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MINIMAL MODELS FOR
2-COVERINGS OF ELLIPTIC CURVES

MICHAEL STOLL AND JOHN E. CREMONA

Abstract

This paper concerns the existence and algorithmic determination
of minimal models for curves of genus1, given by equations of the
form y2 = Q(x) whereQ(x) has degree4. These models are used
in the method of2-descent for computing the rank of an elliptic
curve. Our results are complete for unramified extensions ofQ2 and
Q3 and for allp-adic fields forp > 5. Our primary motivation is to
complete the results of Birch and Swinnerton-Dyer [2], which are
incomplete in the case ofQ2. Our results in this case (when applied
to 2-coverings of elliptic curves overQ) yield substantial improve-
ments in the running times of the2-descent algorithm implemented
in the programmwrank [5]. The paper ends with a section on imple-
mentation and examples, and an appendix gives constructive proofs
in sufficient detail to be used for implementation.

1. Introduction

The method of descent has been used since classical times for studying the arithmetic
of elliptic curves. More recently, explicit algorithms for determining the Mordell-Weil and
Selmer groups of elliptic curves over the rational fieldQ, general number fields, and other
global fields, have been developed. One of the best such general algorithms for arbitrary
elliptic curves overQ is the2-descent algorithm described by Birch and Swinnerton-Dyer
in [2], which was used by them to determine the ranks of many elliptic curves in the
work which led up to their famous (and still unproved) conjectures. A description of this
algorithm, which is implemented in the second author’s programmwrank (see [5]), may
be found in [3].

In the2-descent algorithm (overQ), one embedsE(Q)/2E(Q) into the2-Selmer group
S2(E/Q) of the elliptic curveE. Elements ofS2 are represented by plane quartic curves
of the formY 2 = g(X), whereg(X) is a quartic polynomial whose classical invariantsI,
J (defined below) are related to the usualc4 andc6 invariants of the elliptic curve. In [2], an
analysis of the minimal integral models for such2-coverings was made for elliptic curves
overQ. This is a local question: for each odd primep, there is a unique minimal pair
(I0, J0) such that every integral quartic of the above form which represents ap-adically
soluble2-covering ofE is isomorphic to one with this minimal pair of invariants. For
primesp > 3 the minimality condition is simply that eithervp(I) < 4 or vp(J) < 6, while
for p = 3 there is a slightly more complicated condition, equivalent to the condition that
I = c4 andJ = 2c6 where(c4, c6) are the invariants of ap-minimal integral model forE
overZ.
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2-coverings of elliptic curves

The situation at the prime2 is more complicated: the result given in [2, Lemma 5] is that,
for a fixed elliptic curveE overQ, the2-adically minimal quartics defining2-coverings
of E may have either one or two different pairs of invariants(I, J): a basic or “small”
pair (I0, J0), and in some cases, also the “large” pair(I, J) = (24I0, 26J0). Sufficient
conditions on(I0, J0) are given under which no large quartics are required, in the sense that
any large quartics are equivalent (in a sense to be defined below) to small ones and hence
redundant. However, these conditions are not necessary, so this result is not best possible,
and one of our aims was to find best possible conditions. We solve the local problem of2-
adic minimality, increasing the number of cases in which large quartics can be eliminated
by local considerations (see Lemma 6.1 and the table preceding it). Of course, it may (and
often does) happen that there are no global (integer) quartics with the larger invariants, as
this existence cannot be completely determined by purely local considerations.

The practical consequences of our results are to reduce the running time of the2-descent
programmwrank for many elliptic curves. In [3, p.92], we said

It would appear that rational points inE(Q) whose quartics have the larger
pair of invariants lie in certain components of the2-adic locusE(Q2). Further
study of this would be very useful, since if the search for quartics with the
larger pair of invariants could be eliminated or curtailed, it could result in a
major saving of time in the algorithm.

The program carries out a search for quartics with given invariants for each relevant
pair (I, J), and clearly we do not want to waste time searching a large region for large
quartics if there are none (or only redundant ones). Implementing our optimal criteria for
the non-existence of large quartics is simple, and has a dramatic effect on the running time
for the curves to which it applies (see Section 7 for details).

Secondly, when both small and large quartics exist, we had noticed (after much experi-
ence of runningmwrank on many curves) that the elements of the2-Selmer group which
are represented by small quartics appear to form a subgroup, of index1, 2 or 4. Our second
goal was to prove that this is indeed the case, which we do (see Theorem 5.2 below). We
define a group homomorphism fromE(Q2) to (Z/2Z)2 whose kernel, which obviously
contains2E(Q2), consists precisely of the points associated to small quartics, from which
the result follows. Again, there are practical consequences of this in the implementation:
details and examples will be given below. For example, if we know from the start that the
local index is2, then we may stop the search for further large quartics as soon as one is
found. Examples may again be found below in Section 7.

In this paper we start by working over a generalp-adic field, i.e. a finite field extension
of the field ofp-adic numbersQp. Although we prove little new forQp itself whenp > 2,
we are interested in carrying out explicit2-descents over general number fields, so we
also wish to consider extensions ofQp for generalp. Many results carry over easily to
unramified extensions. Some results of this nature were obtained by Serf in her thesis [8]
(see also [6]).

In the next section, we introduce some terminology and state basic results about mini-
mality of quartics. Some proofs are relegated to the appendix, since we wish to give them
in sufficient detail to to be implementable as algorithms. Sections 3 and 4 concern the con-
nection with elliptic curves, including a characterization of “small” quartics over a local
fieldK which is an unramified extension ofQ2. The case ofQ2 itself in then considered
in some more detail. In the final section, implications for the global situation and practical
consequences are examined, together with examples computed usingmwrank . Some of
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2-coverings of elliptic curves

the more technical results, which are necessary for implementation purposes, are given in
the Appendices.

Some of the material in Sections 2 and 3 is reminiscent of sections 2–4 of [1]; however,
in [1] the case of additive reduction is not covered, and in the other cases it is not clear that
our results can easily be deduced from those of [1].

This work was partially supported by a Visiting Fellowship from the Engineering and
Physical Sciences Research Council of the UK.

2. Basics

Let K be ap-adic field, i.e. a finite extension ofQp, with ring of integersOK . The
normalized (additive) valuation ofK will be denotedvK . We denote the ramification index
of K/Qp by eK and the residue class degree byfK . We choose a uniformizerπK , for
exampleπK = p wheneK = 1. The residue field is thenk = OK/πKOK .

We consider binary quartic forms (‘quartics’ for short)

Q(x, z) = a x4 + b x3z + c x2z2 + d xz3 + e z4

with coefficientsa, b, c, d, e ∈ K. We will use the shorthandQ = (a, b, c, d, e). There are
the following well-known invariants:

I(Q) = 12 ae− 3 bd+ c2;

J(Q) = 72 ace+ 9 bcd− 27 ad2 − 27 b2e− 2 c3;

∆(Q) = disc(Q) = 1
27 (4 I3 − J2).

Throughout this paper, we will tacitly assume that all quarticsQ are nondegenerate, i.e.
that∆(Q) 6= 0.

Definition 2.1.

(a) Two quarticsQ andQ′ will be calledK-equivalentif there is a matrixA =
(
α β
γ δ

)
∈

GL(2,K) and someε ∈ K× such that

Q′ = ε2Q ·A = ε2Q(αx+ βz, γx+ δz) .

Note that the invariants ofQ and ofQ′ are then related by

I(Q′) = ε4 det(A)4I(Q) , J(Q′) = ε6 det(A)6J(Q) , ∆(Q′) = ε12 det(A)12∆(Q).

(b) A quarticQ is calledK-solubleif there exist elementsξ, ζ ∈ K, not both zero, such
thatQ(ξ, ζ) is a square inK.

(c) A quarticQ is calledK-trivial if there exist elementsξ, ζ ∈ K, not both zero, such
thatQ(ξ, ζ) = 0.

Both the latter properties are compatible withK-equivalence. The pair of invariants
(I, J) of an equivalence class is well-defined up to the action ofK×, given by(I, J) 7→
(ε4I, ε6J) for ε ∈ K×. The unique class of trivial quartics with invariantsI, J is repre-
sented by the quartic(0, 1, 0,−27I,−27J): to see this, take the root to be(ξ, ζ) = (0, 1),
soe = 0, and apply the transformation

(
0 9d
1 −3c

)
with ε = (3d)−1.

Provided that∆(Q) 6= 0, the affine equationy2 = Q(x, 1) defines a curveCQ of genus1
overK. This curve1 has aK-rational point, and hence is an elliptic curve defined overK,

1or rather, its nonsingular projective model
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if and only if Q is K-soluble. Whether soluble or not, the Jacobian ofCQ is the elliptic
curveE = EI,J with equation

EI,J : y2 = x3 − 27Ix− 27J

whereI andJ are the invariants ofQ, and there is a mapφ : CQ → EI,J of degree4
defined overK making the following diagram commute:

E
[2] // E

CQ
φ

>>~~~~~~~
θ

OO (1)

Here,[2] denotes the multiplication-by-2 map onE, and the vertical mapθ is an isomor-
phism defined over an extension fieldK(α) whereα is a root ofQ. Such a diagram is
known as a2-coveringof E.

If K is a number field andE an elliptic curve defined overK, then elements of the
2-Selmer groupS2(E/K) are represented by2-coverings, and hence by such curvesCQ,
with Q(x, 1) ∈ K[x], which areKv-soluble for all completionsKv of K. Such a global
quartic is theneverywhere locally soluble, or ELS for short. Note that since the Hasse
principle fails for curves of genus1, ELS quartics may not be globally soluble (overK).
The process of2-descent on an elliptic curveE involves the computation of its2-Selmer
group, and one way to do this is therefore to find all equivalence classes of ELS quartics
with the appropriate invariants.

In general, over any field of characteristic neither2 nor 3, we have a bijection be-
tweenE(K)/2E(K) (with E = EI,J ) and the set of equivalence classes of soluble
quartics overK with invariantsI, J . For future reference we now make this bijection
explicit: for proofs, see [4]. A point (ξ, η) ∈ EI,J(K) maps to the class of the quar-
tic (1, 0,−6ξ, 8η, 108I − 3ξ2), which has rational points at infinity and invariants2434I
and2636J .

Conversely, given a soluble quarticQ = (a, b, c, d, e), we may assume (applying a
suitable unimodular substitution) that the rational point is at infinity, so that the leading
coefficienta is a square; then the corresponding point onEI,J is

(ξ, η) =
(

3
3b2 − 8ac

4a
, 27

b3 + 8a2d− 4abc
8a3/2

)
.

See [4] or [3] for the general formula, given an arbitrary rational point onCQ.
In this correspondence, the trivial coset2E(K) corresponds to the class of trivial quar-

tics.
Later on, we will be interested mainly in an elliptic curveE, which we will assume to

be in the formy2 = x3 +Ax+B, and its 2-coverings. In this case, the correspondence is
as follows.

Proposition 2.2. Let K be an arbitrary field of characteristic neither2 nor 3, and let
E : y2 = x3 +Ax+B be an elliptic curve overK. Then there is a map

QE : E(K)/2E(K) −→ K-equivalence classes of quartics

given by mapping the class of a point(ξ, η) ∈ E(K) to the class of the quarticQ =
(1, 0,−6ξ, 8η,−3ξ2−4A). The mapQE is injective, and the image consists exactly of the
K-solubleK-equivalence classes of quartics with invariants(I, J) = (−3A, (−3)3B)
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(modulo the action ofK× on(I, J)). The image of the zero element underQE is the trivial
equivalence class of quartics, containing(0, 1, 0, A,B).

We will also useQE to denote the induced map fromE(K) to classes of quartics.

We now return to the case whereK is a local field.

Definition 2.3. We define thelevelof a quarticQ to be the integer

level(Q) = bmin{vK(I)/4, vK(J)/6}c.

In eachK-equivalence class of quartics, there are certainly forms with coefficients inOK
(replaceQ by ε2Q for suitableε); these integral forms have non-negative level. We call an
integral formQ K-minimal if it satisfieslevel(Q) 6 level(Q′) for all equivalent integral
formsQ′; otherwise we callQ K-nonminimal.

Clearly each class of forms has minimal elements. We will be concerned with determin-
ing the level ofK-minimal quartics. From the formulae given in Definition 2.1, we have
(in the notation used there)

level(Q′) = level(Q) + vK(ε det(A)). (2)

Integral forms of level0 are clearly minimal, but the converse is false in general, as we will
see.

3. Levels of minimal soluble quartics

Our goal in this section is to prove the following result.

Theorem 3.1. Over ap-adic local fieldK, all soluble minimal integral quartic formsQ
have level satisfying

level(Q)


= 0 if p > 5;

6 b(1 + eK)/2c if p = 3;

6 eK if p = 2.

In particular, ifK is unramified thenlevel(Q) 6 1.

PROOF: By Prop. 2.2, every such quarticQ belongs to a classQE(ξ, η) for some el-
liptic curve E over K and some point(ξ, η) ∈ E(K). If this point is integral (i.e.,
we haveξ, η ∈ OK), then the given representative quarticQ′ is also integral (and vice
versa). We can chooseE to be given by an equationy2 = x3 + Ax + B with 0 6
min{3vK(A), 2vK(B)} < 12. Then, sinceI(Q′) = −3 · 24A andJ(Q′) = (−3)3 · 26B,
it follows that level(Q′) = 0 for p > 5, level(Q′) 6 b(1 + eK)/2c for p = 3, and
level(Q′) = eK for p = 2. Since the level of the minimal forms within an equivalence
class is uniquely determined, this proves the theorem for quartics in classes that are images
of integral points as above.

Hence it only remains to prove the theorem for the images of non-integral points. These
points (together with the zero of the group law) make up the kernel of reduction of our
model forE. We will use the customary notationE1(K) for this kernel of reduction, and
more generally,En(K) for thenth kernel of reduction, consisting of the(ξ, η) ∈ E(K)
such thatvK(ξ) 6 −2n, vK(η) 6 −3n, together with0 ∈ E(K). (Caution: Ifp = 2 or
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p = 3, our model forE is not necessarily minimal, and therefore ourEn(K) may differ
from the usual definition.) Now it is a well-known fact thatE1(K) is isomorphic to the
πKOK-points of a certain formal group; in particular,E1(K) is anOK-module. Since
2 ∈ O×K whenp is odd, all quartics corresponding to non-integral points are trivial in this
case. The remaining case follows from the following result. 2

Proposition 3.2. Let K be a2-adic local field and letE : y2 = x3 + Ax + B with
0 6 min{3vK(A), 2vK(B)} < 12 be an elliptic curve overK. Then the image ofEn(K)
underQE consists of classes of level at mostmax{eK − n, 0}, and is just the trivial class
whenn > eK .

PROOF: The points inE1(K) are parametrized byπKOK in the following way.

πKOK 3 t 7−→ P (t) = (t−2f(t), t−3f(t)) ∈ E1(K) ,

where

f(t) = 1−A t4 −B t6 ± · · · = 1 + t4f1(t)

is a power series with coefficients inOK , see [7, Prop. VII.2.2]. The quartic representing
QE(P (t)) is then given by

Q1(x, z) = (1, 0,−6t−2f(t), 8t−3f(t),−3t−4f(t)2 − 4A) .

Let n = vK(t) > 1. We scale:

Q2(x, z) = Q1(x, tz) = (1, 0,−6f(t), 8f(t),−3f(t)2 − 4t4A)

and shift:

Q3(x, z) = Q2(x+ z, z) = (1, 4,−6t4f1(t),−4t4f1(t),−4t6f2(t)− 3t8f1(t)2) ,

where we have setf1(t) = −A+ t2f2(t). The valuations of the coefficients are

( = 0, = 2eK , > 4n+ eK , > 4n+ 2eK , > min{6n+ 2eK , 8n}) .

If n > eK , then the Newton polygon ofQ3 has a vertex atx3z, henceQ3 splits off a
linear factor overK, and the class ofQ3 is the trivial class (this impliesP (t) ∈ 2E(K)).
In particular, the image ofP (t) has level 0 in this case.

If n = eK , we can scale to get an integral quarticQ4(x, z) = Q3(x, z/4) of level 0,
henceQE(P (t)) has level 0.

In the remaining case,1 6 n < eK , we have2eK > 2n, 4n+eK > 4n, 4n+2eK > 6n,
therefore we can scale to get an integral quarticQ5(x, z) = Q3(x, z/t2) of level eK − n.

2

Note that it is possible to have classes of leveleK in the image whenp = 2. For example,
if there is a point(ξ, η) with vK(ξ) = 1 (andvK(−3ξ2 − 4A) < 4 if eK = 1), then the
quartic representing its image is minimal by Lemma 5.1 below, and the class has leveleK .
This means that the above result is best possible.

4. Criteria for minimality

In this section, we derive criteria for when a given integral quartic (usually supposed
to beK-soluble) over ap-adic local fieldK is minimal. Though parts of the results given
here follow from Theorem 3.1 or arguments similar to those used for its proof, we will
provide alternative proofs here that are constructive and can be turned into an algorithm
for minimizing a given quartic.
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Definition 4.1. Thevaluationof a quarticQ = (a, b, c, d, e) over ap-adic local fieldK is
defined to be

vK(Q) = min{vK(a), vK(b), vK(c), vK(d), vK(e)} .

Note that we always havevK(Q) 6 2 level(Q).

We denote byKnr the maximal unramified extension ofK.
We begin with the simplest case.

Proposition 4.2. LetK be ap-adic field wherep > 5 and letQ be an integral quartic
overK.

(1) If vK(Q) > 2, thenQ isK-nonminimal.

(2) If level(Q) = 0, thenQ isK-minimal.

(3) If level(Q) = 1 andvK(Q) = 0, thenQ isK-nonminimal.

(4) If level(Q) = 1 andvK(Q) = 1, thenQ isK-nonminimal if it isKnr-soluble.

(5) If level(Q) > 2, thenQ isK-nonminimal.

In particular, aK-soluble integral quartic isK-minimal if and only if it has level0.

PROOF: The proof of [2, Lemma 3] forQp goes over unchanged to arbitrary extensions
of Qp for p > 5. See Prop. A.3 in Appendix A for details. This proof may easily be turned
into an algorithm for reducing quartics for whichvK(I) > 4 and vK(J) > 6; all we
need to be able to do is to locate multiple roots of quartics with coefficients in the finite
fieldOK/πOK . 2

Note that the solubility assumption in part (4) is necessary, as shown by the example
Q = (π, 0, 0, 0, π3), which is of level1 andK-minimal by Lemma 5.1 below.

The next complicated case is when the residue characteristic is3.

Proposition 4.3. Let K be an unramified3-adic field. Then an integral quartic which
is Knr-soluble isK-nonminimal if and only ifeither vK(I) > 5 and vK(J) > 9, or
vK(I) = 4, vK(J) = 6 and vK(∆) > 12. In particular, minimal quartics have level0
or 1.

PROOF: ForK = Q3, this is [2, Lemma 4], though the proof was omitted there. See Ap-
pendix A, Prop. A.4 for a proof, which only usesvK(3) = 1, and so applies to unramified
extensions ofQ3.

The last statement also follows from Theorem 3.1, sinceeK = 1. 2

In the unramified3-adic case, the minimal level depends only on the invariants, and is
at most1. In the ramified case (eK = vK(3) > 2) we have the following generalization.

Proposition 4.4. LetK be a3-adic field with ramification degreeeK > 1. LetQ be an
integral K-soluble quartic with invariantsI, J . Assume thatQ is K-nonminimal. Then
one of the following conditions holds:

1. vK(I) = 2i+ 4 andvK(J) = 3i+ 6, for somei ∈ Z with 0 6 i < eK/2;

2. vK(I) > eK + 4, andvK(J) = 3i+ 6 for somei ∈ Z with eK/2 6 i < eK ;

3. vK(I) > eK + 4 andvK(J) > 3eK + 6.

Condition(3) is always sufficient for nonminimality.
WheneK = 1, condition(1) is also sufficient, provided also thatvK(∆) > 12. (Condi-

tion (2) does not occur.)
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WheneK = 2, condition(1) is sufficient provided also thatvK(∆) > 12, and condition
(2) is sufficient provided also thatvK(∆) > 15.

PROOF: For the necessity, it is an easy exercise to show that an integral quartic withi =
vK(c) has invariants satisfyingeithervK(I) = 2i andvK(J) = 3i for someiwith 0 6 i <
eK/2; or vK(I) > eK andvK(J) = 3i for somei with eK/2 6 i < eK ; or vK(I) > eK
andvK(J) > 3eK . Since any nonminimal quartic has valuations of(I, J) that are by a
multiple of (4, 6) larger than those of a minimal one, necessity follows.

WheneK = 1, the sufficiency has already been proved; foreK = 2, see [8, pp. 193–
200]. The method of proof used in [8], and in Appendix A in the unramified case, becomes
exceedingly tedious when there are many cases to consider. Sufficiency of the third condi-
tion follows (though non-constructively) from a consideration of the mapQE on integral
points, since the representative quarticQ hasvK(I(Q)) < ek+4 or vK(J(Q)) < 3ek+6.

2

Finally, we consider the hardest case of2-adic fields, where the minimal level can-
not be determined from the invariants alone, even for an unramified2-adic field such
asQ2. OverQ2, the best previously known result which depends only on the invariants
is Lemma 5 of [2], which states that (overK = Q2), if vK(I) > 6, vK(J) > 9, and
vK(8I+J) > 10, then everyK-soluble quartic with invariants(I, J) is nonminimal. This
result was extended to quadratic extensions ofQ2 in [8], where fairly strong conditions
were stated which are satisfied by minimal quartics overQ2 with level 1. In Section 6
below, we improve the result of [2] (compare Lemma 6.1).

The following result is best possible in the unramified2-adic case. We express it in as
invariant a way as possible, namely invariant underSL(2,OK).

Proposition 4.5. LetK be an unramified2-adic field. Then an integral quarticQ which is
Knr-soluble isK-minimal if and only ifeitherit has level0, or it has level1 and satisfies
one of the following conditions.

1. v(Q) = 1, and 1
2Q has a quadruple root modulo2 and no root modulo8;

2. v(Q) = 0, andQ has a quadruple root modulo4 and no root modulo16.

In particular, if v(I) > 6, v(J) > 9 andv(8I + J) > 10 thenQ is nonminimal; as a
special case, quartics of level at least2 are nonminimal.

The condition above can be explained as follows:Q1 = 2−v(Q)Q has a unique multiple
root modulo2, which has multiplicity at least3 (this follows from the vanishing ofI(Q1)
andJ(Q1) modulo2 for forms of level1). If the multiplicity is only 3, then the form is
nonminimal, while if the multiplicity is4 then minimality depends on the valuation of the
constant term after shifting the multiple root to0 mod 2.

An alternative formulation of the result is as follows.An integral and soluble quartic of
level1 is minimal if and only if it isSL(2,OK)-equivalent to a quartic(a, b, c, d, e) with
vK(a) 6 1, vK(b), vK(c), vK(d) > 2 and2 6 vK(e) 6 3. Compare Lemma 5.1 below.
PROOF: We give the details in Appendix A, Prop. A.5, again in a form which may be used
as part of an algorithm for minimizing quartics overZ. 2

We do not have a best possible result on minimality of quartics for general2-adic fields,
but at least we know by Theorem 3.1 that the level of aK-minimalK-soluble quartic is at
mosteK .
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REMARK : Over an unramified2-adic field, we may consider more general equations of
soluble2-covering curves, of the form

Y 2 + P (X)Y = Q(X),

whereQ is a quartic anddeg(P ) 6 2. Every soluble2-covering of an elliptic curve overK
has such an equation of level0 (with an obvious extension of the definition of level to
such equations). However, we have found the use of such equations less convenient for
computations. The situation is similar to that of minimal Weierstrass models for elliptic
curves over2-adic fields, where equations of the formY 2 = cubic do not suffice.

5. Characterization of small quartics whenK/Q2 is unramified

In this section, we restrict to the case wherep = 2, andK is anunramifiedextension
of Q2. LetE be an elliptic curve overK as above. The image ofQE consists of classes of
quartics of levels0 and (possibly)1: we call a class in the image ofQE small if its level is
zero andlargeotherwise.

The following Lemma is also used in the proof of Prop. 4.5, see Appendix A. The “only
if” direction of the Lemma was proved (forQ2) in [8], but there is no proof there for the “if”
direction. We remedy that here. One corollary is that the algorithm for reducing quartics
overQ2 which is implicit in [8] and implemented in the second author’s programmwrank
(see [3]) is always guaranteed to produce a minimal integral quartic equivalent to a given
one. We only need this result whenK is a2-adic field, but we state and prove it for general
p-adic fields.

Lemma 5.1. LetQ = (a, b, c, d, e) be an integral quartic over ap-adic fieldK such that

vK(a) 6 1, vK(b) > 2, vK(c) > 2, vK(d) > 3, vK(e) > 2 .

ThenQ isK-minimal if and only ifvK(e) 6 3.

PROOF: If vK(e) > 4, then we can scaleQ to getQ1(x, z) = Q(x, z/πK), which is still
integral and has smaller invariants, soQ is nonminimal in this case.

So suppose now thatvK(e) 6 3. If Q were nonminimal, there would be a matrixA =(
α β
γ δ

)
∈ GL(2,K) and anε ∈ K× with vK(ε) + vK(detA) 6 −1 (compare (2)) such

that

Q1(x, z) = (a1, b1, c1, d1, e1) = ε2Q(αx+ βz, γx+ δz)

is integral. By changing(ε,A) into (π−2n
K ε, πnKA) for a suitablen ∈ Z, we can assume that

A has integral entries not all divisible byπK . Then we havevK(ε) 6 −1− vK(detA) 6
−1. We observe that

ε−2a1 = Q(α, γ) = aα4 + bα3γ + cα2γ2 + dαγ3 + eγ4,

ε−2e1 = Q(β, δ) = aβ4 + bβ3δ + cβ2δ2 + dβδ3 + eδ4.

The first of these equations implies (considering the valuations of the various terms) that
vK(α) > 1. Similarly, we get from the second equation thatvK(β) > 1. This implies
vK(detA) > 1 and thereforevK(ε) 6 −2. Looking at the two equations again, we see
that we must now have bothvK(γ) > 1 andvK(δ) > 1, contradicting our choice of the
matrixA. HenceQ must be minimal. 2
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We wish to characterize the points ofE(K) whose image is small. This characterization
will finally lead to the following result, which then can be used to improve themwrank
program.

Theorem 5.2. The set of elements ofE(K)/2E(K) that map to small classes is a sub-
group, and its index can be determined explicitly. WhenK = Q2, the index is at most4.

The first step is to get some criterion in terms of (the coordinates of) a pointP ∈ E(K)
for when its image underQE is small. We already know by Theorem 3.1 that the levels of
the classes in the image are either 0 or 1, and by Proposition 3.2 that the image ofE1(K)
consists of small classes. We can therefore restrict our attention to points with integral
coordinates. For the following, we need some more notation.

Definition 5.3. We denote byt the automorphism ofK such thatt(ξ)2 ≡ ξ mod 2 for all
ξ ∈ OK . We denote byu the mapK 3 ξ 7→ (ξ − t(ξ)2)/2 ∈ K; note thatu mapsOK
into itself. IfK = Q2, thent is simply the identity.

Lemma 5.4. t andu have the following properties.

(1) t is additive and multiplicative and preserves the valuation.

(2) For all ξ, η ∈ K:

u(ξ + η) = u(ξ) + u(η)− t(ξη) and u(−ξ) = u(ξ)− ξ .

(3) For all ξ, η ∈ K:

u(ξη) = ξu(η) + ηu(ξ)− 2u(ξ)u(η) .

(4) For all ξ, η ∈ OK and alln > 0:

ξ ≡ η mod 2n+1 =⇒ u(ξ) ≡ u(η) mod 2n .

(5) For all ξ, η ∈ OK :

u(ξ + 2η) ≡ u(ξ) + η mod 2 .

(6) For all ξ ∈ OK :

u(ξ) ≡ 0 mod 2 ⇐⇒ ξ is a square mod 4.

PROOF: Easy. 2

Now we can formulate our criterion.

Lemma 5.5. LetP = (ξ, η) ∈ E(K) \E1(K) be an integral point. ThenQE(P ) is small
if and only if

vK
(
u(ξ)2 −A+ 2t(ξ)(η − t(ξ)3 − t(ξ)u(ξ))

)
> 2 ,

or equivalently, if and only if

u(ξ) ≡ t(A) mod 2 and Bξ ≡ u(A)2 mod 2 .

PROOF: The quartic representing the classQE(P ) is given as

Q1(x, z) = (1, 0,−6ξ, 8η,−3ξ2 − 4A) ,

10
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which has level1. We do a shift:

Q2(x, z) = Q1(x+ t(ξ)z, z)

=
(

1, 4t(ξ),−12u(ξ), 8(η − t(ξ)3 − 3t(ξ)u(ξ)),

− 4
(
A+ 3u(ξ)2 − 2t(ξ)(η − t(ξ)3 − 3t(ξ)2u(ξ))

))
.

To this quartic, we can apply Lemma 5.1. It tells us thatQ2 is nonminimal (and hence
the class is small) if and only if the valuation of itsz4 term is at least4; this proves the
first claim. To see the equivalence, note first that a necessary condition is thatu(ξ)2 ≡
A mod 2; this is equivalent tou(ξ) ≡ t(A) mod 2. If this condition holds, it follows that
u(ξ)2 ≡ t(A)2 mod 4, henceu(ξ)2 − A ≡ 2u(A) mod 4. In this case, the first condition
is equivalent with (mod 2)

0 ≡ u(A) + t(ξ)(η − t(ξ)3 − t(ξ)u(ξ))

≡ u(A) + t(ξ(η2 − ξ3 −Aξ))
≡ t(u(A)2 +Bξ) ,

and sincet is an automorphism, this is equivalent toBξ ≡ u(A)2 mod 2. 2

We now proceed to show that the points mapping to small classes form a subgroup. We
need a little lemma.

Lemma 5.6. SupposeP1, P2, P3 ∈ E(K) are three points such thatP1 +P2 +P3 = 0 and
such thatP3 ∈ E1(K), butP1, P2 ∈ E(K) \ E1(K). LetPj = (ξj , ηj) for j = 1, 2, 3.
Then we haveξ1 ≡ ξ2 mod 4.

PROOF: ξj andηj are integral forj = 1, 2, while ξ3 = ξ/4n with ξ a unit andn > 1. Set
λ = (η2 − η1)/(ξ2 − ξ1) = (η3 − η1)/(ξ3 − ξ1) = 2−nε with ε a unit; now

2n(η2 − η1) = ε(ξ2 − ξ1)

so (sincen > 0) ξ2 ≡ ξ1 mod 2. Henceη2 ≡ η1 mod 2 (from the equation forE, since
squaring is an automorphism modulo2), henceξ2 ≡ ξ1 mod 4 from the previous equation
again. 2

SinceπK = 2, the residue field isk = OK/2OK .

Proposition 5.7. The map̃Φ : E(K) −→ k × k, defined as follows,

Φ̃ :
{

E1(K) 3 P 7−→ (0, 0)
E(K) \ E1(K) 3 (ξ, η) 7−→ (u(ξ)2 +A,Bξ + u(A)2 + (u(ξ)2 +A)ξ2)

is a homomorphism. It therefore induces a homomorphism

Φ : E(K)/(2E(K) + E1(K)) −→ k × k .

The kernel ofΦ consists exactly of those points that map underQE to small classes of
quartics.

PROOF: Take three pointsP1, P2, P3 ∈ E(K) such thatP1 + P2 + P3 = 0. We have to
show thatΦ̃(P1) + Φ̃(P2) + Φ̃(P3) = 0.

Suppose first that two of the points are inE1(K). Then so must be the third, and
Φ̃(Pj) = 0 for j = 1, 2, 3.

If exactly one of the points,P3 say, is inE1(K), then by Lemma 5.6, thex-coordinates
of P1 andP2 are congruent mod 4. HencẽΦ(P1) = Φ̃(P2) and soΦ̃(P1) + Φ̃(P2) +
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Φ̃(P3) = 0 as required (note that̃Φ(ξ, η) only depends onξ mod 4 if the point is integral,
compare Lemma 5.4, (4)).

Finally suppose that all three points are inE(K)\E1(K). ThenP1, P2, P3 lie on a line
of equationy = λx+µ with λ andµ integral. WritingPj = (ξj , ηj), we have the relations

ξ1 + ξ2 + ξ3 = λ2, ξ1ξ2 + ξ2ξ3 + ξ3ξ1 = A− 2λµ, ξ1ξ2ξ3 = µ2 −B . (3)

Apply u to the first equation and use Lemma 5.4 to get (mod 2)

0 ≡ u(λ2) = u(ξ1 + ξ2 + ξ3)
≡ u(ξ1) + u(ξ2) + u(ξ3) + t(ξ1ξ2 + ξ2ξ3 + ξ3ξ1)
≡ u(ξ1) + u(ξ2) + u(ξ3) + t(A) ,

so that we have

u(ξ1) + u(ξ2) + u(ξ3) ≡ t(A) mod 2 . (4)

Square both sides to get
3∑
j=1

(u(ξj)2 +A) ≡ 0 mod 2 ;

this shows that the first component ofΦ̃ is a homomorphism.
Now applyu to the second equation in (3) (and use Lemma 5.4 again) to get (again

mod 2)

u(A) + λµ ≡ u(A− 2λµ) = u(ξ1ξ2 + ξ2ξ3 + ξ3ξ1)
≡ ξ1(u(ξ2) + u(ξ3)) + ξ2(u(ξ3) + u(ξ1)) + ξ3(u(ξ1) + u(ξ2))

+ t(ξ1ξ2ξ3)t(ξ1 + ξ2 + ξ3)
use (4)
≡ ξ1(u(ξ1) + t(A)) + ξ2(u(ξ2) + t(A)) + ξ3(u(ξ3) + t(A))

+ t(λ2µ2) + t((ξ1 + ξ2 + ξ3)B)

≡ λµ+
3∑
j=1

(
ξj(u(ξj) + t(A)) + t(Bξj)

)
.

Squaring this, we finally get

3∑
j=1

(
Bξj + u(A)2 + (u(ξj)2 +A)ξ2

j

)
≡ 0 mod 2 ;

this shows that also the second component ofΦ̃ is a homomorphism.
The assertion that̃Φ induces the homomorphismΦ is clear.
Finally, the last assertion follows immediately from Lemma 5.5 and the fact that points

in E1(K) map to small classes of quartics. 2

The practical aspect of this result is that we can find the subgroup ofE(K) mapping
to small classes by applying the mapΦ to a set of representatives ofE(K)/(2E(K) +
E1(K)). This is easily done for any given elliptic curve. In the special caseK = Q2, a
very explicit description is given below in Section 6.

We also see that this subgroup has index at most#k2 = 4fK inE(K). This information
is only interesting whenK = Q2, however (bounding the index by 4 in this case), since
we always have#E(K)/2E(K) 6 22+fK .
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Since the image ofQE consists exactly of the equivalence classes of soluble 2-coverings
of E, we can define a mapΨ from soluble quartics with invariants corresponding toE to
k × k by first applying the inverse ofQE . A formula forΨ(Q) involving thex-coordinate
of aK-rational point on the corresponding 2-covering can easily be derived; it appears,
however, that it is not possible to give a formula just in terms of the coefficients ofQ.

6. The caseK = Q2

The most important case for practical application is whenK = Q2. Our results can then
be used to improve the algorithm behind themwrank program, see [3]. We give examples
to illustrate the improvement in running time in the next section.

WhenK = Q2, the formulae in our results can be simplified by observing thatt is
simply the identity and that we haveu(ξ) ≡ 0 mod 2 for ξ ≡ 0, 1 mod 4 andu(ξ) ≡
1 mod 2 for ξ ≡ 2, 3 mod 4. This leads to the following table of values ofΦ. Each entry
corresponds to given residues ofA mod 4,B mod 2 andξ mod 4.

ξ ≡ 0 ξ ≡ 1 ξ ≡ 2 ξ ≡ 3
A ≡ 0 (0, 0) (0, 0) (1, 0) (1, 1)
A ≡ 1 (1, 0) (1, 1) (0, 0) (0, 0)B even
A ≡ 2 (0, 1) (0, 1) (1, 1) (1, 0)
A ≡ 3 (1, 1) (1, 0) (0, 1) (0, 1)
A ≡ 0 (0, 0) (0, 1) (1, 0) (1, 0)
A ≡ 1 (1, 0) (1, 0) (0, 0) (0, 1)B odd
A ≡ 2 (0, 1) (0, 0) (1, 1) (1, 1)
A ≡ 3 (1, 1) (1, 1) (0, 1) (0, 0)

If we take into account the residue class ofB mod 4, then we can exclude certain residue
classes forξ, since the right hand side of the curve equation is a non-square mod 4. In the
following table, each entry corresponds to given residues ofA andB mod 4 and lists the
residue classes mod 4 such that a point(ξ, η) ∈ E(Q2) with ξ in one of these residue
classes has non-trivial image underΦ (or, equivalently, maps to a large class of quartics
underQE).

A ≡ 0 A ≡ 1 A ≡ 2 A ≡ 3
B ≡ 0 2 0 0, 2,3 0, 1, 3
B ≡ 1 2, 3 0 0 , 2 0, 1
B ≡ 2 3 1 1 2
B ≡ 3 1 1 , 3 3 2

The entries in boldface stand for residue classes that always contain thex-coordinate of
some point inE(Q2) becauseξ3 + Aξ + B can always be made to be≡ 1 mod 8. The
entries in italics stand for pairs of residue classes such that exactly one of them gives rise to
a point in this way (depending onA andB mod 8). The underlined entries indicate residue
classes that contain a 2-torsion point. (WhenA is odd andB is even, then there is a zero
of ξ3 +Aξ +B with ξ ≡ B mod 4, as can be seen from the Newton polygon. WhenA is
even andB is odd, then we can apply the same argument after shiftingξ by 1; this gives a
zeroξ ≡ A+B + 2 mod 4.)

We proceed to show that whenA ≡ 2 or 3 andB ≡ 0 mod 4, there is a point withξ-
coordinate of the same parity asA. This then implies thatΦ is surjective. Consider first the
caseA ≡ 2. Then the Newton polygon off(ξ) = ξ3 + Aξ +B has a length 1 segment of
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slope> 1, hencef has a zeroξ ∈ 2Z2. In the other case,A ≡ 3: if A+B + 1 ≡ 0 mod 8
then we shiftξ by 1 to get the same situation as before, so thatf has a zeroξ ∈ 1 + 2Z2;
if A + B + 1 ≡ 4 mod 8 then one can see that for someξ ∈ 1 + 4Z2 we havef(ξ) ≡
4 mod 32, so thatf(ξ) is a square.

Collecting this information (and taking into account the values ofΦ taken on the various
residue classes), we get the following table for the possible values of the size of the image
of Φ, or the index inE(Q2) of the subgroup corresponding to small quartics.

A ≡ 0 A ≡ 1 A ≡ 2 A ≡ 3
B ≡ 0 1, 2 2 4 4
B ≡ 1 2 2 2 2
B ≡ 2 2 1, 2 2 2
B ≡ 3 2 2 2 2

In the two cases where it is possible to have no large quartics, namelyA is a square
mod 4 andB ≡ 2A mod 4, we have to check whether the curve has a point in the specified
residue class. This can easily be done by a recursive procedure that tests whetherξ3 +Aξ+
B is a square or not if this can be decided on the current knowledge aboutξ. If this cannot
be decided, the current residue class forξ is split into two residue classes modulo the next
higher power of 2. In Appendix B we discuss this further, and give a more efficient non-
recursive algorithm for determining the index in these two cases. Here we can give a more
specific result, improving on an old result due to Birch and Swinnerton-Dyer [2] (their
result covers the caseA,B ≡ 0 mod 4 and16 | 2A + B). The following Lemma allows
us to determine the index precisely in three quarters of the ambiguous cases.

Lemma 6.1.

(a) Suppose thatA ≡ B ≡ 0 mod 4.

(1) If 2A+B ≡ 0 or 4 mod 16, then there are no large classes of quartics (i.e., the
image ofΦ is trivial);

(2) if (A,B) ≡ (0, 8), (0, 12), (8, 8) or (8, 12) mod 16, then there are large classes
of quartics (i.e.,Φ is non-trivial);

(b) Suppose thatA ≡ 1,B ≡ 2 mod 4.

(1) If A+B ≡ 7 or 11 mod 16, then there are no large classes of quartics (i.e., the
image ofΦ is trivial);

(2) if (A,B) ≡ (1, 14), (5, 14), (9, 6) or (13, 6) mod 16, then there are large classes
of quartics (i.e.,Φ is non-trivial);

PROOF: (a). In case (1), we have to show thatE(Q2) contains no integral points with
x-coordinateξ ≡ 2 mod 4. For such aξ, we have

ξ3 +Aξ +B ≡ 8 + 2A+B mod 16 .

Since8 + 2A+B ≡ 8 or 12 mod16, this cannot be a square.
In case (2), we have to show thatE(Q2) contains an integral point withx-coordinate

ξ ≡ 2 mod 4. In the cases(A,B) ≡ (0, 12), (8, 12), one may check that eitherf(2)
or f(−2) is a square, wheref(x) = x3 +Ax+B. In the cases(A,B) ≡ (0, 8), (8, 8), the
Newton polygon forg(x) = f(4x+ 2) shows thatg(x) has an integral root.

14



2-coverings of elliptic curves

(b). Similarly, in case (1), we have to show that there is no integral point withξ ≡
1 mod 4. For such aξ, we have

ξ3 +Aξ +B ≡ 1 +A+B mod 16 .

(Write ξ = 1 + 4ξ1 and note that3 + A ≡ 0 mod 4 to see this.) Since1 + A + B ≡ 8
or 12 mod16, this cannot be a square.

In case (2), when(A,B) ≡ (5, 14), (13, 6) mod 16, one may check that eitherf(1)
or f(5) is a square. If(A,B) ≡ (1, 14), (9, 6) mod 16 then the Newton polygon ofg(x) =
f(4x+ 1) shows that there is an integral root, provided thatA+B ≡ 31 mod 32. Finally,
when(A,B) ≡ (1, 14), (9, 6) mod 16 andA+ B ≡ 15 mod 32, one may check that one
of the valuesg(±1), g(±3) is a square. 2

Using this Lemma, together with the algorithm of Appendix B for the cases where
the Lemma does not apply, we increase significantly the number of cases where large
quartics do not have to be considered in a systematic enumeration of all the equivalence
classes, compared with [2]. This has a significant effect on the average running time of the
2-descent algorithm overQ. It does not seem possible to determine the image ofΦ com-
pletely in all cases, simply in terms of2-adic congruence conditions on the coefficientsA
andB; on the other hand, the algorithm in Appendix B resolves the ambiguity quickly for
any given curve.

7. Implementation and examples

We conclude with some remarks about the practical consequences of our results, par-
ticularly those of the preceding section, for the two-descent algorithm implemented in our
freely-available programmwrank [5]. For more details of the algorithm, see [3].

We determine the Selmer group of an elliptic curveE by finding quartics which repre-
sent all two-coverings ofE. In general we have to search first for “small” quartics, and then
for “large” quartics, in the sense defined above. The search for large quartics takes consid-
erably longer, since the search regions are larger, though we can speed up the large search
by imposing congruence conditions on the coefficients of large quartics which ensure that
we only find those which areQ-minimal (not equivalent to small ones).

Define the “local index” of a curveE/Q to be the order of the image of the mapΦ
defined above, which is the index[E(Q2) : ker(Φ)]. Elements ofE(Q) in ker(Φ) are
associated to small quartics. Define the “global index” to be the index[E(Q) : E(Q) ∩
ker(Φ)]. Then the local index is1, 2 or 4 and may be determined by the results of the
previous section, invoking Lemma 6.1 or the algorithm of Appendix B when necessary.
We need to search for large quartics if and only if the local index is greater than1, and we
find any if and only if the global index is greater than1.

Exact knowledge of the local index allows us to reduce the number of cases in which
large quartics need to be considered at all. Previouslymwrank used the result from [2],
which only applies whenA ≡ B ≡ 0 mod 4 and2A+B ≡ 0 mod 16. This is one of the
cases in Lemma 6.1(a)(1). Hence by the use of Lemma 6.1, we may increase by a factor
of 4 the proportion of curves for which we do not need to consider large quartics. This
change to the algorithm reduced the running time ofmwrank on our test data (see below)
by around 65%.

For example, consider the curveY 2 = X3+20 with (A,B) = (0, 20), so that2A+B ≡
4 mod 16. The rank is 0. There are no non-trivial small quartics. Using the old criterion, we
search for large quartics, and find two, though they are notQ2-soluble. Of course, for such
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a small example both versions of the algorithm are very fast, taking only a fraction of a
second to run. For a similar larger example, take(A,B) = (0, 16000004), where the curve
again has rank0. There are no small quartics. The old algorithm finds two (equivalent) large
quartics which are notQ2-soluble; the running time is45 seconds. The new algorithm only
searches for small quartics, and takes just7 seconds.

The curve with(A,B) = (40004, 40004) has local index1. (Here, Lemma 6.1 does
not apply, since2A + B ≡ 12 mod 16, so we have to use the algorithm of Appendix B.)
Searching only for small quartics we find the Selmer rank to be1 after only1.6 seconds,
while the fruitless search for large quartics takes a further7.5 seconds. (In this example,
we have excluded the time taken to find aQ-rational point on the one locally soluble
quartic found, which is(41,−36,−474, 1282,−982), since there are no such points of
small height, so that in fact this search for points will dominate the running time if we wish
to establish (unconditionally) that the rank is1.)

Next, when the local index is determined to be2, and we must search for large quartics,
we may stop the search for large quartics as soon as we find one which isQ-soluble (or
just ELS, in case we are only interested in finding the Selmer group). In many cases a large
quartic is found early on in the search, so that this eliminates most of the time previously
spent on the large search. The situation here is entirely analogous to that which occurs
whenE has positive discriminant, so thatE(R) has two real components: the analogous
strategy is detailed in [3, p.93].

For example, consider the curveY 2 = X3 +X2−3405X+15280204, where the local
index and global index are both2. The rank is8, with a contribution of7 from small quar-
tics. In the search region for large quartics, the leading coefficienta satisfies either0 < a 6
859 or 0 > a > −562. The original algorithm searches this whole region, despite quickly
finding a suitable quartic witha = 1, namely(1, 0,−66116, 9253784,−364263500), and
takes36 seconds. The improved algorithm stops after finding this large quartic, and delivers
the same result in under5 seconds.

When the local index is4 the situation is slightly more complicated. We can stop the
search for large quartics once a second one (which isQ-soluble or ELS) is found,provided
that the second one is independent of the first one modulo the “small” subgroup. Our
implementation takes account of this. Of course, the global index may be less than4, in
which case there is no reduction in running time. To illustrate the possibilities we consider
the following curves, which all have local index4: (1) (A,B) = (2, 4) has global index4
also: the rank is2 and all comes from large quartics; (2)(A,B) = (3, 8) has global index2;
the rank is1, coming from a large quartic; (3)(A,B) = (2, 8) has global index1; the rank
is 0, and there are no non-trivialQ-soluble quartics at all.

To estimate the average expected gain from implementing the results of the previ-
ous section to “typical” curves is not straightforward. For curves for which the Birch–
Swinnerton-Dyer criterion already applies, or for which the global index is strictly less
than the local index, there is no change at all. (There is also no change for curves with
rational2-torsion, where a different descent strategy is used.) We measured the time taken
for mwrank to process our standard test list of curves which are, in a sense, “typical”. In
the list we have the following474 curves, all with no rational2-torsion: all401 curves with
conductorN < 400 and no2-torsion, up to isogeny; all 18 rank 2 curves with conductor
N < 1000, up to isogeny; and a miscellaneous collection of 10 rank 3 curves, 10 rank
4 curves, 5 rank 5 curves, 6 rank 6 curves, 21 rank 7 curves and 3 rank 8 curves. (These
curves, together with the curves of conductorN < 400 with rational2-torsion, form the
test data now distributed withmwrank .)
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The local index is1 for 400 of these curves (which hence have global index1 also), of
which 169 satisfy the Birch–Swinnerton-Dyer condition for non-existence of large quartics
while the remaining 231 require Lemma 6.1 or its refinement. The other 74 curves have
local index2, of which 13 have global index1, and 61 have global index2. (No curves in
this list have local index4). Overall, 231 curves out of 474 (or 48.7% of relevant cases)
benefit from the exact computation of the2-adic index. Of the 74 cases where the local
index is greater than1, 61 (or 82.4%) benefit from the early exit strategy.

We give here the time taken to process these curves with our algorithm, which in
all cases determines the rank unconditionally, and also finds rational points generating
E(Q)/2E(Q), which therefore generate a subgroup ofE(Q) of finite, odd index. To see
how the successive refinements to the algorithm affect the running time, we give times for
four versions: (1) using only the Birch–Swinnerton-Dyer criteria; (2) using Lemma 6.1 but
no early exit when the index is greater than1; (3) using the refinement to Lemma 6.1 to
determine the exact local index in all cases, but still with no early exit; and (4) as for (3),
but with early exit during the search for large quartics when the global index reaches the
local index. All these times are based on our development version of themwrank code, us-
ing NTL with gmp integer arithmetic, compiled with GCC 2.8.1, running on a DEC alpha
EV6.

Method 1 2 3 4
Time for all 529s 189s 187s 108s
Time for 174A1 232s 31s 31s 31s
Time without 174A1 297s 158s 156s 77s

From this table we see that Lemma 6.1 by itself gives a significant time-saving, as does
the early exit strategy. The identification of curves of local index1 in cases not covered by
Lemma 6.1 is less significant (though it was the least simple to implement). The variation in
times for the curves in this list is quite considerable, even amongst the curves of conductor
under400, all but one of which has rank0 or 1. By far the most time-consuming is the
curve with standard code 174A1 and Weierstrass coefficients[1, 0, 1,−7705, 1226492],
for which the the local index is1 by Lemma 6.1(b).

Appendix A

We collect here proofs of some of the results of Section 4. Some of these may be found
in [2], though many (and in some cases all) of the details are omitted there. The proofs we
give may easily be turned into algorithms for minimizing a given quartic over a local field,
or over a number field. In the latter case, we can minimize simultaneously at all primes
provided that the relevant primes are principal: for example, if the field has class number1.

In the following,K will again be a fixedp-adic field. We omit the subscriptK in order
to simplify notation, so for exampleπ = πK andv = vK . Recall the notationv(Q) =
min{v(a), v(b), v(c), v(d), v(e)} for quarticsQ = (a, b, c, d, e) overK.

We begin with two lemmas. The first one gives conditions in terms of the valuations of
the coefficients that imply nonminimality. The second one will serve to eliminate part of
the cases in the results proved below, but is also of interest in itself.

Lemma A.1. LetQ = (a, b, c, d, e) be an integral quartic overK. ThenQ isK-nonminimal
in any one of the following cases.
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1. v(a) > 0, v(b) > 1, v(c) > 2, v(d) > 3, v(e) > 4.

2. v(a) > 0, v(b) > 0, v(c) > 2, v(d) > 4, v(e) > 6.

3. v(Q) > 2.

PROOF: The followingK-equivalent quartics are integral and of lower level in each case.
1.Q(x, π−1z). 2.π2Q(x, π−2z). 3.π−2Q(x, z) . 2

Lemma A.2. Suppose the residue characteristicp is not3. LetQ be an integral quartic
overK, and setQ1 = π−v(Q)Q. If level(Q) > 1 andQ is K-minimal, thenQ1 has a
quadruple root, when reduced moduloπ. (The root may be at infinity, in the sense that
Q1(x, z) ≡ ez4 mod π).

PROOF: We usea1, b1, . . . , I1, J1 for the quantities associated toQ1. If v(Q) = 2, thenQ
isK-nonminimal by Lemma A.1, so we either havev(Q) = 0 or v(Q) = 1. In both cases,
v(I1) > 2 andv(J1) > 3.

The vanishing ofI1 andJ1 modπ implies thatQ1 has a root of multiplicity at least
three modπ. We therefore have to show thatQ is nonminimal when the multiplicity is
exactly three.

By a suitable transformation inSL(2,O) (this preserves integrality and the level), we
can achieve that the triple root is at zero (modπ) and that the remaining root is at infinity
(modπ). This means that (in obvious notation)v(a1, b1, c1, d1, e1) > (1, 0, 1, 1, 1) with
v(b1) = 0.

Applying ( 1 α
0 1 ) ∈ SL(2,O), whereα ∈ πOK satisfies the congruence3b1α ≡ −c mod

π2, we can achieve that additionallyv(c1) > 2. Considering the valuations of the various
terms making upI andJ , we deduce fromv(I1) > 2 thatv(d1) > 2 and then fromv(J1) >
3 thatv(e1) > 3. If v(Q) = 1, this meansv(a, b, c, d, e) > (2, 1, 3, 3, 4), which shows non-
minimality by Lemma A.1, part 1. Ifv(Q) = 0, we havev(I) > 4 andv(J) > 6, from
which we concludev(d) > 4 andv(e) > 6. We then havev(a, b, c, d, e) > (1, 0, 2, 4, 6),
soQ is nonminimal by Lemma A.1, part 2. 2

Now we proceed with the proofs of the results in Section 4.

Proposition A.3. LetK be ap-adic field wherep > 5 and letQ be an integral quartic
overK.

(1) If v(Q) > 2, thenQ isK-nonminimal.

(2) If level(Q) = 0, thenQ isK-minimal.

(3) If level(Q) = 1 andv(Q) = 0, thenQ isK-nonminimal.

(4) If level(Q) = 1 andv(Q) = 1, thenQ isK-nonminimal if it isKnr-soluble.

(5) If level(Q) > 2, thenQ isK-nonminimal.

PROOF: (1) This is Lemma A.1, part 3.
(2) This is clear, since an integral quartic cannot have negative level.
(3) Let Q = (a, b, c, d, e). By Lemma A.2, we can suppose thatv(a, b, c, d, e) >

(0, 1, 1, 1, 1) with v(a) = 0. Then the valuations ofI andJ imply that v(e) > 2 and
thenv(d) > 2. Next, the valuation of6cI − J implies thatv(c) > 2 (this observation
is due to Serf, see [8, page 148]). Finally, the valuations ofI andJ imply in turn that
v(e) > 3, v(d) > 3, v(e) > 4, and we may reduce the level by Lemma A.1, part 1.

(4) LetQ1 = π−1Q. ThenQ1 has moduloπ either a triple or a quadruple root. If it
has a triple root, thenQ isK-nonminimal by Lemma A.2. So supposeQ1 has a quadruple
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root moduloπ. Then we can suppose thatv(a, b, c, d, e) > (1, 2, 2, 2, 2) with v(a) = 1.
From the invariants, we getv(d) > 3 andv(e) > 3. We claim thatv(e) > 4. Otherwise
v(e) = 3, and it is easily seen thatv(Q(x, z)) is odd for all(x, z) ∈ (Knr)2 \ {0}, soQ is
notKnr-soluble, a contradiction. Hencev(a, b, c, d, e) > (1, 2, 2, 3, 4), and the level can
be reduced by Lemma A.1, part 1 again.

(5) If v(Q) > 2, this follows from part (1). Otherwise, setQ1 = π−v(Q)Q; then
level(Q1) > 1 andv(Q1) = 0, soQ1 isK-nonminimal by part (3), and the level ofQ can
be reduced in the same way as forQ1. 2

Proposition A.4. LetK be an unramified3-adic field. Then an integral quartic which is
Knr-soluble isK-nonminimal if and only ifeithervK(I) > 5, vK(J) > 9, or vK(I) = 4,
vK(J) = 6 andvK(∆) > 12.

PROOF: This is [2, Lemma 4]. In [2] the proof was omitted. The argument only uses
vK(3) = 1, so also applies to unramified extensions ofQ3.

For the necessity, suppose first thatQ = (a, b, c, d, e) is minimal. Thenv(I) > 0 ⇐⇒
v(c) > 0 ⇐⇒ v(J) > 0, and in this casev(J) > 3, so that eitherv(I) = v(J) = 0, or
v(I) > 1 andv(J) > 3. In both cases, we also havev(4I3 − J2) > 3, since4I3 − J2 =
27∆. Since any nonminimal quartic in the same class has valuations of(I, J,∆) that are
larger by a multiple of(4, 6, 12), the necessity of the given conditions follows.

The proof of sufficiency follows the same plan as for the preceding Proposition. We
consider the casesv(Q) = 0 andv(Q) = 1 in turn, the casev(Q) > 2 being trivial.

Suppose thatv(Q) = 0. After a suitable unimodular substitution we may suppose that
the multiple root modulo3 is at0, and that if the multiplicity is exactly3 then the second
root is at∞. In the multiplicity3 case, we havev(b) = 0 while v(a), v(c), v(d), v(e) > 0.
Now v(J) > 6 impliesv(c) > 2 andv(e) > 2, thenv(I) > 4 impliesv(d) > 3, and then
v(J) > 6 impliesv(e) > 3.

Consider the case wherev(I) > 5 and v(J) > 9. The conditionv(c) > 3 can be
achieved with the unimodular transformation( 1 3t

0 1 ), wherebt ≡ −c/9 mod 27. If v(I) >
5 we then see thatv(d) > 4, and thenv(J) > 9 impliesv(e) > 6, so we can reduce the
level by Lemma A.1, part 2.

Suppose alternatively thatv(I) = 4 and v(J) = 6. Now, for suitablet (satisfying
bt3 ≡ −e/33 mod 3) the transformation( 1 3t

0 1 ) givesv(e) > 4. Now we use the fact that
v(∆) > 12 to deduce thatv(d) > 4, for otherwise the expression for∆ contains a unique
term4b3d3 of minimal valuation9. Also v(c) = 2 (exactly), andv(∆) > 12 now implies
thatv(e) > 6. Thus we may reduce the level by Lemma A.1, part 2 again.

The case of a quadruple root may be handled in a similar way, leading to reduction by
Lemma A.1, part 1.

Now suppose thatv(Q) = 1; thenI1 ≡ J1 ≡ 0 mod 3, soQ1 has a root of multiplicity
at least3 modulo3. Shifting this multiple root to0, we may assume thatv(a) > 1, v(b) >
1, v(c) > 2, v(d) > 2, v(e) > 2. In the triple root case, we may suppose (after shifting the
other root to∞) thatv(b) = 1 andv(a) > 2. In the case wherev(I) > 5 andv(J) > 9, we
obtain in successionv(c) > 3, v(d) > 3 and finallyv(e) > 4, so we may reduce the level
by Lemma A.1, part 1. Now suppose thatv(I) = 4, v(J) = 6 andv(∆) > 12. Thenv(c) =
2 exactly, and considering the terms of∆ we obtain successivelyv(d) > 3 andv(e) > 4
as required. In the quadruple root case, we havev(a) = 1 while v(b), v(c), v(d), v(e) > 2.
Whenv(I) > 5 andv(J) > 9, we obtain in successionv(c) > 3, v(e) > 3, v(d) > 3, and
now v(e) > 4 sincev(e) = 3 would contradictKnr-solubility. Whenv(I) = 4, v(J) = 6
andv(∆) > 12, we havev(c) = 2, and then consideration of the terms of∆ givesv(e) > 3
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andv(d) > 3; again, we must havev(e) > 4 for Knr-solubility. In both cases we succeed
in reducing the level by Lemma A.1, part 1 again. 2

Proposition A.5. Let K be an unramified2-adic field. Then an integral quarticQ =
(a, b, c, d, e) which isKnr-soluble isK-minimal if and only ifeitherit has level0, or it has
level1 and satisfies one of the following conditions.

1. v(Q) = 1, and 1
2Q has a quadruple root modulo2 and no root modulo8;

2. v(Q) = 0, andQ has a quadruple root modulo4 and no root modulo16.

In particular, if v(I) > 6, v(J) > 9 andv(8I + J) > 10 thenQ is nonminimal; as a
special case, quartics of level at least2 are nonminimal.

The last sentence is essentially the statement of [2, Lemma 5]. For an improvement, see
Lemma 6.1.
PROOF: Obviously, we only have to consider the caselevel(Q) = 1 and v(Q) 6 1.
Lemma 5.1 shows that the given conditions are sufficient, since after applying a suitable
element ofSL(2,O), we havev(a) 6 1, v(b), v(c) > 2, v(d) > 3 and2 6 v(e) 6 3
(v(d) > 3 following from v(d) > 2 and the other conditions, sincev(J) > 6). This lemma
also gives us the necessity under the assumption thatQ1 has a quadruple root modulo2,
respectively, thatQ has a quadruple root modulo4. Lemma A.2 tells us thatQ1 must have
a quadruple root modulo2 in any case, disposing of the casev(Q) = 1 already. So we
only have to show that a minimal quartic of level1 with v(Q) = 0 has a quadruple root
modulo4.

Therefore we suppose thatv(Q) = 0 andQ has a quadruple root mod2, whence we can
assume thatv(a) = 0 while v(b), v(c), v(d), v(e) > 1. The valuations ofJ andI imply
thatv(d) > 2 andv(c) > 2 respectively. The assumptionv(e) = 1 leads (byJ) to v(b) > 2
and then to the contradictionv(I) = 3, sov(e) > 2 also. This means that modulo4,Q has
at least a triple root. IfQ does not have a quadruple root modulo4 thenv(b) = 1, from
which we deduce thatv(d) > 3 andv(e) > 4, soQ is nonminimal by Lemma A.1, part 1.

The last statement can be proved along these lines by observing that the given conditions
ensure that there has to be a root modulo16 if there is a quadruple root modulo4. We do
not give the details here, since Lemma 6.1 contains this assertion as a special case anyway.

2

Appendix B

We give here an algorithm for determining the size of the index in the two ambiguous
cases from Section 6. Recall that the problem is to determine whether the curvey2 =
x3 +Ax+B with A,B ∈ Z2 has an integral point(x, y) with x in a certain residue class
modulo4, in two cases:

1. [Case 1]A ≡ B ≡ 0 mod 4, with x ≡ 2 mod 4;

2. [Case 2]A ≡ 1,B ≡ 2 mod 4, with x ≡ 1 mod 4.

Replacingx by 4x+ 2 or 4x+ 1 respectively, this amounts to determining whether the
polynomials

(4x+ 2)3 + 4a(4x+ 2) + 4b and (4x+ 1)3 + (4a+ 1)(4x+ 1) + (4b+ 1)

(with a, b ∈ Z2) ever take on square values (including0) for somex ∈ Z2.
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It is easy to write a general recursive procedure for determining whether a square-free
polynomialf(x) ∈ Z2[x] ever takes on square values. The answer is “yes” iff(0) is a
square, or if the Newton Polygon off allows one to conclude thatf has an integral root.
Otherwise, setc = f(0), v = v(c) andc0 = c/2v, and letw be the minimum valuation of
the non-constant coefficients off . Then the answer is “no” ifv is odd andw > v (since
thenv(f(x)) = v for all x ∈ Z2), or if v is even,c0 ≡ 3 mod 4 andw > v + 1 (since
then v(f(x)) = v andf(x)/2v ≡ 3 mod 4 for all x), or if v is even,c0 ≡ 5 mod 8
andw > v + 2 similarly. If none of these cases occurs, we recursively consider the two
polynomialsf(2x) andf(2x+ 1) in turn.

However, for the special cases of concern to us here, we found it to be faster to avoid the
recursive branching with the following two special algorithms. In each case, by imposing
congruence conditions on the parametersa, b we are able either to decide the answer, or to
eliminate one parity for the variablex. The resulting procedures then have a simple loop
instead of branching, and for square-freef we can bound the number of times the loop is
executed in terms of the2-adic valuation of its discriminant.

Case 1:A ≡ B ≡ 0 mod 4, withx ≡ 2 mod 4
WriteA = 4a,B = 4b, and replacex by 4x+ 2. Thenf(x) = x3 +Ax+B becomes

4g(x) whereg(x) = 16x3 + 24x2 + 4(a + 3)x + (2a + b + 2). For brevity, writeg =
(16, 24, 4c, d) wherec = a+ 3 andd = 2a+ b+ 2. The following should be thought of as
steps in an algorithm, so that the conditions we impose are cumulative; the variablesc, d
and the current polynomialg will change as we proceed.

1. If d ≡ 2, 3 mod 4, then return “no”; forg(x) ≡ d mod 4.

2. If d ≡ 1 mod 4, then return “yes” if eitherc ≡ 1 mod 2 or d ≡ 1 mod 8, otherwise
return “no”; forg(x) ≡ 4cx+ d mod 8.

3. [Now d ≡ 0 mod 4.] If c ≡ 1 mod 2, return “yes”; for the valuations of the coeffi-
cients are4, 3, 2,> 2, so the Newton Polygon shows thatg has an integral root.

4. [Now alsoc ≡ 0 mod 2.] Divide c by 2 and d by 4, and divide the polynomial
by 4, so that we are now consideringg = (4, 6, 2c, d). Seta = b = 1, so that
g = (4a, 4b+ 2, 2c, d). The following steps should be repeated as necessary.

5. (*) If c ≡ 1 mod 2, then return “yes” ifd ≡ 0, 1 mod 4, otherwise return “no”. For
g(x) ≡ 2x(x + c) + d ≡ d mod 4 sod ≡ 2, 3 mod 4 is impossible;g(0) = d is a
square ifd ≡ 1 mod 8; g(2) ≡ 4c+ d ≡ 1 mod 8 if d ≡ 5 mod 8; and the Newton
Polygon gives an integral root ifd ≡ 0 mod 4.

6. [Now c ≡ 0 mod 2.] If d ≡ 1 mod 2, then return “yes” if eitherd ≡ 1 mod 8 or
4(a+ b) + 2c+ d+ 1 ≡ 0 mod 8, otherwise return “no”; forg(x) is odd,g(2x) ≡
d mod 8, andg(2x+ 1) ≡ 4(a+ b) + 2c+ d+ 2 mod 8.

7. [Now alsod ≡ 0 mod 2.] If d ≡ 0 mod 4, thenx must be even, since for oddx we
haveg(x) ≡ 2 mod 4. Now g(2x)/4 = (8a, 4b+ 2, c, d/4), so we set(a, b, c, d) :=
(2a, b, c/2, d/4) and loop back to (*).

8. If d ≡ 2 mod 4, thenx must be odd, since for evenx we haveg(x) ≡ d mod 4.
Now g(2x+ 1)/4 = (8a, 12a+ 4b+ 2, 6a+ 4b+ c+ 2, a+ b+ c/2 + (d+ 2)/4),
so we set(a, b, c, d) := (2a, 3a + b, 3a + 2b + c/2 + 1, a + b + c/2 + (d + 2)/4)
and loop back to (*).

Note that7/8 of the cases are decided before reaching the loop, with9/16 returning
“no” and 5/16 returning “yes”; of the1/8 of cases which reach the loop,3/4 are decided
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in the first pass, with half of these returning “no” and half returning “yes”. This means
that of those cases which reach the loop at all, half will return “no” and half “yes”, so that
overall we find that in5/8 of the cases the answer is “no” while in3/8 of the cases it is
“yes”.

We can bound the number of passes through the loop as follows, giving at the same time
a proof that the above algorithm terminates whenf(x) is square-free. The simple observa-
tion is that each time we re-enter the loop (i.e., from the second time on we reach step 5),
the valuation ofdisc(g) has been decreased by2 in steps 7 or 8. (We havedisc(g(ax)) =
a6 disc(g(x)), disc(ag(x)) = a4 disc(g(x)) anddisc(g(x + 1)) = disc(g(x)).) Since at
the end of step 4,v(disc(g)) = v(disc(f)) − 4, the number of passes through the loop is
bounded byv(disc(f))/2− 1.

Case 2:A ≡ 1,B ≡ 2 mod 4, withx ≡ 1 mod 4
WriteA = 4a+ 1, B = 4b+ 2, and replacex by 4x+ 1. Thenf(x) = x3 + Ax+ B

becomes4g(x) with g = (16, 12, 4c, d) wherec = a+ 1 andd = a+ b+ 1.

1. If d ≡ 2, 3 mod 4, then return “no”; forg(x) ≡ d mod 4.

2. If d ≡ 1 mod 4, then return “yes” if eitherc ≡ 0 mod 2 or d ≡ 1 mod 8, otherwise
return “no”; forg(x) ≡ 4x(x+ c) + d mod 8.

3. [Now d ≡ 0 mod 4.] If c ≡ 1 mod 2, return “yes”; for if d ≡ 0 mod 8 then the
valuations of the coefficients are4, 2, 2,> 3, so the Newton Polygon shows thatg
has an integral root, while ifd ≡ 4 mod 8 then one ofg(0), g(−c), g(4), g(3c) is a
square,d ≡ 4, 12, 20, 28 mod 32 respectively.

4. [Now alsoc ≡ 0 mod 2.] Divide c by 2 and d by 4, and divide the polynomial
by 4, so that we are now consideringg = (4, 3, 2c, d). Seta = 1, b = 0, so that
g = (4a, 3(4b+ 1), 2c, d). The following steps should be repeated as necessary.

5. (*) Suppose thatc ≡ 1 mod 2.

• If d ≡ 0 mod 4, then return “yes”; for the Newton Polygon gives an integral
root.

• If d ≡ 2 mod 4, then return “no”; forg(x) ≡ 2, 3 mod 4.
• If d ≡ 1 mod 4, then return “yes” ifd ≡ 1 mod 8, else return “no”; forg(2x+

1) ≡ 2 mod 4, andg(2x) ≡ d mod 8.
• If d ≡ 3 mod 4, thenx must be odd sinceg(2x) ≡ d mod 4, so replaceg(x)

by g(2x+ 1)/4: set(a, b, c, d) := (2a, a+ b, 3a+ 6b+ (c+ 3)/2, a+ 3b+ (c+
1)/2 + (d+ 1)/4), and loop back to (*).

6. Suppose thatc ≡ 0 mod 2.

• If d ≡ 1 mod 4, then return “yes”; forg(2x) ≡ 4x2 + d mod 8, which is a
square forx = 0 or x = 1.

• If d ≡ 3 mod 4, then return “no”; forg(x) ≡ 3x2 + d ≡ 2, 3 mod 4.
• If d ≡ 2 mod 4, then return “yes” if4(a+b)+2c+d+2 ≡ 0 mod 8, else return

“no”; for g(2x) ≡ 2 mod 4, while g(2x+ 1) ≡ 4(a+ b) + 2c+ d+ 3 mod 8.
• If d ≡ 0 mod 4, thenx must be even, sinceg(2x + 1) ≡ 3 mod 4, so replace
g(x) by g(2x)/4: set(a, b, c, d) := (2a, b, c/2, d/4) and loop back to (*).

As in Case 1, one can show from the above algorithm that the result is “yes” in3/8 of
the cases and “no” in the remaining5/8, and that the number of passes through the loop is
again bounded byv(disc(f))/2− 1.
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