y
∈ Ω(CA/Qp)

(with (α : β) ∈ P1(Qp)) killing the Mordell-Weil group in the sense that

λω(P ) =

P∫
0

ω = 0 for all P ∈ JA(Q) .

Note that the integral is linear both in P ∈ JA(Qp) and in ω, and vanishes when
P is a torsion point in JA(Qp). We embed CA into JA using the point at infinity as
a base point and from now on consider CA as a subvariety of JA. Then CA(Q) is
contained in the set of zeros of λω on CA(Qp). Therefore the number of nontrivial
rational points is bounded by the number of nontrivial zeros of λω (note that λω

vanishes at the trivial points, since they are mapped to torsion points of JA).

Before we use the twisting trick of [St2], let us prove a result that will help reduce
the number of cases later, using the standard Chabauty technique.

Lemma 2.2. Assume that rA = 1. If A ≡ 1 mod 3, then we have nA ≤ 1. If

A ≡ −1 mod 3, then we have nA ≤ 2.

Proof: If A ≡ 1 mod 3, then we have CA(F3) = {∞, (0, 1), (0,−1), (−1, 0)}. If
A ≡ −1 mod 3, then CA(F3) = {∞, (−1, 1), (−1,−1), (1, 0)}.
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Let ω̄ be the reduction of (a suitable multiple of) ω mod 3. We find that v(3, 0) = 0,
v(3, 1) = 1, v(3, 2) = 0 in the notation of [St2, § 6]. By Prop. 6.3 in [St2], the
number of zeros of λω on the residue class of P ∈ CA(F3) is at most 1+n+v(3, n),
where n = vP (ω̄). This implies that we can only get nontrivial points in residue
classes on which ω̄ vanishes, or in nontrivial residue classes. Furthermore, the
number of zeros of λω in the residue class of P can be at most 3, since vP (ω̄) ≤ 2.
The two nontrivial classes (−1,±1) that occur for A ≡ −1 mod 3 contain the

torsion point ( 5
√

4A,±
√

5A) ∈ CA(Q3). Since this point is rational only when
A = 28 ·55, and rA = 0 in this case, it is still true that we can get nontrivial
rational points in these classes only when ω̄ vanishes there.

Let us consider the various classes in turn. If P = ∞ or P = (±1, 0) and ω̄ vanishes
at P (then of second order), there can only be one pair of nontrivial rational points
in this residue class, and hence nA ≤ 1, since no other class contributes to nA.

In the other cases, ω̄ can only vanish to first order. One of the a priori up to three
zeros on the residue class will be a torsion point, which is trivial or not rational.
Therefore there can be at most two pairs of nontrivial rational points, and nA ≤ 2.
It remains to show that in fact, nA ≤ 1 if A ≡ 1 mod 3. In this case, we have
P = (0,±1) with vP (ω̄) = 1, so ω̄ = x dx/2y.

We write A = a2 with a ∈ Z×
3 such that (0, a) reduces to the point we are

considering. t = x is a uniformizer, and we have, taking ω = (3α + x)dx/2y:

y

a
= 1 +

t5

2A
+ O(t10)

a dx

y
=

(
1− t5

2A
+ O(t10)

)
dt

2a ω =
(
3α + t− 3α

2A
t5 + O(t7)

)
dt

2a λω = 3α t +
t2

2
− α

4A
t6 + O(t8)

We see that there is only one non-trivial root in 3Z3 (satisfying t ≡ 3α mod 9);
therefore nA ≤ 1. 2

3. Looking at the small primes

Our first goal is to show that nA ≤ 2 for all A such that rA = 1, by a detailed
study of the 3-adic situation. We have covered the case v3(A) = 0 in Lemma 2.2
already, so here we will consider the cases 1 ≤ v3(A) ≤ 9.

We keep the notations introduced above. However, we now suppose that A is
divisible by p (we will mostly take p = 3 below), so that A = pν a with some
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1 ≤ ν ≤ 9 and a ∈ Z×
p . Let π = p1/10 and set x = π2ν X, y = π5ν Y ; then over

Qp(π), CA is isomorphic to

Ca : Y 2 = X5 + a ,

and on Ca,

ω = (π−να + πνβX)
dX

2Y
.

Since Qp(π)/Qp is totally ramified, the residue class field of Qp(π) is Fp. The
points in CA(Qp) are mapped to one of the following types of points in Ca(Fp).
(b̄ ∈ Fp denotes the image of b ∈ Zp.)

1. ∞.

2. (−b̄, 0) if ν = 5 and a = b5 for some b ∈ Zp.

3. (0, b̄) if ν is even and a = b2 for some b ∈ Zp.

This holds when p 6= 2, 5. It still holds when p = 2 or 5 and p - ν.

We want to bound the number of non-trivial points in CA(Q) mapping to each
of these points mod π. If p is large enough, this bound is given by the order of
vanishing of the differential ω̄ at the point in question (assuming ω is scaled such
that it is integral and reduces to something non-zero mod π). This is how the
results in Prop. 2.1 are obtained. In order to get bounds when p is small, we need
to take a closer look at the logarithm

λω(T ) := λω(P (T )) =

P (T )∫
0

ω =

P (T )∫
P (0)

ω ,

(recall that the logarithm vanishes on torsion points) where T is a uniformizer at
the trivial point P (0) in the residue class under consideration, and P (T ) is the
point corresponding to the value T ∈ πOπ of the uniformizer. This logarithm λω

can be expanded into a power series in T , and the number of its zeros in πOπ

can be bounded above by considering the valuations of the coefficients (and, in
some cases, the factoring of polynomials over Fp). In fact, we are only interested
in zeros that arise from points in CA(Qp), which restricts the possibilities further.

We discuss the various possible image points in turn.

The residue class of ∞.
The corresponding points on CA have t = x2/y ∈ Zp, and we have T = X2/Y =
πν t ∈ πν Zp. T is a uniformiser in ∞ on Ca. We have the equations

X−1 = T 2 (1 + a X−5) , Y −1 = T X−2 ,
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so

X = T−2(1− a T 10 + O(T 20))

−dX

2Y
= T 2 (1 + 6a T 10 + O(T 20)) dT

−ω = (β πν + α π−ν T 2 + 5aβ πν T 10 + 6aα π−ν T 12 + O(T 20)) dT

−λω = β πν T +
α

3
π−ν T 3 +

5aβ

11
πν T 11 +

6aα

13
π−ν T 13 + O(T 21)

= π2ν
(
β t +

α

3
t3 +

5aβ

11
pν t11 +

6aα

13
pν t13 + . . .

)
Since 3, 11 and 13 are the only primes occurring in denominators of relevant
coefficients (the later terms do not matter, as is easily seen), we see that for all
other primes p, the following holds.

If (α : β) = (0 : 1) ∈ P1(Fp), then there is only one rational point (namely ∞)

in this residue class. Otherwise, if (α : β) = (1 : 0), there may be three, and if

(α : β) = (1 : ξ) with ξ 6= 0, there is one point if −3αβ is a non-square mod p,
and at most three points if −3αβ is a square mod p.

We will not discuss p = 11 and p = 13 here. If p = 3, there always are at most
three points, but the condition is shifted. We write ω = (3α′ + β x) dx/2y with
α′, β ∈ Z3; then there can be three points if ᾱ′ 6= 0 and −ᾱ′β̄ is a square. We
obtain the following result, strengthening part (3) of Prop. 2.1.

Lemma 3.1. Suppose rA = 1. If vp(A) ∈ {1, 3, 7, 9} for some p 6= 11, 13, then

nA ≤ 1.

Proof: Note that if vp(A) ∈ {1, 3, 7, 9}, ∞ is the only point in Ca(Fp) that is
hit by CA(Q). By the preceding discussion, there is at most one pair of nontrivial
rational points in this residue class. 2

The residue class of (−b, 0).
we now assume ν = 5 (and p 6= 5) and a = b5, so we have y2 = x5+p5b5. The points
in the residue class we are considering have x ≡ −bp mod p2 and y ≡ 0 mod p3.
We choose T = Y as the uniformiser on Ca; then T =

√
p t with t ∈ Zp. Expanding
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everything in terms of T , we get

X = −b(1− a−1 T 2)1/5

= −b
(
1− 1

5a
T 2 − 2

(5a)2
T 4 − 6

(5a)3
T 6 + O(T 8)

)
5a

b

dX

2Y
=

(
1 +

4

5a
T 2 +

18

(5a)2
T 4 + O(T 8)

)
dT

5a

b

X dX

2Y
= −b

(
1 +

3

5a
T 2 +

12

(5a)2
T 4 + O(T 8)

)
dT

5a

b
ω =

1
√

p

(
(α− bβp) +

4α− 3bβp

5a
T 2 + . . .

)
dT

5a

b
λω =

1
√

p
(α− bβp) T +

4α− 3bβp

3·5a
T 3 + . . .

= (α− bβp) t +
(4α− 3bβp)p

3·5a
t3 + . . .

The interesting case for us here is p = 3. We again write α = 3α′ and assume that
α′, β ∈ Z3, not both in 3Z3; then up to scaling, we have mod 3

λω ∼ t ((ᾱ′ − b̄ β̄)− ā−1 ᾱ′ t2) .

If ᾱ′ = 0, there will be only one solution. If α′ = 1, we will have three solutions
if a(1− bβ) is a square, and one solution if it is a non-square. In any case, there
is at most one pair of nontrivial rational points in this residue class. For all other
primes p 6= 5, we get at most one pair of nontrivial rational points in this class
as well, but only if vp(α) > vp(β). We therefore obtain, taking into account the
discussion of ∞ above, the following strengthening of Prop. 2.1, part (1).

Lemma 3.2. Suppose rA = 1. If v3(A) = 5, then nA ≤ 2. If vp(A) = 5 for a

prime p /∈ {3, 5}, then nA ≤ 1.

The residue class of (0, b).
Let ν = 2n and set µ = min{m ∈ Z | 5m > n}. We must exclude p = 2 here. We
have ρ = 5µ−ν = 3, 1, 4, 2 for n = 1, 2, 3, 4, respectively. The points in the residue
class have x = pµ t with t ∈ Zp and y ≡ bpn mod pn+1. We choose T = X = π2ρ t
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as a uniformiser on Ca. This gives

Y −1 = b−1 (1 + a−1 T 5)−1/2 = b−1
(
1− 1

2a
T 5 +

3

8a2
T 10 + O(T 15)

)
b

dX

Y
=

(
1− 1

2a
T 5 +

3

8a2
T 10 + O(T 15)

)
dT

2b ω =
(
α π−2n + β π2n T − α

2a
π−2n T 5 − β

2a
π2n T 6 + O(T 10)

)
dT

2b λω = α π−2n T +
β

2
π2n T 2 − α

3·4a
π−2n T 6 − β

7·2a
π2n T 7 + . . .

= π2(ρ−n)
(
α t +

β

2
pµ t2 − α

3·4a
pρ t6 − β

7·2a
pρ+µ t7 + . . .

)
If p /∈ {2, 3, 7}, then there is at most one nontrivial solution, and we obtain at
most one pair of nontrivial rational points mapping to (0,±b̄). Together with the
discussion of ∞, this proves the following. The only new case is p = 5, since
p ≥ 11 is already taken care of by Prop. 2.1, part (2).

Lemma 3.3. Assume rA = 1 and vp(A) ∈ {2, 4, 6, 8} for some p /∈ {2, 3, 7}. Then

nA ≤ 1.

Proof: We have a contribution of at most 1 to nA from ∞ and a contribution
of at most 1 from (0,±b̄). However, we get a contribution from ∞ only when
vp(β) ≥ vp(α), but then there is no contribution from (0,±b̄), as can be seen from
the expansion of λω above. 2

We have to consider the cases p = 3 and p = 7 separately. When p = 3, we have,
with ω = (3α′ + βx)dx/2y as before:

λω ∼ α′ t +
β

2
3µ−1 t2 − α′

4a
3ρ−1 t6 + . . . .

If ρ > 1, only the first two terms matter. We get extra solutions only if v3(α
′) ≥

v3(β) + µ− 1. If ρ = 1 (and therefore µ = 1, ν = 4), we have to look at solutions
in F3 of

t(ᾱ′ − β̄ t− ᾱ′ t5) .

(Recall that a is a square, so ā = 1.) If ᾱ′ = 0, there is one extra solution.
Otherwise, we can take α′ = 1, and then we have no extra solutions if β̄ = −1,
we have one extra solution if β̄ = 0, and we have potentially two extra solutions if
β̄ = 1. Considering this together with the result at infinity, we get the following.

Lemma 3.4. Suppose rA = 1. If v3(A) ∈ {6, 8}, then nA ≤ 1. If v3(A) ∈ {2, 4},
then nA ≤ 2.
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Proof: The following table summarizes the possible contributions to nA from
the residue classes of ∞ and of (0,±b), depending on the reduction mod 3 of
(α′ : β) ∈ P1(Q3).

(α′ : β) ∞ (0,±b)

ν = 2 ν = 4 ν = 6, 8

(0 : 1) 0 ≤ 1 ≤ 1 ≤ 1

(1 : 0) ≤ 1 0 ≤ 1 0

(1 : 1) 0 ≤ 1 ≤ 2 0

(1 : −1) ≤ 1 ≤ 1 0 0

We see that for ν = 6 or 8, nA ≤ 1, whereas for ν = 2 or 4, nA ≤ 2. 2

Now we consider p = 7. This leads to

λω ∼ t(α +
β

2
7µ t− α

12a
7ρ t5 − β

2a
7ρ+µ−1 t6 + . . . ) .

The t5 term is irrelevant. If ᾱ 6= 0, then there are no extra solutions. In general,
we need v7(α) ≥ v7(β) + µ for there to be extra solutions. In this case, if ρ > 1,
then there is just one extra solution. If ρ = 1, i.e., ν = 4 and α = 7α′, then
(taking β = 1 without loss of generality), we must consider the roots in F7 of

ᾱ′ t− 3 t2 + 3ā−1 t7 .

There can be more than one extra solution; in this case there are up to four extra
solutions. In any case, together with the result at infinity, we get the following.

Lemma 3.5. Suppose rA = 1. If v7(A) ∈ {2, 6, 8}, then nA ≤ 1.

Putting it Together.

Collecting the information obtained so far, we see that Lemmas 2.2, 3.1, 3.2 and 3.4
cover all cases. This proves the first part of Theorem 1.1.

Now, if A is such that rA = 1 and #CA(Q) = 7, we need to have dA = 3 and
nA = 2. So A has to be a square. Furthermore, by Lemma 3.3, the prime factors
of A are contained in {2, 3, 7}, by Lemma 3.5, v7(A) ∈ {0, 4}, and by Lemmas 2.2
and 3.4, v3(A) ∈ {2, 4}. This leaves 5 ·2 ·2 = 20 values of A to check. We can
reduce the number of cases further by noting that if A ≡ 1, 3, 9 mod 11, all points
in CA(F11) lift to torsion points in CA(Q11), and therefore by standard Chabauty,
nA ≤ 1. This reduces the list to the following eight values:

A ∈ {32 ·74, 34, 22 ·34, 22 ·34 ·74, 24 ·34 ·74, 26 ·32, 28 ·32, 28 ·32 ·74}

The table below summarizes the data for these curves.
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A rA nA A rA nA

32 ·74 2 ≥ 1 34 2 ≥ 2

22 ·34 1 2 22 ·34 ·74 2 ≥ 3

24 ·34 ·74 3 ≥ 2 26 ·32 1 1

28 ·32 1 0 28 ·32 ·74 0 0

The ranks rA have been found by computing an upper bound as described in [St1]
and exhibiting sufficiently many independent points in JA(Q) (which are mostly
provided by points in CA(Q)). The values for nA in the cases when rA = 1 have
been verified by a standard Chabauty computation (at p = 29 for A = 28 ·32, at
p = 29 and p = 59 for A = 26 · 32: there are four extra residue classes left after
the computation with p = 29, which can then be excluded by looking mod 59 —
see [PSS, § 12] for an explanation of the method).

This shows that A = 182 = 22·34 is the only value such that rA = 1 and CA has 7
rational points. The last statement of Theorem 1.1 is therefore also verified.

It would be interesting to find out if there are more values of A such that rA = 1
and nA = 2 (which then will be non-squares).

In any case, it is easy to see that there is no A such that rA = 1 and #CA(Q) = 6.
This would imply that nA = 2 and A is a fifth power, so by Lemma 3.2, A is one
of 1, 35, 55, 35 ·55. But all these values satisfy A ≡ 1 mod 11, so nA ≤ 1 if rA = 1
(which is the case for A = 35 and 35 ·55).
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