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MINIMAL MODELS FOR
2-COVERINGS OF ELLIPTIC CURVES

MICHAEL STOLL AND JOHN E. CREMONA

Abstract

This paper concerns the existence and algorithmic determination
of minimal models for curves of gends given by equations of the
form y? = Q(x) whereQ(z) has degred. These models are used
in the method of2-descent for computing the rank of an elliptic
curve. Our results are complete for unramified extensiorig,aind
Qs and for allp-adic fields forp > 5. Our primary motivation is to
complete the results of Birch and Swinnerton-Dy&; vhich are
incomplete in the case @-. Our results in this case (when applied
to 2-coverings of elliptic curves ovdp) yield substantial improve-
ments in the running times of tledescent algorithm implemented
in the programmwrank [5]. The paper ends with a section onimple-
mentation and examples, and an appendix gives constructive proofs
in sufficient detail to be used for implementation.

1. Introduction

The method of descent has been used since classical times for studying the arithmetic
of elliptic curves. More recently, explicit algorithms for determining the Mordell-Weil and
Selmer groups of elliptic curves over the rational fi@ldgeneral number fields, and other
global fields, have been developed. One of the best such general algorithms for arbitrary
elliptic curves ovenr) is the2-descent algorithm described by Birch and Swinnerton-Dyer
in [2], which was used by them to determine the ranks of many elliptic curves in the
work which led up to their famous (and still unproved) conjectures. A description of this
algorithm, which is implemented in the second author’s progmamrank (see p]), may
be found in B].

In the2-descent algorithm (oved), one embed&(Q)/2E(Q) into the2-Selmer group
S?(E/Q) of the elliptic curveE. Elements of5? are represented by plane quartic curves
of the formY? = g(X), whereg(X) is a quartic polynomial whose classical invariahts
J (defined below) are related to the usuaaindcg invariants of the elliptic curve. Ir2], an
analysis of the minimal integral models for suftoverings was made for elliptic curves
over Q. This is a local question: for each odd primpethere is a unique minimal pair
(1o, Jo) such that every integral quartic of the above form which represeptadically
soluble 2-covering of E is isomorphic to one with this minimal pair of invariants. For
primesp > 3 the minimality condition is simply that either, (1) < 4 orv,(J) < 6, while
for p = 3 there is a slightly more complicated condition, equivalent to the condition that
I = ¢4 andJ = 2¢g where(cy, ¢g) are the invariants of a-minimal integral model foZ
overZ.
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2-coverings of elliptic curves

The situation at the prim2is more complicated: the result given &) Lemma 5] is that,
for a fixed elliptic curveFE over Q, the 2-adically minimal quartics definin@-coverings
of £ may have either one or two different pairs of invariafsJ): a basic or “small”
pair (Io, Jo), and in some cases, also the “large” pdirJ) = (2*Iy,2°.Jy). Sufficient
conditions on( 1y, Jp) are given under which no large quartics are required, in the sense that
any large quartics are equivalent (in a sense to be defined below) to small ones and hence
redundant. However, these conditions are not necessary, so this result is not best possible,
and one of our aims was to find best possible conditions. We solve the local probfem of
adic minimality, increasing the number of cases in which large quartics can be eliminated
by local considerations (see Lemma 6.1 and the table preceding it). Of course, it may (and
often does) happen that there are no global (integer) quartics with the larger invariants, as
this existence cannot be completely determined by purely local considerations.

The practical consequences of our results are to reduce the running timeaféseent
programmwrank for many elliptic curves. In3, p.92], we said

It would appear that rational points Iii(Q) whose quartics have the larger
pair of invariants lie in certain components of thadic locusk(Q-). Further
study of this would be very useful, since if the search for quartics with the
larger pair of invariants could be eliminated or curtailed, it could result in a
major saving of time in the algorithm.

The program carries out a search for quartics with given invariants for each relevant
pair (I, J), and clearly we do not want to waste time searching a large region for large
quartics if there are none (or only redundant ones). Implementing our optimal criteria for
the non-existence of large quartics is simple, and has a dramatic effect on the running time
for the curves to which it applies (see Section 7 for details).

Secondly, when both small and large quartics exist, we had noticed (after much experi-
ence of runningnwrank on many curves) that the elements of th8elmer group which
are represented by small quartics appear to form a subgroup, ofingex 4. Our second
goal was to prove that this is indeed the case, which we do (see Theorem 5.2 below). We
define a group homomorphism fro(Q;) to (Z/27Z)* whose kernel, which obviously
contain2F(Q-), consists precisely of the points associated to small quartics, from which
the result follows. Again, there are practical consequences of this in the implementation:
details and examples will be given below. For example, if we know from the start that the
local index is2, then we may stop the search for further large quartics as soon as one is
found. Examples may again be found below in Section 7.

In this paper we start by working over a generadic field, i.e. a finite field extension
of the field ofp-adic numberg,,. Although we prove little new fof, itself whenp > 2,
we are interested in carrying out expli@tdescents over general number fields, so we
also wish to consider extensions @, for generalp. Many results carry over easily to
unramified extensions. Some results of this nature were obtained by Serf in her 8hesis [
(see alsof)).

In the next section, we introduce some terminology and state basic results about mini-
mality of quartics. Some proofs are relegated to the appendix, since we wish to give them
in sufficient detail to to be implementable as algorithms. Sections 3 and 4 concern the con-
nection with elliptic curves, including a characterization of “small” quartics over a local
field K which is an unramified extension §f,. The case of), itself in then considered
in some more detail. In the final section, implications for the global situation and practical
consequences are examined, together with examples computedusiagk. Some of
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2-coverings of elliptic curves

the more technical results, which are necessary for implementation purposes, are given in
the Appendices.

Some of the material in Sections 2 and 3 is reminiscent of sections 24# bbjvever,
in [1] the case of additive reduction is not covered, and in the other cases it is not clear that
our results can easily be deduced from thoselbf [

This work was partially supported by a Visiting Fellowship from the Engineering and
Physical Sciences Research Council of the UK.

2. Basics

Let K be ap-adic field, i.e. a finite extension @,, with ring of integersOx. The
normalized (additive) valuation df will be denoted . We denote the ramification index
of K/Q, by ex and the residue class degree fy. We choose a uniformizet g, for
examplerx = p whenex = 1. The residue field is thelh = Ok /7 Ok.

We consider binary quartic forms (‘quartics’ for short)

Qz,2) =ax* +ba’z + ca®2? +daz® +e2?
with coefficientsa, b, ¢, d, e € K. We will use the shorthan@ = (a, b, ¢, d, e). There are
the following well-known invariants:
I(Q) = 12 ae — 3bd + c;
J(Q) = T2ace + 9bed — 27 ad® — 27b%e — 2 ¢*;
AQ) = disc(Q) = 5= (41° — J?).
Throughout this paper, we will tacitly assume that all quarf)care nondegenerate, i.e.
that A(Q) # 0.
Definition 2.1.
(a) Two quartics) andQ’ will be called K -equivalenif there is a matrixd = (: f) €
GL(2, K) and some € K* such that

Q =e’Q-A=¢e*Qax + Bz,yx +0z).
Note that the invariants @ and ofQ’ are then related by
Q) ="det(A)'1(Q), J(Q)=e%det(A)°T(Q), A(Q') =e'?det(A)A(Q).

(b) A quarticQ is calledK -solubleif there exist elements, ( € K, not both zero, such
thatQ(¢&, ¢) is a square irk.
(c) A quarticQ is calledK -trivial if there exist element$, { € K, not both zero, such

thatQ(&, ¢) = 0.

Both the latter properties are compatible wifrequivalence. The pair of invariants
(1, J) of an equivalence class is well-defined up to the actioK’&f, given by(7, J) —
(e*1,€5J) for e € K*. The unique class of trivial quartics with invariants/ is repre-
sented by the quarti@®, 1,0, —271, —27.J): to see this, take the root to k¢, ¢) = (0, 1),
soe = 0, and apply the transformatidrf °¢. ) with ¢ = (3d)~*.

Provided that\(Q) # 0, the affine equatiop? = Q(x, 1) defines a curvé of genusl
over K. This curvé has aK-rational point, and hence is an elliptic curve defined dver

Lor rather, its nonsingular projective model
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if and only if Q is K-soluble. Whether soluble or not, the JacobiarCgfis the elliptic
curveE = E; ; with equation

Er g Yy =a® = 27Ix —27J
where! andJ are the invariants of), and there is a map : Co — Er ; of degreed
defined over’’ making the following diagram commute:
(2]

E——F (1)

|

Co

Here,[2] denotes the multiplication-bg-map onF, and the vertical map is an isomor-
phism defined over an extension fielfa) wherea is a root of@. Such a diagram is
known as &-coveringof E.

If K is a number field andZ an elliptic curve defined oveK’, then elements of the
2-Selmer groups?(E/K) are represented [B+coverings, and hence by such curdes
with Q(z,1) € K|z], which arekK,-soluble for all completiong(, of K. Such a global
quartic is theneverywhere locally solubjeor ELS for short. Note that since the Hasse
principle fails for curves of genus, ELS quartics may not be globally soluble (ov€).

The process of-descent on an elliptic curvg involves the computation of it3-Selmer
group, and one way to do this is therefore to find all equivalence classes of ELS quartics
with the appropriate invariants.

In general, over any field of characteristic neitteenor 3, we have a bijection be-
tween E(K)/2E(K) (with E = Ej; ;) and the set of equivalence classes of soluble
quartics overK with invariants/,.J. For future reference we now make this bijection
explicit: for proofs, see4]. A point ({,n) € E; ;(K) maps to the class of the quar-
tic (1,0, —6¢, 8n, 1081 — 3£2), which has rational points at infinity and invariarts3* 1
and2°¢36.J.

Conversely, given a soluble quarti¢ = (a,b,c,d,e), we may assume (applying a
suitable unimodular substitution) that the rational point is at infinity, so that the leading
coefficienta is a square; then the corresponding pointFn; is

3b% — 8ac __b> + 8a%d — 4abc
(€m = ("2 )

See #] or [3] for the general formula, given an arbitrary rational point(ign

In this correspondence, the trivial cogdi(K’) corresponds to the class of trivial quar-
tics.

Later on, we will be interested mainly in an elliptic curf which we will assume to
be in the formy? = 23 + Az + B, and its 2-coverings. In this case, the correspondence is
as follows.

Proposition 2.2. Let K be an arbitrary field of characteristic neithex nor 3, and let
E :y? =23+ Az + B be an elliptic curve oveK. Then there is a map

Qr : E(K)/2E(K) — K-equivalence classes of quartics

given by mapping the class of a poiftt ) € E(K) to the class of the quartiQ =
(1,0, —6¢, 8n, —3¢%2 — 4 A). The mapy s is injective, and the image consists exactly of the
K-soluble K-equivalence classes of quartics with invarianfsJ) = (-3 A4, (-3)3 B)
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(modulo the action oK™ on (1, J)). The image of the zero element undgs is the trivial
equivalence class of quartics, containifg 1,0, A, B).

We will also use) i to denote the induced map froBY K) to classes of quartics.

We now return to the case whekéis a local field.

Definition 2.3. We define théevelof a quartic@ to be the integer
level(Q) = |min{vk (I)/4, vk (J)/6}].

In eachK -equivalence class of quartics, there are certainly forms with coefficied@sin
(replaceQ by £2Q for suitables); these integral forms have non-negative level. We call an
integral form@ K-minimalif it satisfieslevel(Q)) < level(Q’) for all equivalent integral
formsQ’; otherwise we call) K-nonminimal

Clearly each class of forms has minimal elements. We will be concerned with determin-
ing the level of K-minimal quartics. From the formulae given in Definition 2.1, we have
(in the notation used there)

level(Q') = level(Q) + vk (e det(A)). (2

Integral forms of level are clearly minimal, but the converse is false in general, as we will
see.

3. Levels of minimal soluble quartics

Our goal in this section is to prove the following result.

Theorem 3.1. Over ap-adic local field K, all soluble minimal integral quartic formg
have level satisfying

=0 if p > 5;
level(Q) § < [(1+ek)/2] ifp=3;
<ex if p=2.

In particular, if K is unramified thefevel(Q) < 1.

PROOFE By Prop. 2.2, every such quarti@ belongs to a clas§x(¢,n) for some el-

liptic curve E over K and some pointé,n) € E(K). If this point is integral (i.e.,

we havet,n € Og), then the given representative quar@¢ is also integral (and vice
versa). We can choosE to be given by an equatiop’? = z3 + Az + B with 0 <
min{3v (A), 2vk (B)} < 12. Then, sincd (Q') = —3-2* AandJ(Q’) = (—3)% - 2° B,

it follows thatlevel(Q’) = 0 for p > 5, level(Q') < |(1 + ex)/2] for p = 3, and
level(Q') = ek for p = 2. Since the level of the minimal forms within an equivalence
class is uniquely determined, this proves the theorem for quartics in classes that are images
of integral points as above.

Hence it only remains to prove the theorem for the images of non-integral points. These
points (together with the zero of the group law) make up the kernel of reduction of our
model for E. We will use the customary notatidii' (K) for this kernel of reduction, and
more generallyE™(K) for the nth kernel of reduction, consisting of th{¢, n) € E(K)
such thatx (§) < —2n, vk (n) < —3n, together withd € E(K). (Caution: Ifp = 2 or
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p = 3, our model forE is not necessarily minimal, and therefore dft (K) may differ
from the usual definition.) Now it is a well-known fact that (K) is isomorphic to the

nx O -points of a certain formal group; in particuldi! (K) is an Ox-module. Since

2 € Oy whenp is odd, all quartics corresponding to non-integral points are trivial in this
case. The remaining case follows from the following result. O

Proposition 3.2. Let K be a2-adic local field and letE : y?> = 2® + Ax + B with
0 < min{3vk (A),2vk(B)} < 12 be an elliptic curve oveK. Then the image af™ (K)
under@ g consists of classes of level at mastx{ex — n,0}, and is just the trivial class
whenn > eg.

PROOF. The points inE! (K) are parametrized byx O in the following way.
Ok >t— P(t) = (t2f(t),t 3 f(t)) € B*(K),
where
f)=1—At* —Bt* +... = 1+ t*f,(t)
is a power series with coefficients @y, see ¥, Prop. VII.2.2]. The quartic representing
Qe (P(t)) is then given by
Q1(x,2) = (1,0, —6t72f(t),8t 3 f(t), =3t~ f(1)* — 4A).
Letn = vk (t) > 1. We scale:

Qa(w,2) = Qulz, t2) = (1,0, 67 (1), 8f(r), ~3/(t)? — 4¢*4)
and shift:
Qs(z,2) = Qa(x + 2,2) = (1,4, =6t f1(t), —4t* f1(t), —4t° fo(t) — 3t° f1(t)?),
where we have sef; (t) = —A + t2 f2(¢). The valuations of the coefficients are
(=0, =2k, Z4n+ ek, > 4n+ 2ek, > min{bn + 2ex,8n}).

If n > ek, then the Newton polygon aP; has a vertex at3z, henceQ; splits off a
linear factor overk’, and the class af); is the trivial class (this implie®(¢) € 2E(K)).
In particular, the image aP(t) has level O in this case.

If n = ex, we can scale to get an integral quadig(z, z) = Qs(x, z/4) of level 0,
henceQg(P(t)) has level 0.

In the remaining casé,< n < ey, we havlex > 2n,4dn+ex > 4n, dn+2ex > 6n,
therefore we can scale to get an integral quai€z, z) = Qs(z, z/t?) of levelex — n.

O

Note that it is possible to have classes of leyglin the image whep = 2. For example,
if there is a point(&, n) with v (&) = 1 (andvg (=362 — 4A) < 4if ex = 1), then the
quartic representing its image is minimal by Lemma 5.1 below, and the class hasgdevel
This means that the above result is best possible.

4. Criteria for minimality

In this section, we derive criteria for when a given integral quartic (usually supposed
to be K'-soluble) over a-adic local fieldK is minimal. Though parts of the results given
here follow from Theorem 3.1 or arguments similar to those used for its proof, we will
provide alternative proofs here that are constructive and can be turned into an algorithm
for minimizing a given quartic.
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Definition 4.1. Thevaluationof a quarticQ) = (a, b, ¢, d, €) over ap-adic local fieldK is
defined to be

v (Q) = min{vk (a), v (b), v (c), v (d), vi(e)}.
Note that we always haves (Q) < 2 level(Q).

We denote by™" the maximal unramified extension &f.
We begin with the simplest case.

Proposition 4.2. Let K be ap-adic field wherep > 5 and let@ be an integral quartic
overk.

(1) fuk(Q) = 2, thenQ is K-nonminimal.
(2) Iflevel(Q) = 0, then@ is K-minimal.
(3) Iflevel(Q) = 1 andvk (Q) = 0, then@ is K-nonminimal.
(4) Iflevel(Q) = 1 andvk(Q) = 1, then@ is K-nonminimal if it iSK™"-soluble.
(5) Iflevel(@) > 2, then@ is K-nonminimal.
In particular, a K -soluble integral quartic ig<-minimal if and only if it has leve).

ProoF The proof of R, Lemma 3] forQ,, goes over unchanged to arbitrary extensions
of Q, for p > 5. See Prop. A.3 in Appendix A for details. This proof may easily be turned
into an algorithm for reducing quartics for whieh¢(I) > 4 andvg(J) > 6; all we
need to be able to do is to locate multiple roots of quartics with coefficients in the finite
field Ok /7 Ok. O

Note that the solubility assumption in part (4) is necessary, as shown by the example
Q = (m,0,0,0,7%), which is of levell and K-minimal by Lemma 5.1 below.

The next complicated case is when the residue characteristic is

Proposition 4.3. Let K be an unramified3-adic field. Then an integral quartic which
is K"'-soluble is K-nonminimal if and only ifeithervg (I) > 5 andvg(J) > 9, or
vg(I) = 4, vk (J) = 6 andvg(A) > 12. In particular, minimal quartics have levél
orl.

PROOF For K = Q3, this is 2, Lemma 4], though the proof was omitted there. See Ap-
pendix A, Prop. A.4 for a proof, which only useg (3) = 1, and so applies to unramified
extensions of)s.

The last statement also follows from Theorem 3.1, singe= 1. O

In the unramifieB-adic case, the minimal level depends only on the invariants, and is
at mostl. In the ramified casefc = vk (3) > 2) we have the following generalization.

Proposition 4.4. Let K be a3-adic field with ramification degreex > 1. Let@ be an
integral K-soluble quartic with invariantd, J. Assume tha) is K-nonminimal. Then
one of the following conditions holds:

1. vg(I) =2i+4andvg(J) = 3i + 6, for somei € Zwith0 < i < e /2;
2. vg(I) 2 ex +4,andvg (J) = 3i + 6 for somei € Z witheg /2 < i < ek;
3. UK(I) > ek +4ande(J) > 3ex + 6.

Condition(3) is always sufficient for nonminimality.
Whenex = 1, condition(1) is also sufficient, provided also thak (A) > 12. (Condi-
tion (2) does not occur.)
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Wheneg = 2, condition(1) is sufficient provided also thatc (A) > 12, and condition
(2) is sufficient provided also that, (A) > 15.

PROOF. For the necessity, it is an easy exercise to show that an integral quarti¢ with
vk (c) has invariants satisfyingithervy (1) = 2i andvk (J) = 3i for somei with 0 < i <
ex/2;0rvg(l) > ex andvg (J) = 3i for somei with e /2 < i < eg;0rvg(I) > ex
andvg (J) > 3ek. Since any nonminimal quartic has valuations(bf.J) that are by a
multiple of (4, 6) larger than those of a minimal one, necessity follows.

Wheneg = 1, the sufficiency has already been proved;dgr = 2, see B, pp. 193—
200]. The method of proof used i][ and in Appendix A in the unramified case, becomes
exceedingly tedious when there are many cases to consider. Sufficiency of the third condi-
tion follows (though non-constructively) from a consideration of the f@apon integral
points, since the representative qua@itasvi (I(Q)) < ex +4 orvg (J(Q)) < 3ex +6.

O

Finally, we consider the hardest case2e&dic fields, where the minimal level can-
not be determined from the invariants alone, even for an unranifiadic field such
asQs. OverQ-, the best previously known result which depends only on the invariants
is Lemma 5 of ], which states that (oveK = Q), if vx(I) > 6, vk (J) > 9, and
vk (81 +J) > 10, then everyK -soluble quartic with invariante/, .J) is nonminimal. This
result was extended to quadratic extension§efin [8], where fairly strong conditions
were stated which are satisfied by minimal quartics d@erwith level 1. In Section 6
below, we improve the result o2] (compare Lemma 6.1).

The following result is best possible in the unramifizddic case. We express it in as
invariant a way as possible, namely invariant uriglef2, O ).

Proposition 4.5. Let K be an unramifie@-adic field. Then an integral quarti@ which is
K™ -soluble isK-minimal if and only ifeitherit has level0, or it has levell and satisfies
one of the following conditions.

1. v(Q) =1, and%Q has a quadruple root modut®and no root modul®;
2. v(Q) = 0, and@ has a quadruple root modulband no root moduldé.

In particular, if v(I) > 6, v(J) > 9 andv(81 + J) > 10 then@ is nonminimal; as a
special case, quartics of level at le&sare nonminimal.

The condition above can be explained as follo@s:= 2~ (%) Q has a unique multiple
root modulo2, which has multiplicity at least (this follows from the vanishing of (1)
and J(Q1) modulo2 for forms of levell). If the multiplicity is only 3, then the form is
nonminimal, while if the multiplicity ist then minimality depends on the valuation of the
constant term after shifting the multiple root@anod 2.

An alternative formulation of the result is as followsn integral and soluble quartic of
level1 is minimal if and only if it isSL(2, O )-equivalent to a quartid¢a, b, ¢, d, e) with
vi(a) < 1, vk (b), vk (c), vk (d) > 2and2 < vk (e) < 3. Compare Lemma 5.1 below.
PROOF We give the details in Appendix A, Prop. A.5, again in a form which may be used
as part of an algorithm for minimizing quartics ovér O

We do not have a best possible result on minimality of quartics for geRerdikc fields,
but at least we know by Theorem 3.1 that the level &f-aminimal K -soluble quartic is at
mosteg .



2-coverings of elliptic curves

REMARK: Over an unramifie@-adic field, we may consider more general equations of
soluble2-covering curves, of the form

Y2+ P(X)Y = Q(X),

whereQ is a quartic andleg(P) < 2. Every soluble2-covering of an elliptic curve ovelk

has such an equation of levél(with an obvious extension of the definition of level to
such equations). However, we have found the use of such equations less convenient for
computations. The situation is similar to that of minimal Weierstrass models for elliptic
curves ovee-adic fields, where equations of the foli? = cubic do not suffice.

5. Characterization of small quartics wheii/Q- is unramified

In this section, we restrict to the case where- 2, and K is anunramifiedextension
of Q.. Let E be an elliptic curve oveK as above. The image 6fg consists of classes of
quartics of level$) and (possibly)l: we call a class in the image §fg smallif its level is
zero andarge otherwise.

The following Lemma is also used in the proof of Prop. 4.5, see Appendix A. The “only
if” direction of the Lemma was proved (f@-) in [8], but there is no proof there for the “if”
direction. We remedy that here. One corollary is that the algorithm for reducing quartics
overQ- which is implicit in [8] and implemented in the second author’s programrank
(see B]) is always guaranteed to produce a minimal integral quartic equivalent to a given
one. We only need this result whéhis a2-adic field, but we state and prove it for general
p-adic fields.

Lemma5.1. Let@ = (a,b, ¢, d, ) be an integral quartic over g-adic field K such that
vg(a) <1, wvg(b) =22, wvk(e) =22, vi(d) >3, vk(e)=2.

ThenQ is K-minimal if and only ifuk (e) < 3.

PROOF If vk (e) > 4, then we can scal@ to getQ:(z, z) = Q(x, z/7x ), which is still
integral and has smaller invariants,@ds nonminimal in this case.
So suppose now thats (e) < 3. If Q were nonminimal, there would be a matrix=

(‘7" ?) € GL(2,K) and arc € K* with vk (e) + vk (det A) < —1 (compare (2)) such

that
Q1(x,2) = (a1,b1,¢1,d1,€1) = EQQ(ax + Bz, vz + 02)

is integral. By changinge, A) into (771_(2"5, n A) for a suitabler € Z, we can assume that
A has integral entries not all divisible by . Then we havek (¢) < —1 — v (det A) <
—1. We observe that

e 2a1 = Q(a, ) = aa’ + bay + ca’~? + day® + ey,
e 21 = Q(B,9) = af* + bB35 + ¢B20° + dB6> + ed*.

The first of these equations implies (considering the valuations of the various terms) that
vk (o) = 1. Similarly, we get from the second equation that(3) > 1. This implies

vk (det A) > 1 and thereforeri (¢) < —2. Looking at the two equations again, we see
that we must now have both (v) > 1 andvgk (6) > 1, contradicting our choice of the
matrix A. Hence() must be minimal. O



2-coverings of elliptic curves

We wish to characterize the points Bf K') whose image is small. This characterization
will finally lead to the following result, which then can be used to improverntverank
program.

Theorem 5.2. The set of elements &(K)/2E(K) that map to small classes is a sub-
group, and its index can be determined explicitly. Wher- Q, the index is at most.

The first step is to get some criterion in terms of (the coordinates of) a foinf (K)
for when its image unde® i is small. We already know by Theorem 3.1 that the levels of
the classes in the image are either 0 or 1, and by Proposition 3.2 that the imagerof
consists of small classes. We can therefore restrict our attention to points with integral
coordinates. For the following, we need some more notation.

Definition 5.3. We denote by the automorphism ok such that(¢)? = ¢ mod 2 for all
¢ € Ok. We denote by; the mapK > ¢ — (& — t(€)?)/2 € K; note thatu mapsOx
into itself. If K = Q,, thent is simply the identity.

Lemma 5.4. t andu have the following properties.
(1) tis additive and multiplicative and preserves the valuation.
(2) Forall¢,ne K:
w(+n) =ul@)+uln)—tEn) and  u(=E) =u(§) -¢.
(3) Forallg,n e K:
u(&n) = &u(n) + nu(§) — 2u()u(n).

(4) Forallg,n e Ox andalln > 0:

¢ =nmod 2" = u(¢) = u(n) mod 2".
(5) Forallé,n e Ok:

w(€+2n) =u(€) +nmod 2.

(6) Forall¢ € Ok:

u(§) =0 mod 2 < ¢isasquare mod 4

PROOF. Easy. ]
Now we can formulate our criterion.

Lemmab5.5. LetP = (¢,n) € E(K) \ E*(K) be an integral point. The® z(P) is small
if and only if

vre (u(€)? — A+ 2t(€)(n — 1(€)° — t(&)u(€))) > 2,
or equivalently, if and only if
u(§) = t(A) mod 2 and B¢ =u(A)*> mod 2.
PROOFE The quartic representing the cla@s (P) is given as
Qi(x,2) = (1,0, —6¢,8n, =36 — 44),
10
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which has level. We do a shift:
Qa(2,2) = Qu(w + (&), 2)
= (1, 41(), ~12(8), 81 — 1(©)* — 3t(E)u(&)).
— 4(A+ 3u(§)? — 2(E)(n — HE)* — 31&)*u(€))) ) -

To this quartic, we can apply Lemma 5.1. It tells us tatis nonminimal (and hence
the class is small) if and only if the valuation of it$ term is at least; this proves the
first claim. To see the equivalence, note first that a necessary condition ig(¢hHat=
A mod 2; this is equivalent tay(§) = t(A) mod 2. If this condition holds, it follows that
u(€)? = t(A)? mod 4, henceu(£)? — A = 2u(A) mod 4. In this case, the first condition
is equivalent with (mod 2)

0

(A) + (&) (n — t(&)* — t(E)u(€))
(A) +t(Em* — € — A9)

t(u(A)® + BE)

and since is an automorphism, this is equivalent®g = u(A4)? mod 2. O

We now proceed to show that the points mapping to small classes form a subgroup. We
need a little lemma.

u
u

Lemma5.6. Supposé’;, P», Ps € E(K) are three points such thd;, + P>+ P; = 0 and
such thatP; € EY(K), but P, P, € E(K) \ EY(K). LetP; = (&,n;) for j = 1,2,3.
Then we havé; = & mod 4.

PROOF ¢; andn; are integral forj = 1, 2, while {5 = £/4™ with £ a unit andn > 1. Set
A= (772 — 771)/(52 — 51) = (7]3 — T]l)/(fg — fl) =2""ewithea Unit; now
2"(n2 —m) =e(&2 — &)
so (sincen > 0) & = & mod 2. Hencerns = n; mod 2 (from the equation foF, since
squaring is an automorphism mod@lp hencets = £; mod 4 from the previous equation
again. O
Sincerk = 2, the residue field i = O /20k.
Proposition 5.7. The mapd : E(K) — k x k, defined as follows,
{ EYK)> P —  (0,0)
Tl BE)\EYK) 3 (&n) — (w(€)® + A, BE +u(A)? + (u(§)® + A)E?)
is a homomorphism. It therefore induces a homomorphism
®: E(K)/(2E(K)+ EY(K)) — k x k.
The kernel of®d consists exactly of those points that map un@es to small classes of
quartics.

o

PROOF. Take three pointd;, P, P; € E(K) such thatP; + P, + P; = 0. We have to
show thatd(P,) + ®(P;) + ®(Ps) = 0.

Suppose first that two of the points are it (K). Then so must be the third, and
®(P;) =0forj =1,2,3.

If exactly one of the points; say, is inE*(K), then by Lemma 5.6, the-coordinates
of P, and P, are congruent mod 4. Heng&(P,) = ®(P,) and so®(P;) + ®(P,) +

11
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®(P3) = 0 as required (note thak(¢, n) only depends o8 mod 4 if the point is integral,
compare Lemma 5.4, (4)).
Finally suppose that all three points areinK )\ E'(K). ThenP;, P, P; lie on aline
of equationy = Az + p with A andy integral. WritingP; = (§;,7;), we have the relations
G+&E+8G=XN, G&E+E5+GL=A-2\u, L&EE=p*—B. (3)

Apply u to the first equation and use Lemma 5.4 to get (mod 2)

0=u(N?) =u(1 + & + &)
=u(&) + u(e) +u(&3) + (618 + E263 + &361)
= (&) + u(ée) +u(és) +t(A),
so that we have
u(§1) +u(é2) +u(és) = t(A) mod 2. 4)

Square both sides to get
3

Z +A =0mod 2;
j=1

this shows that the first component®fis a homomorphism.
Now applyu to the second equation in (3) (and use Lemma 5.4 again) to get (again
mod 2)
u(A) + A= u(A = 22p) = u(&&e + &8 + 6361)
= & (u(&2) +ulés)) + La(u(és) +ulé)) + &s(ul6r) +ulé2)
+ t(§1&83)t (&1 + &2 + &)

E1(u(&r) +1(A)) + Ea(u(2) +t(A)) + &3 (u(&s) + t(A))
+ t()\Q %)+ t((&1+ & +&)B)

use (4)

sz & (u(&;) + t(A) + t(BE;)) .
Squaring this, we finally get

3

Z (B& + u(A)* + (u(€;)* + A)EF) = 0mod 2;

j=1

this shows that also the second componeri & a homomorphism.

The assertion thab induces the homomorphistis clear.

Finally, the last assertion follows immediately from Lemma 5.5 and the fact that points
in E*(K) map to small classes of quartics. O

The practical aspect of this result is that we can find the subgroug &f) mapping
to small classes by applying the mé@pto a set of representatives & K)/(2E(K) +
EY(K)). This is easily done for any given elliptic curve. In the special ddse- Q2, a
very explicit description is given below in Section 6.

We also see that this subgroup has index at gdst= 4% in E(K). This information
is only interesting wherll = Q, however (bounding the index by 4 in this case), since
we always havetE(K)/2E(K) < 22H/x,

12
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Since the image af g consists exactly of the equivalence classes of soluble 2-coverings
of £, we can define a may from soluble quartics with invariants correspondingitdo
k x k by first applying the inverse @ . A formula for ¥ (Q) involving thez-coordinate
of a K-rational point on the corresponding 2-covering can easily be derived; it appears,
however, that it is not possible to give a formula just in terms of the coefficiertds of

6. The casel = Qo

The most important case for practical application is whes Q2. Our results can then
be used to improve the algorithm behind therrank program, seed]. We give examples
to illustrate the improvement in running time in the next section.

When K = Q, the formulae in our results can be simplified by observing that
simply the identity and that we havg¢) = 0 mod 2 for £ = 0,1 mod 4 andu(§) =
1 mod 2 for £ = 2,3 mod 4. This leads to the following table of values ®f Each entry
corresponds to given residues4inod 4,8 mod 2 andt mod 4.

[é=0]é=1]¢é=2]¢6=3]
A=01(0,0)[(0,0) [ (1,0) [ (1,1)
Bevenl A=1[ (1,0) | (1,1) | (0,0) | (0,0)
A=21(0,1) | (0,1) | (1,1) | (1,0)

A=3| (1,1) | (1,0) | (0,1) | (0,1)
A=0(0,00(0,1) [ (1,0) | (1,0)

A=1| (1,0) | (1,0) | (0,0) | (0,1

B odd A=2 %J%EQ& &J;ELS
A=3|(1,1) | (1,1) | (0,1) | (0,0)

If we take into account the residue clasgbimod 4, then we can exclude certain residue
classes fok, since the right hand side of the curve equation is a non-square mod 4. In the
following table, each entry corresponds to given residued ahd B mod 4 and lists the
residue classes mod 4 such that a péfit)) € E(Q2) with £ in one of these residue
classes has non-trivial image under(or, equivalently, maps to a large class of quartics
underQg).

||AEO|A51‘A52|A53|

B=0] 2 0 [0,23[013
B=1]| 2,3 0 0,2 | 0,1
B=2 1 1 2
B=3| 1 1,3 3 2

The entries in boldface stand for residue classes that always containcih@rdinate of
some point inE(Q2) becaus&?® + A¢ + B can always be made to be 1 mod 8. The
entries in italics stand for pairs of residue classes such that exactly one of them gives rise to
a pointin this way (depending ahand B mod 8). The underlined entries indicate residue
classes that contain a 2-torsion point. (Wheis odd andB is even, then there is a zero
of &3 + A¢ + B with ¢ = B mod 4, as can be seen from the Newton polygon. WHeis
even andB is odd, then we can apply the same argument after shiftimg1; this gives a
zero£ = A+ B+ 2mod 4.)

We proceed to show that wheh = 2 or 3 andB = 0 mod 4, there is a point with-
coordinate of the same parity ds This then implies thad is surjective. Consider first the
caseA = 2. Then the Newton polygon of(¢) = €3 + A¢ + B has a length 1 segment of
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slope> 1, hencef has a zer@ € 2Z,. In the other cased = 3:if A+ B+ 1 =0 mod 8
then we shift¢ by 1 to get the same situation as before, so thaas a zer@ € 1 + 27Zo;
if A+ B+ 1 = 4 mod 8 then one can see that for sofiec 1 + 4Z, we havef(§) =
4 mod 32, so thatf(¢) is a square.

Collecting this information (and taking into account the value$ tdken on the various
residue classes), we get the following table for the possible values of the size of the image
of @, or the index inE(Q2) of the subgroup corresponding to small quartics.

||AEO|A51‘AEQ|AE?)|

B=0] 1,2 2 4 4
B=1]| 2 2 2 2
B=2]| 2 1,2 2 2
B=3]| 2 2 2 2

In the two cases where it is possible to have no large quartics, natiya square
mod 4 andB = 2A mod 4, we have to check whether the curve has a point in the specified
residue class. This can easily be done by a recursive procedure that tests Whetdér-
B is a square or not if this can be decided on the current knowledge &hibthis cannot
be decided, the current residue classg@s split into two residue classes modulo the next
higher power of 2. In Appendix B we discuss this further, and give a more efficient non-
recursive algorithm for determining the index in these two cases. Here we can give a more
specific result, improving on an old result due to Birch and Swinnerton-CBjeftheir
result covers the casé, B = 0 mod 4 and16 | 24 + B). The following Lemma allows
us to determine the index precisely in three quarters of the ambiguous cases.

Lemma 6.1.

(a) Suppose thatl = B = 0 mod 4.

(1) If2A+ B = 0 or 4 mod 16, then there are no large classes of quartics (i.e., the
image of® is trivial);

(2) if(A,B)=(0,8),(0,12),(8,8) or (8,12) mod 16, then there are large classes
of quartics (i.e.® is non-trivial);

(b) Suppose that =1, B = 2 mod 4.

(1) If A+ B = 7or 11 mod 16, then there are no large classes of quartics (i.e., the
image of® is trivial);

(2) if(A,B) =(1,14),(5,14),(9,6) or (13,6) mod 16, then there are large classes
of quatrtics (i.e. @ is non-trivial);

PROOF (a). In case (1), we have to show thE{Q;) contains no integral points with
z-coordinate = 2 mod 4. For such &, we have

&+ A+ B=8+2A+ Bmod 16.

Since8 + 2A + B = 8 or 12 mod 16, this cannot be a square.

In case (2), we have to show thB{Q5) contains an integral point with-coordinate
¢ = 2mod 4. In the casegA, B) = (0,12),(8,12), one may check that eithef(2)
or f(—2) is asquare, wherg(z) = 2° + Az + B. Inthe case$A, B) = (0,8), (8,8), the
Newton polygon foly(z) = f(4x + 2) shows thay (=) has an integral root.
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(b). Similarly, in case (1), we have to show that there is no integral point gith
1 mod 4. For such &, we have

&4+ A+ B=14+A+ Bmod16.

(Write & = 1 + 4&; and note tha8 + A = 0 mod 4 to see this.) Sincé + A+ B = 8
or 12 mod 16, this cannot be a square.

In case (2), wherfA, B) = (5,14),(13,6) mod 16, one may check that eithgfi(1)
or f(5)isasquare. IfA, B) = (1,14), (9,6) mod 16 then the Newton polygon af(z) =
f(4z + 1) shows that there is an integral root, provided that B = 31 mod 32. Finally,
when(A, B) = (1,14), (9,6) mod 16 andA + B = 15 mod 32, one may check that one
of the valueg)(£1), g(+£3) is a square. O

Using this Lemma, together with the algorithm of Appendix B for the cases where
the Lemma does not apply, we increase significantly the number of cases where large
quartics do not have to be considered in a systematic enumeration of all the equivalence
classes, compared witR][ This has a significant effect on the average running time of the
2-descent algorithm oveQ. It does not seem possible to determine the imagé obm-
pletely in all cases, simply in terms dfadic congruence conditions on the coefficieAts
and B; on the other hand, the algorithm in Appendix B resolves the ambiguity quickly for
any given curve.

7. Implementation and examples

We conclude with some remarks about the practical consequences of our results, par-
ticularly those of the preceding section, for the two-descent algorithm implemented in our
freely-available programmwrank [5]. For more details of the algorithm, se#.[

We determine the Selmer group of an elliptic cufvéy finding quartics which repre-
sent all two-coverings aof. In general we have to search first for “small” quartics, and then
for “large” quartics, in the sense defined above. The search for large quartics takes consid-
erably longer, since the search regions are larger, though we can speed up the large search
by imposing congruence conditions on the coefficients of large quartics which ensure that
we only find those which ar®-minimal (not equivalent to small ones).

Define the “local index” of a curvé?/Q to be the order of the image of the mép
defined above, which is the indék(Qz) : ker(®)]. Elements ofE(Q) in ker(®) are
associated to small quartics. Define the “global index” to be the ind¢R) : F(Q) N
ker(®)]. Then the local index ig, 2 or 4 and may be determined by the results of the
previous section, invoking Lemma 6.1 or the algorithm of Appendix B when necessary.
We need to search for large quartics if and only if the local index is greaten theard we
find any if and only if the global index is greater than

Exact knowledge of the local index allows us to reduce the number of cases in which
large quartics need to be considered at all. Previoosfyrank used the result from?],
which only applies whesl = B = 0 mod 4 and2A + B = 0 mod 16. This is one of the
cases in Lemma 6.1(a)(1). Hence by the use of Lemma 6.1, we may increase by a factor
of 4 the proportion of curves for which we do not need to consider large quartics. This
change to the algorithm reduced the running timenefrank on our test data (see below)
by around 65%.

For example, consider the cur¥é = X3+20 with (4, B) = (0, 20), so thaA+B =
4 mod 16. The rank is 0. There are no non-trivial small quartics. Using the old criterion, we
search for large quartics, and find two, though they aré®esoluble. Of course, for such
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a small example both versions of the algorithm are very fast, taking only a fraction of a
second to run. For a similar larger example, takeB) = (0,16000004), where the curve
again has ranl. There are no small quartics. The old algorithm finds two (equivalent) large
guartics which are nd.-soluble; the running time i$5 seconds. The new algorithm only
searches for small quartics, and takes juséconds.

The curve with(A, B) = (40004,40004) has local index.. (Here, Lemma 6.1 does
not apply, sincA + B = 12 mod 16, so we have to use the algorithm of Appendix B.)
Searching only for small quartics we find the Selmer rank ta béer only1.6 seconds,
while the fruitless search for large quartics takes a furthgiseconds. (In this example,
we have excluded the time taken to findQarational point on the one locally soluble
quartic found, which ig41, —36, —474, 1282, —982), since there are no such points of
small height, so that in fact this search for points will dominate the running time if we wish
to establish (unconditionally) that the rankii3

Next, when the local index is determined tohend we must search for large quartics,
we may stop the search for large quartics as soon as we find one wifiekakuble (or
just ELS, in case we are only interested in finding the Selmer group). In many cases a large
quartic is found early on in the search, so that this eliminates most of the time previously
spent on the large search. The situation here is entirely analogous to that which occurs
when E has positive discriminant, so thai(R) has two real components: the analogous
strategy is detailed irg] p.93].

For example, consider the cur¥@ = X3 4+ X2 — 3405X + 15280204, where the local
index and global index are both The rank i3, with a contribution of7 from small quar-
tics. In the search region for large quartics, the leading coeffigisatisfies eithed < a <
859 or 0 > a > —562. The original algorithm searches this whole region, despite quickly
finding a suitable quartic with = 1, namely(1,0, —66116, 9253784, —364263500), and
takes36 seconds. The improved algorithm stops after finding this large quartic, and delivers
the same result in undérseconds.

When the local index id the situation is slightly more complicated. We can stop the
search for large quartics once a second one (whir$sluble or ELS) is foundyrovided
that the second one is independent of the first one modulo the “small” subgroup. Our
implementation takes account of this. Of course, the global index may be les4, timan
which case there is no reduction in running time. To illustrate the possibilities we consider
the following curves, which all have local index (1) (A, B) = (2,4) has global index
also: the rank i€ and all comes from large quartics; (4, B) = (3, 8) has global inde®;
the rank isl, coming from a large quartic; (34, B) = (2, 8) has global index; the rank
is 0, and there are no non-trivi@-soluble quartics at all.

To estimate the average expected gain from implementing the results of the previ-
ous section to “typical” curves is not straightforward. For curves for which the Birch—
Swinnerton-Dyer criterion already applies, or for which the global index is strictly less
than the local index, there is no change at all. (There is also no change for curves with
rational2-torsion, where a different descent strategy is used.) We measured the time taken
for mwrank to process our standard test list of curves which are, in a sense, “typical”. In
the list we have the followind74 curves, all with no rationd-torsion: all401 curves with
conductorN < 400 and no2-torsion, up to isogeny; all 18 rank 2 curves with conductor
N < 1000, up to isogeny; and a miscellaneous collection of 10 rank 3 curves, 10 rank
4 curves, 5 rank 5 curves, 6 rank 6 curves, 21 rank 7 curves and 3 rank 8 curves. (These
curves, together with the curves of conducddr< 400 with rational2-torsion, form the
test data now distributed witmwrank.)
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The local index isl for 400 of these curves (which hence have global indaiso), of
which 169 satisfy the Birch—Swinnerton-Dyer condition for non-existence of large quartics
while the remaining 231 require Lemma 6.1 or its refinement. The other 74 curves have
local index2, of which 13 have global indek, and 61 have global index (No curves in
this list have local index). Overall, 231 curves out of 474 (or 48.7% of relevant cases)
benefit from the exact computation of theadic index. Of the 74 cases where the local
index is greater thah, 61 (or 82.4%) benefit from the early exit strategy.

We give here the time taken to process these curves with our algorithm, which in
all cases determines the rank unconditionally, and also finds rational points generating
E(Q)/2E(Q), which therefore generate a subgroupFifQ) of finite, odd index. To see
how the successive refinements to the algorithm affect the running time, we give times for
four versions: (1) using only the Birch—Swinnerton-Dyer criteria; (2) using Lemma 6.1 but
no early exit when the index is greater thgn(3) using the refinement to Lemma 6.1 to
determine the exact local index in all cases, but still with no early exit; and (4) as for (3),
but with early exit during the search for large quartics when the global index reaches the
local index. All these times are based on our development version ofiltank code, us-
ing NTL with gmpinteger arithmetic, compiled with GCC 2.8.1, running on a DEC alpha
EV6.

[Method [ 1] 23] 4]
Time for all 529s | 189s | 187s | 108s
Time for 174A1 232s | 31s| 31s| 31s

Time without 174A1|| 297s | 158s | 156s | 77s

From this table we see that Lemma 6.1 by itself gives a significant time-saving, as does
the early exit strategy. The identification of curves of local intiéx cases not covered by
Lemma 6.1 is less significant (though it was the least simple to implement). The variation in
times for the curves in this list is quite considerable, even amongst the curves of conductor
under400, all but one of which has ranf or 1. By far the most time-consuming is the
curve with standard code 174A1 and Weierstrass coefficignts 1, —7705, 1226492,
for which the the local index i$ by Lemma 6.1(b).

Appendix A

We collect here proofs of some of the results of Section 4. Some of these may be found
in [2], though many (and in some cases all) of the details are omitted there. The proofs we
give may easily be turned into algorithms for minimizing a given quartic over a local field,
or over a number field. In the latter case, we can minimize simultaneously at all primes
provided that the relevant primes are principal: for example, if the field has class number

In the following, K will again be a fixegh-adic field. We omit the subscrigt in order
to simplify notation, so for example = 7 andv = vg. Recall the notation(Q) =
min{v(a),v(b),v(c),v(d),v(e)} for quarticsQ = (a,b, ¢, d, e) overK.

We begin with two lemmas. The first one gives conditions in terms of the valuations of
the coefficients that imply nonminimality. The second one will serve to eliminate part of
the cases in the results proved below, but is also of interest in itself.

LemmaA.l. Let@ = (a, b, ¢, d, e) be anintegral quartic oveK'. Thenq is K-nonminimal
in any one of the following cases.
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1. v(a) = 0,v(b) = 1,v(c) = 2,v(d) > 3,v(e) > 4.

2. v(a) 2 0,v(b) = 0,v(c) = 2,v(d) >4, v(e) > 6.

3. v(Q) = 2.
PrRoOOF The following K -equivalent quartics are integral and of lower level in each case.
1.Q(x,m 12). 2.72Q(z, 7 2%2). 3.772Q(z,2) . O

Lemma A.2. Suppose the residue characterigtiés not3. Let @ be an integral quartic
over K, and setQ, = 7 V(@ Q. If level(Q) > 1 and Q is K-minimal, thenQ; has a
quadruple root, when reduced moduto (The root may be at infinity, in the sense that
Q1 (7, 2) = ez* mod 7).

PROOF We useay, by, ..., I, J; for the quantities associated@d . If v(Q) = 2, then@
is K-nonminimal by Lemma A.1, so we either hav@&)) = 0 or v(Q) = 1. In both cases,
v(I1) = 2andv(Jy1) > 3.

The vanishing of/; and.J; mod 7 implies that@; has a root of multiplicity at least
three modr. We therefore have to show th@ is nonminimal when the multiplicity is
exactly three.

By a suitable transformation ifiL(2, O) (this preserves integrality and the level), we
can achieve that the triple root is at zero (mgdand that the remaining root is at infinity
(mod ). This means that (in obvious notationjas, b1, c1,d1,e1) > (1,0,1,1,1) with
v(by) = 0.

Applying ({ ¢) € SL(2, O), wherex € 7O satisfies the congruendé, o = —c¢ mod
72, we can achieve that additionallyc;) > 2. Considering the valuations of the various
terms making ug and.J, we deduce frona(/;) > 2thatv(d,) > 2 and then fromv(J;) >
3thatv(e;) > 3. If v(Q) = 1, thismeans(a, b, ¢,d, e) > (2,1, 3, 3,4), which shows non-
minimality by Lemma A.1, part 1. IH(Q) = 0, we havev(I) > 4 andv(J) > 6, from
which we conclude)(d) > 4 andv(e) > 6. We then have(a, b, c,d,e) > (1,0,2,4,6),
so(@ is nonminimal by Lemma A.1, part 2. O

Now we proceed with the proofs of the results in Section 4.

Proposition A.3. Let K be ap-adic field wherep > 5 and let@ be an integral quartic
overK.

(1) Ifo(Q) > 2, then@ is K-nonminimal.

(2) Iflevel(Q) = 0, then@ is K-minimal.

(3) Iflevel(Q) =1 andwv(Q) = 0, thenQ is K-nonminimal.

(4) Iflevel(Q) = 1 andwv(Q) = 1, then@ is K-nonminimal if it isK*-soluble.
(5) Iflevel(Q) > 2, thenQ is K-nonminimal.

PrROOF (1) Thisis Lemma A.1, part 3.

(2) This is clear, since an integral quartic cannot have negative level.

(3) Let @ = (a,b,c,d,e). By Lemma A.2, we can suppose thafa,b,c,d,e) >
(0,1,1,1,1) with v(a) = 0. Then the valuations of and.J imply thatv(e) > 2 and
thenv(d) > 2. Next, the valuation ofic — J implies thatv(c¢) > 2 (this observation
is due to Serf, see8[ page 148]). Finally, the valuations éfand.J imply in turn that
v(e) = 3,v(d) > 3, v(e) > 4, and we may reduce the level by Lemma A.1, part 1.

(4) Let @, = 7—'Q. Then@; has modulor either a triple or a quadruple root. If it
has a triple root, the® is K-nonminimal by Lemma A.2. So suppo§e has a quadruple
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root modulorr. Then we can suppose thafa, b, ¢,d,e) > (1,2,2,2,2) with v(a) = 1.
From the invariants, we get(d) > 3 andv(e) > 3. We claim that(e) > 4. Otherwise
v(e) = 3, and it is easily seen thatQ(z, 2)) is odd for all(x, z) € (K"")? \ {0}, soQ is
not K'-soluble, a contradiction. Heneéa, b, c,d, e) > (1,2,2,3,4), and the level can
be reduced by Lemma A.1, part 1 again.

(5) If v(Q) > 2, this follows from part (1). Otherwise, s€@; = = *(@Q; then
level(@1) > 1 andv(Q4) = 0, soQ; is K-nonminimal by part (3), and the level ¢f can
be reduced in the same way as €y. O

Proposition A.4. Let K be an unramifie®-adic field. Then an integral quartic which is
K"*-soluble isK-nonminimal if and only igithervg (I) > 5, vk (J) > 9, orvg (I) = 4,
v (J) =6 andvg (A) > 12.

PrROOFE This is 2, Lemma 4]. In P] the proof was omitted. The argument only uses
vk (3) = 1, so also applies to unramified extension€)gf

For the necessity, suppose first that= (a, b, ¢, d, e) is minimal. Thenv () > 0 <=
v(c) >0 < wv(J) > 0, and in this case(J) > 3, so that eithep(I) = v(J) = 0, or
v(I) > 1andwv(J) > 3. In both cases, we also havé4I3 — J?) > 3, since4I® — J? =
27A. Since any nonminimal quartic in the same class has valuatiof df A) that are
larger by a multiple of4, 6, 12), the necessity of the given conditions follows.

The proof of sufficiency follows the same plan as for the preceding Proposition. We
consider the caseg @) = 0 andv(Q) = 1 in turn, the case(Q) > 2 being trivial.

Suppose that(Q) = 0. After a suitable unimodular substitution we may suppose that
the multiple root modul@ is at0, and that if the multiplicity is exactly then the second
root is atco. In the multiplicity 3 case, we have(b) = 0 while v(a), v(c), v(d), v(e) > 0.

Now v(J) > 6 impliesv(c) > 2 andv(e) > 2, thenv(I) > 4 impliesv(d) > 3, and then
v(J) = 6 impliesv(e) > 3.

Consider the case whet€l) > 5 andv(J) > 9. The conditionv(¢) > 3 can be
achieved with the unimodular transformatioh?’ ), wherebt = —¢/9 mod 27. If v(I) >
5 we then see that(d) > 4, and therw(J) > 9 impliesv(e) > 6, so we can reduce the
level by Lemma A.1, part 2.

Suppose alternatively that/) = 4 andwv(J) = 6. Now, for suitablet (satisfying
bt3 = —e/33 mod 3) the transformatiort | 3¢ ) givesv(e) > 4. Now we use the fact that
v(A) > 12 to deduce that(d) > 4, for otherwise the expression fdr contains a unique
term4b3d® of minimal valuation9. Also v(c) = 2 (exactly), andv(A) > 12 now implies
thatv(e) > 6. Thus we may reduce the level by Lemma A.1, part 2 again.

The case of a quadruple root may be handled in a similar way, leading to reduction by
LemmaA.1, part 1.

Now suppose that(Q) = 1; thenI; = J; = 0 mod 3, s0Q; has a root of multiplicity
at least3 modulo3. Shifting this multiple root td), we may assume thafa) > 1, v(b) >
1,v(c) = 2,v(d) = 2,v(e) > 2. Inthe triple root case, we may suppose (after shifting the
other root toxo) thatv(b) = 1 andv(a) > 2. Inthe case where(I) > 5 andv(J) > 9, we
obtain in succession(c) > 3, v(d) > 3 and finallyv(e) > 4, so we may reduce the level
by Lemma A.1, part 1. Now suppose th&f ) = 4, v(J) = 6 andv(A) > 12. Thenu(c) =
2 exactly, and considering the termsAfwe obtain successively(d) > 3 andv(e) > 4
as required. In the quadruple root case, we hdwg = 1 while v(b), v(c), v(d),v(e) >
Whenv(I) > 5 andwv(J) > 9, we obtain in successiar(c) > 3, v(e) > 3, v(d) > 3, and
noww(e) > 4 sincev(e) = 3 would contradictk ™ -solubility. Whenv(I) = 4, v(J) = 6
andv(A) > 12, we havev(c) = 2, and then consideration of the terms®fjivesv(e) > 3
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andv(d) > 3; again, we must have(e) > 4 for K™ -solubility. In both cases we succeed
in reducing the level by Lemma A.1, part 1 again. O

Proposition A.5. Let K be an unramifie®-adic field. Then an integral quarti¢) =
(a,b,c,d, e) which is K™*-soluble isK-minimal if and only ifeitherit has level), or it has
levell and satisfies one of the following conditions.

1. v(Q) =1, and%Q has a quadruple root modut®and no root modul®;
2. v(Q) = 0, andQ has a quadruple root modulband no root moduld6.

In particular, if v(I) > 6, v(J) > 9 andv(81 + J) > 10 then@ is nonminimal; as a
special case, quartics of level at le@sare nonminimal.

The last sentence is essentially the statemer,df§mma 5]. For an improvement, see
Lemma 6.1.

PROOF. Obviously, we only have to consider the cdseel(Q) = 1 andv(Q) < 1.
Lemma 5.1 shows that the given conditions are sufficient, since after applying a suitable
element ofSL(2, O0), we havev(a) < 1, v(b),v(c) = 2, v(d) > 3and2 < v(e) < 3

(v(d) > 3 following fromv(d) > 2 and the other conditions, sineé€J) > 6). This lemma

also gives us the necessity under the assumptionQhdtas a quadruple root modulp
respectively, thaf) has a quadruple root moduloLemma A.2 tells us thap; must have

a quadruple root moduld in any case, disposing of the cas@)) = 1 already. So we

only have to show that a minimal quartic of levelvith v(Q) = 0 has a quadruple root
modulo4.

Therefore we suppose that)) = 0 and@ has a quadruple root m@lwhence we can
assume that(a) = 0 while v(b),v(c),v(d),v(e) = 1. The valuations off and imply
thatv(d) > 2 andv(c) > 2 respectively. The assumptiofie) = 1 leads (byJ) tov(b) > 2
and then to the contradictian{I) = 3, sov(e) > 2 also. This means that modulo@ has
at least a triple root. If) does not have a quadruple root moddlthenwv(b) = 1, from
which we deduce that(d) > 3 andw(e) > 4, soQ is nonminimal by Lemma A.1, part 1.

The last statement can be proved along these lines by observing that the given conditions
ensure that there has to be a root modifiaf there is a quadruple root modulo We do
not give the details here, since Lemma 6.1 contains this assertion as a special case anyway.

O

Appendix B

We give here an algorithm for determining the size of the index in the two ambiguous
cases from Section 6. Recall that the problem is to determine whether theidurve
23 + Ax + B with A, B € Z, has an integral poirftr, y) with z in a certain residue class
modulo4, in two cases:

1. [Case 1]A = B = 0 mod 4, with z = 2 mod 4;
2. [Case2]A =1, B =2mod 4, withz =1 mod 4.

Replacinge by 4z + 2 or 4z + 1 respectively, this amounts to determining whether the
polynomials

(4r +2)% + da(4r +2) +4b and (4o +1)> + (da+ 1)(da + 1) + (4b+ 1)

(with a, b € Z5) ever take on square values (includitigfor somex € Zo.
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It is easy to write a general recursive procedure for determining whether a square-free
polynomial f(x) € Zs[x] ever takes on square values. The answer is “yeg'(0f) is a
square, or if the Newton Polygon gfallows one to conclude thgthas an integral root.
Otherwise, set = f(0), v = v(c) andey = ¢/27, and letw be the minimum valuation of
the non-constant coefficients ¢f Then the answer is “no” it is odd andw > v (since
thenv(f(xz)) = v for all z € Z,), orif v is even,cy = 3 mod 4 andw > v + 1 (since
thenv(f(x)) = v and f(x)/2¥ = 3 mod 4 for all z), or if v is even,cy = 5 mod 8
andw > v + 2 similarly. If none of these cases occurs, we recursively consider the two
polynomialsf(2z) and f(2x + 1) in turn.

However, for the special cases of concern to us here, we found it to be faster to avoid the
recursive branching with the following two special algorithms. In each case, by imposing
congruence conditions on the parametefiswe are able either to decide the answer, or to
eliminate one parity for the variable The resulting procedures then have a simple loop
instead of branching, and for square-fréaie can bound the number of times the loop is
executed in terms of thzadic valuation of its discriminant.

Case 1:A = B = 0 mod 4, withz = 2 mod 4

Write A = 4a, B = 4b, and replace: by 4z + 2. Thenf(z) = 2* + Az + B becomes
4g(z) whereg(z) = 16z + 242 + 4(a + 3)x + (2a + b + 2). For brevity, writeg =
(16,24, 4¢, d) wherec = a + 3 andd = 2a + b+ 2. The following should be thought of as
steps in an algorithm, so that the conditions we impose are cumulative; the variables
and the current polynomigl will change as we proceed.

1. If d = 2,3 mod 4, then return “no”; forg(z) = d mod 4.

2. If d = 1 mod 4, then return “yes” if either = 1 mod 2 ord = 1 mod 8, otherwise
return “no”; for g(z) = 4cx + d mod 8.

3. [Nowd = 0 mod 4.] If ¢ = 1 mod 2, return “yes”; for the valuations of the coeffi-
cients aret, 3, 2, > 2, so the Newton Polygon shows thahas an integral root.

4. [Now alsoc = 0 mod 2.] Divide ¢ by 2 andd by 4, and divide the polynomial
by 4, so that we are now considering= (4,6,2¢,d). Seta = b = 1, so that
g = (4a,4b + 2, 2¢, d). The following steps should be repeated as necessary.

5. (*) If ¢ =1 mod 2, then return “yes” ifd = 0,1 mod 4, otherwise return “no”. For
g(z) = 2z(xz + ¢) + d = d mod 4 sod = 2,3 mod 4 is impossibleg(0) = d is a
square ifd = 1 mod 8; g(2) = 4c + d = 1 mod 8 if d = 5 mod §; and the Newton
Polygon gives an integral rootdf = 0 mod 4.

6. [Nowc = 0 mod 2.] If d = 1 mod 2, then return “yes” if eitherl = 1 mod 8 or
4(a+b) + 2¢+ d+ 1 = 0 mod 8, otherwise return “no”; fogy(z) is odd,g(2z) =
d mod 8, andg(2x + 1) = 4(a + b) 4+ 2¢ + d + 2 mod 8.

7. [Now alsod = 0 mod 2.] If d = 0 mod 4, thenz must be even, since for oddwe
haveg(z) = 2 mod 4. Now g(2z)/4 = (8a,4b+ 2,¢,d/4), so we seta, b, ¢,d) :=
(2a,b,¢/2,d/4) and loop back to (*).

8. If d = 2 mod 4, thenz must be odd, since for evenwe haveg(xz) = d mod 4.
Now g(2z +1)/4 = (8a,12a +4b+2,6a +4b+c+2,a+b+¢/2+ (d+2)/4),
so we sefa,b,¢,d) := (2a,3a+b,3a+2b+¢/2+1,a+ b+ ¢/2+ (d + 2)/4)
and loop back to (*).

Note that7/8 of the cases are decided before reaching the loop, ®itlé returning

“no” and 5/16 returning “yes”; of thel /8 of cases which reach the lodp)4 are decided
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in the first pass, with half of these returning “no” and half returning “yes”. This means
that of those cases which reach the loop at all, half will return “no” and half “yes”, so that
overall we find that ir5/8 of the cases the answer is “no” while 318 of the cases it is

yes”.
We can bound the number of passes through the loop as follows, giving at the same time

a proof that the above algorithm terminates wifé¢n) is square-free. The simple observa-

tion is that each time we re-enter the loop (i.e., from the second time on we reach step 5),

the valuation oflisc(g) has been decreased byn steps 7 or 8. (We havéisc(g(az)) =

ab disc(g(x)), disc(ag(x)) = a*disc(g(x)) anddisc(g(x + 1)) = disc(g(x)).) Since at

the end of step 4y(disc(g)) = v(disc(f)) — 4, the number of passes through the loop is

bounded by (disc(f))/2 — 1.

Case2:A=1,B=2mod4,withz =1 mod 4
Write A = 4a + 1, B = 4b + 2, and replace: by 4z + 1. Thenf(z) = 2° + Az + B
becomeslg(x) with g = (16,12, 4¢,d) wherec =a+ 1 andd = a + b + 1.

1. If d = 2,3 mod 4, then return “no”; forg(z) = d mod 4.

2. If d = 1 mod 4, then return “yes” if eithet = 0 mod 2 or d = 1 mod 8, otherwise
return “no”; for g(z) = 4x(x + ¢) + d mod 8.

3. [Nowd = O0mod 4.] If ¢ = 1 mod 2, return “yes”; for ifd = 0 mod 8 then the
valuations of the coefficients are2,2, > 3, so the Newton Polygon shows that
has an integral root, while if = 4 mod 8 then one ofy(0), g(—c), g(4), g(3c) is a
squared = 4, 12,20, 28 mod 32 respectively.

4. [Now alsoc = 0 mod 2.] Divide ¢ by 2 andd by 4, and divide the polynomial
by 4, so that we are now considering= (4, 3,2¢,d). Seta = 1, b = 0, so that
g = (4a,3(4b + 1), 2¢, d). The following steps should be repeated as necessary.

5. (*) Suppose that = 1 mod 2.

e If d = 0 mod 4, then return “yes”; for the Newton Polygon gives an integral
root.

e If d =2 mod 4, then return “no”; forg(x) = 2, 3 mod 4.

e If d =1 mod 4, then return “yes” ifd = 1 mod 8, else return “no”; forg(2x +
1) = 2 mod 4, andg(2z) = d mod 8.

e If d = 3 mod 4, thenz must be odd since(2z) = d mod 4, so replace(x)
by g(2z +1)/4: set(a, b, ¢, d) := (2a,a+b,3a+6b+ (c+3)/2,a+3b+ (c+
1)/2+ (d+1)/4), and loop back to (*).

6. Suppose that= 0 mod 2.

e If d = 1 mod 4, then return “yes”; forg(2z) = 422 + d mod 8, which is a
square forr =0 orz = 1.
e If d =3 mod 4, then return “no”; forg(z) = 322 +d = 2,3 mod 4.
e If d =2 mod 4, thenreturn “yes” it(a+b)+2c+d+2 = 0 mod 8, else return
“no”; for g(2x) = 2 mod 4, while g(2z + 1) = 4(a + b) + 2¢ + d + 3 mod 8.
e If d = 0 mod 4, thenz must be even, sincg2x + 1) = 3 mod 4, so replace
g(x) by g(2z)/4: set(a, b, c,d) := (2a,b,c/2,d/4) and loop back to (*).
As in Case 1, one can show from the above algorithm that the result is “y8g8iof
the cases and “no” in the remainifigg, and that the number of passes through the loop is
again bounded by(disc(f))/2 — 1.
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