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Abstract: Strongly walk-regular graphs (SWRGs) can be constructed as coset graphs

of the duals of projective three-weight codes whose weights satisfy a certain equation.

We provide classifications of the feasible parameters of these codes in the binary and

ternary case for medium size code lengths. For the binary case, the divisibility of the

weights of these codes is investigated and several general results are shown.

It is known that an SWRG has at most 4 distinct eigenvalues k > θ1 > θ2 > θ3.

For an s-SWRG, the triple (θ1, θ2, θ3) satisfies a certain homogeneous polynomial

equation of degree s − 2 (Van Dam, Omidi, 2013). This equation defines a plane

algebraic curve; we use methods from algorithmic arithmetic geometry to show that

for s = 5 and s = 7, there are only the obvious solutions, and we conjecture this to

remain true for all (odd) s ≥ 9.
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1 Introduction

A strongly regular graph (SRG) is a regular graph such that the number of com-

mon neighbors of two distinct vertices depends only on whether these vertices are

adjacent or not. They arise in a lot of applications, see e.g. [8]. As first observed

in [14], there is a strong link to projective two-weight codes, see [11] for a survey.

The notion of SRGs has been generalized to distance-regular graphs or association
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schemes. Noting that the number of common neighbors of two vertices equals the

number of walks of length two between them, strongly walk-regular graphs (SWRG)

were introduced in [32]. A graph is an s-SWRG if the number of walks of length s

from a vertex to another vertex depends only on whether the two vertices are the

same, adjacent, or not adjacent. Note that SRGs are s-SWRGs for all s > 1. In

[32, Theorem 3.4] it is shown that the adjacency matrix of a SWRG has at most four

distinct eigenvalues and the following characterization of SWRGs is given.

Lemma 1.1 (van Dam, Omidi [32, Proposition 4.1]). Let Γ be a k-regular graph with

four distinct eigenvalues k > θ1 > θ2 > θ3. Then Γ is an s-SWRG for s ≥ 3 if and

only if

(θ2 − θ3)θs1 + (θ3 − θ1)θs2 + (θ1 − θ2)θs3 = 0. (1)

Moreover, it is known that s has to be odd. All known examples for s-SWRGs

with s > 3 satisfy θ2 = 0 and θ3 = −θ1, where Equation (1) is automatically satisfied

for all odd s ≥ 3.

Mimicking the mentioned link between SRGs and projective two-weight codes, a

construction of SRWGs as coset graphs of the duals of projective three-weight codes

was given recently in [29]. The eigenvalues of such graphs are integral and depend on

the weights of the three-weight code, so that Equation (1) turns into a number theory

question. In [29], a construction of SWRGs from triple sum sets (TSS) is given.

Several research papers consider the feasible parameters of SRGs, see e.g. [6] for a

large table together with references summarizing the state of knowledge. We remark

that the smallest cases, where the existence or non-existence of a SRG is unclear,

consist of 65 or 69 vertices. The corresponding parameters cannot be attained by

two-weight codes since these always give graphs where the number of vertices is a

power of the field size. Still, the existence of projective projective two-weight codes

is an important source for the construction of SRGs, see e.g. [22], where several new

examples have been found. An online database of known two-weight codes can be

found at [12]. Due to a result of Delsarte [14, Corollary 2] the possible weights of

two-weight codes are quite restricted, see Lemma 2.2.

Given the relation between the weights of a projective three-weight code and the

eigenvalues of the coset graph of its dual, corresponding solutions of Equation (1)

can be easily enumerated. However, not all cases are feasible, i.e., attainable by a

projective three-weight code. The aim of this paper is to study feasibility for the

smallest cases. For binary codes we give results for lengths smaller than 72 and for
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ternary codes for lengths up to 39. Within that range only very few cases are left as

open problems. This extends and corrects first enumeration results from [29]. Similar

results for some special rings instead of finite fields are obtained in [20].

The remaining part of this paper is organized as follows. The necessary prelimi-

naries are introduced in Section 2 followed by the enumeration results in Section 3.

In Section 4 it is shown that for s = 5 and s = 7 the only rational solutions of

Equation (1) are given by the parametric solution θ2 = 0, θ3 = −θ1. For s = 5, this

reduces to the determination of the set of rational points on an elliptic curve and for

s = 7, it leads to a curve of genus 2.

The computational results from Section 3 for the case q = 2 suggest that projective

three-weight codes of length n whose weights satisfy w1 + w2 + w3 = 3n/2 possess a

high divisibility of the weights and the length by powers of two. In Section 5 this is

shown, see Lemma 5.11 and the following theorems for the details. In Appendix A

we collect generator matrices for the mentioned feasible parameters from Section 3.

2 Preliminaries

In this article, q will always be a proper power of some prime p.

A linear q-ary code C of length n and dimension k is called an [n, k]q code. The

number of positions which are not all-zero is called the effective length of C. If

the length equals the effective length, C is called full-length. Two positions i, j ∈
{1, . . . , n} of C are called projectively equivalent if there is a λ ∈ F∗q with ci = λcj

for all codewords c ∈ C. The code C is called projective if it is full-length and there

are no projectively equivalent positions. For a general full-length code, the position

multiplicity type is the sequence (mi) where mi denotes the number of projective

equivalence classes of size i.

2.1 Restrictions on the weights

If there is only a single non-zero weight, C is called a constant weight code. The

constant weight codes are completely classified.

Lemma 2.1 (Bonisoli [2]). Let C be a full-length [n, k]q code of constant weight w

of dimension k ≥ 1. Then qk−1 | w, and C is isomorphic to the u-fold repetition
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of the q-ary simplex code Simq(k) of dimension k with u = w/qk−1. In particular,

n = u · qk−1
q−1

.

If C has exactly two different non-zero weights, C is called a two-weight two-weight

code.

Lemma 2.2 (Delsarte [14, Corollary 2]). Let C be a projective two-weight code over

Fq, where q = pe for some prime p. Then there exist suitable integers u and t with

u ≥ 1, t ≥ 0 such that the weights are given by w1 = upt and w2 = (u+ 1)pt.

If C has exactly three different non-zero weights, C is called a two-weight three-

weight code. Furthermore, C is called ∆-divisible for some integer ∆ ≥ 1 if all weights

of C are divisible by ∆.

Lemma 2.3. Let C be a linear projective [n, k]q three-weight code. Then n ≤ qk−1
q−1
−2.

Proof. Let G be a generator matrix of C. Since C is projective, G neither has a zero

column, nor a pair of projectively equivalent columns. So each of the qk−1
q−1

projective

equivalence classes of non-zero vectors in Fkq appears at most once as a column of

G, showing that n ≤ qk−1
q−1

. In the case n = qk−1
q−1

, C is the simplex code Simq(k) of

dimension k over Fq, which is a code of constant weight qk−1. In the case n = qk−1
q−1
−1,

C is the simplex code Simq(k) punctured in a single position, so C has only the two

weights qk−1 and qk−1− 1.1 This contradicts the assumption that C is a three-weight

code.

2.2 Weight enumerators and the MacWilliams identity

The weight distribution of C is the sequence of numbers (Ai) where Ai denotes

the number of codewords of weight i. It can also be denoted as (0A01A12A2 . . .),

where entries with Ai = 0 may be omitted. The weight distribution is often given

in polynomial form as the (univariate) weight enumerator WC(x) =
∑

iAix
i or the

homogeneous weight enumerator WC(x, y) =
∑

iAix
n−iyi.

The weight distribution of the dual code C⊥ will be denoted by (Bi). We always

have A0 = B0 = 1. Furthermore, B0 = 0 if and only if C is full-length and B0 =

B1 = 0 if and only C is projective. For the number B2 of general full-length codes,

the following statement can be checked.

1In fact, in this case C is a MacDonald code.
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Lemma 2.4. Let C be a full-length q-ary linear code of length n and (mi) the position

multiplicity type of C. Then ∑
i

imi = n and

∑
i

(q − 1)

(
i

2

)
mi = B2

The weight distributions of C and C⊥ are related via the MacWilliams identities

[27]
n−ν∑
j=0

(
n− j
ν

)
Aj = qk−ν ·

ν∑
j=0

(
n− j
n− ν

)
Bj for 0 ≤ ν ≤ n. (2)

or in homogeneous polynomial form as

WC⊥(x, y) =
1

#C
·WC(x+ (q − 1)y, x− y).

In fact, the Bi are uniquely determined by the Ai, as can be seen by the following

variant of the MacWilliams identities. Based on the i-th q-nary Krawtchouk polyno-

mial

Ki(x) =
i∑

ν=0

(−1)ν
(
x

ν

)(
n− x
i− ν

)
(q − 1)i−ν ,

we have

Bi =
1

#C
·

n∑
j=0

Ki(j)Aj.

For a binary projective [n, k]2 code, the system of the four equations with i ∈
{0, 1, 2, 3} can be rewritten to∑

i>0

Ai = 2k − 1, (3)∑
i≥0

iAi = 2k−1n, (4)∑
i≥0

i2Ai = 2k−2 · n(n+ 1), (5)∑
i≥0

i3Ai = 2k−3 · (n2(n+ 3)− 6B3). (6)

In this special form of the left hand side, they are also called the first four (Pless)

power moments, see [28]. Given the length n, the dimension k, and the weights
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w1, w2, w3 of a projective three-weight code, we can compute Awi
and B3:

Aw1 =
2k−2 · (n2 − 2nw2 − 2nw3 + 4w2w3 + n)− w2w3

(w2 − w1)(w3 − w1)
(7)

Aw2 =
2k−2 · (n2 − 2nw1 − 2nw3 + 4w1w3 + n)− w1w3

(w2 − w3)(w2 − w1)
(8)

Aw3 =
2k−2 · (n2 − 2nw1 − 2nw2 + 4w1w2 + n)− w1w2

(w3 − w1)(w3 − w2)
(9)

3B3 =
n2(n+ 3)

2
− (w1 + w2 + w3)n(n+ 1)

+2 (w1w2 + w1w3 + w2w3)n− 4w1w2w3 + w1w2w3 · 22−k (10)

All Aj except A0 = 1 and Aw1 , Aw2 , Aw3 are equal to zero, so that the Bi with i ≥ 4

are be uniquely determined using the remaining MacWilliams identities, i.e., those for

ν ≥ 4. Note that (10) implies that the product w1w2w3 has to be divisible by 2k−2.

We remark that we will obtain stronger divisibility conditions in Section 5. Of course,

similar explicit expressions can also be determined for field sizes q > 2. However, we

will mostly restrict our theoretical considerations to q = 2 in the remaining part of

the paper.

For a linear [n1, k1]q code C1 and a linear [n2, k2]q code C2, the direct sum of C1

and C2 is defined as

C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}.

It is a linear [n1 + n2, k1 + k2]q code. Its weight enumerator is given by

WC1⊕C2(x) = WC1(x) ·WC2(x).

2.3 The coset graph triple sum sets

A coset of a linear code C is any translate of C by a constant vector. A coset leader

of a fixed coset is any element that minimizes the weight. The weight of a coset is the

weight of any of its coset leaders. With this, the coset graph ΓC of a linear code C is

defined on the cosets of C as vertices, where two cosets are connected iff they differ

by a coset of weight one. To ease notation, we speak of the eigenvalues of a graph Γ

meaning the eigenvalues of the corresponding adjacency matrix. For a projective code

C the eigenvalues of the coset graph ΓC⊥ of its dual code are completely determined

by the occurring non-zero weights wi of C, see [7, Theorem 1.11.1]:
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Theorem 2.5. Let C be a projective [n, k]q code with distinct weights w0 = 0, w1,

. . . , wr. Then, the coset graph ΓC⊥ of its dual code C⊥ is n(q − 1)-regular and the

eigenvalues are given by n(q − 1)− qwi for i ∈ {0, . . . , r}.

Triple sum sets (TSS) have been introduced in [13] as generalization of partial

difference sets. A set Ω ⊆ Fkq is called a triple sum set if it is closed under scalar

multiplication and there are constants σ0 and σ1 such that a each non-zero h ∈ Fkq
can be written as h = x + y + z with x, y, z ∈ Ω exactly σ0 times if h ∈ Ω and σ1

times if h ∈ Fkq\Ω.

If Ω ⊆ Fkq and 0 /∈ Ω, then we denote by C(Ω) the projective code of length

n = #Ω/(q− 1) obtained as the kernel of the k× n matrix H whose columns are the

projectively non-equivalent elements of Ω. Thus, H is the parity check matrix of the

linear code C(Ω). In order to ease the notation, we abbreviate ΓC(Ω) as Γ(Ω). In [29,

Theorem 2] it was shown that Ω is a TSS if and only if Γ(Ω) is a 3-SWRG. (Actually,

[29, Theorem 2] states the equivalence of Γ(Ω) being an s-SWRG and Ω being an

s-sum set, where the element h in the definition of a TSS is a sum of s elements from

Ω.)

Lemma 2.6. Let an integer s ≥ 2. The following equation holds for all θ1, θ2, θ3

over any commutative ring:

(θ2−θ3)θs1 +(θ3−θ1)θs2 +(θ1−θ2)θs3 = (θ1−θ2)(θ1−θ3)(θ2−θ3) ·
∑

h+i+j=s−2

θh1θ
i
2θ
j
3 . (11)

A coding-theoretic characterization of triple sum sets is given as follows, see [13,

Theorem 2.1] or [29, Theorem 5].

Theorem 2.7. If Ω ⊆ Fkq so that C(Ω)⊥ has length n and attains exactly three non-

zero weights w1, w2, and w3, then Ω is a TSS iff w1 + w2 + w3 = 3n(q−1)
q

.

Proof. Using Equation (11) from Lemma 2.6 for s = 3, (1) becomes

(θ1 − θ2)(θ1 − θ3)(θ2 − θ3)(θ1 + θ2 + θ3) = 0 .

Theorem 2.5 shows that the eigenvalues are pairwise different and we conclude that

(1) is satisfied iff θ1 + θ2 + θ3 = 0. Plugging in the formula for the eigenvalues from

Theorem 2.5 gives the condition w1 + w2 + w3 = 3n(q−1)
q

.
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As mentioned in the introduction, all known examples for s-SWRGs satisfy θ2 = 0

and θ3 = −θ1, i.e., they are s-SWRGs for all odd s ≥ 3. So, starting from projective

three-weight codes to construct SWRGs it is sufficient to study those that satisfy the

weight constraint w1 + w2 + w3 = 3n(q − 1)/q. We do so in Section 3. We would

like to point out that there are (many) binary projective three-weight codes with

w1 + w2 + w3 6= 3n(q − 1)/q. As an example, consider the binary [6, 5]2 parity check

code. It is a projective three-weight-code with weight distribution is (0121541561).

The sum of its weights is 12, but 3
2
n = 9.

2.4 The geometric point of view to linear codes

For a vector space V , let
[
V
k

]
q

be the set of all subspaces of dimension k. If V is of

finite dimension v, #
[
V
k

]
q

equals the Gaussian binomial coefficient
[
v
k

]
q
. Conveniently,

we will identify a vector space V with the set
[
V
1

]
q

of points contained in V .

A multiset on a base set S is a mapping M : S → Z≥0, assigning a multiplicity to

each element in S. For T ⊆ S, we set M(T ) =
∑

s∈T M(s). The cardinality of M is

#M = M(S), which is the sum of the multiplicities of all elements. In enumerative

form, a multiset may be written by statements of the form M = {{s1, s2, . . . , sn}}, with

the obvious interpretation. If N is a multiset on a base set T and φ is a predicate on

T , we may also use the multiset-builder notations like M = {{t ∈ N | φ(t)}}.
We will make use of the geometric description of linear codes as in [16]. There

is a bijective correspondence of (semi-)linear equivalence classes of linear full-length

[n, k]q-codes C and (semi-)linear equivalence classes of spanning multisets C of n

points in PG(V ) ∼= PG(k − 1, q), where V is a Fq-vector space of dimension k. For a

concrete assignment, let G be a generator matrix of C and v1, . . . , vn the columns of

G and consider the multiset C = {{〈v1〉, . . . , 〈vn〉}} of points in V = Fkq . In this way,

a codeword c = xG is represented by the hyperplane H = x⊥ (in fact, H represents

all the q− 1 codewords which are projectively equivalent to c). The weight of c has a

natural geometric description, namely w(c) = n − C(H), where the hyperplane H is

identified with the set of points contained in H. In other words, w(c) is the number

of points in C, counted with multiplicity, which are not contained in H. The code C

is projective if and only if C is a proper set.

The following codes have an easy geometric description:

(i) The q-ary simplex code Simq(k) of dimension k ≥ 1 corresponds to the set of all
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points contained in a vector space of (algebraic) dimension k. It is a projective

linear [(qk − 1)/(q − 1), k]q constant code weight code with weight enumerator

WSimq(k)(x) = 1 + (qk − 1)xq
k−1

.

(ii) The q-ary first order Reed-Muller code RMq(k) of dimension k ≥ 2 corresponds

to an affine subspace of dimension k − 1, that is the set of points contained

in A = V \ W , where V is an Fq-vector space of dimension k and W is a

subspace of codimension 1. It is a projective linear [qk−1, k]q two-weight code

with weight enumerator WRMq(k)(x) = 1 + (qk − q)x(q−1)qk−2
+ (q − 1)xq

k−1
. In

the geometric description, the space W is known as the hyperplane at infinity

of A. It corresponds to the q − 1 codewords of weight qk−1.

For a fixed point P in V , we consider the standard projection πP : V → V/P, x 7→
x+ P . It is extended to the multiset C of points as

πP (C) = {{πP (Q) | Q ∈ C with Q 6= P}}.

We have #πP (C) = #C − C(P ).

The projections πP (C) with P ∈
[
V
1

]
q

correspond to the subcodes C ′ of C of

codimension one. A codeword c ∈ C with corresponding hyperplane H < V is

contained in C ′ if and only if P ∈ H.

Let C be a projective [n, k]q-code with weight enumerator WC(x) =
∑

iAix
i

and C a corresponding point set. If the complement C{ =
[Fk

q

1

]
q
\ C is spanning (or

equivalently, Aqk−1 = 0), we call its corresponding [ q
k−1
q−1
−n, k]q-code C{ the anticode of

C. In this way, the anticode of C is defined up to isomorphism. Its weight enumerator

is WC{(x) = 1 +
∑

i>0Aqk−1−ix
i.

3 Feasible parameters of projective three-weight

codes satisfying w1 + w2 + w3 = 3n(q− 1)/q

As outlined in Section 2 we can construct 3-SWRGs from projective [n, k]q three-

weight codes if the weights satisfy w1 + w2 + w3 = 3n(q − 1)/q. So, here we study

the feasible sets of parameters n, k, w1, w2, w3 such that a corresponding projective

three-weight code exists. In Subsection 3.1 we consider the admissible parameters for

all lengths n < 72 in the binary case and in Subsection 3.2 we consider the admissible

parameters for all lengths n ≤ 39 in the ternary case.
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In that range we can simply loop over all weight-triples (w1, w2, w3) with 1 ≤
w1 < w2 < w3 ≤ n satisfying w1 + w2 + w3 = 3n(q − 1)/q. For q = 2, (10) implies

that the product w1w2w3 is divisible by 2k−2, which restricts the possible choices for

the dimension k. For q = 3 we may use the trivial bounds 1 ≤ k ≤ n. Then, the

MacWilliams identities uniquely determine the values of all Ais and Bis. As a first

check we test if all of these values are non-negative integers. As a consequence of

[33, Theorem 1], any full-length ∆-divisible [n, k]q code is the ∆/ gcd(∆, qk−1)-fold

repetition of some code. As projectivity forbids proper repetitions, we can restrict

ourselves to the cases where gcd(∆, qk−1) = gcd(w1, w2, w3, q) is a power of p. Exam-

ples where we can apply this criterion to exclude the existence of codes are q = 2,

n = 36, (w1, w2, w3) = (12, 18, 24), and k ∈ {6, 7, 8}. The corresponding values of

(Aw1 , Aw2 , Aw3) are (2, 56, 5), (10, 104, 13), and (26, 200, 29). For q = 3, this criterion

can be applied to the parameters n = 24, k = 4 and weight triple w = (14, 16, 18) as

well as n = 36, k ∈ {5, 6} and weight triple w = (18, 24, 30). In order to find exam-

ples, we have used the software package LinCode [4] to enumerate matching codes or

tried to reduce the problem complexity by prescribing automorphisms and applying

exact or heuristic solvers for the resulting integer linear programs.

Summarizing the above, we call parameters (q, n, k, w1, w2, w3) admissible if

(i) 1 ≤ w1 < w2 < w3 ≤ n and w1 + w2 + w3 = 3n(q − 1)/q and

(ii) gcd(w1, w2, w3, q) is a power of p and

(iii) w1w2w3 is divisible by 2k−2 (if q = 2) or 1 ≤ k ≤ n (if q = 3) and

(iv) all Ai and Bi with i ∈ {0, . . . , n} are non-negative integers and

(v) B1 = B2 = 0.

3.1 Feasible parameters for projective binary three-weight

codes with w1 + w2 + w3 = 3n/2

In Table 3.1 we list the admissible parameters for projective binary three-weight

codes with w1 + w2 + w3 = 3n/2. For each length 4 ≤ n < 72 we list the admissible

dimensions k, weight triples w = (w1, w2, w3), and the weight distribution in the form

(Aw1 , Aw2 , Aw3). The last column contains known results about the existence of codes

with these parameters, For some cases we can state the number of isomorphism types
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of those codes. The 8-divisible [n, k]2 codes with length at most 48 are classified

in [1] and the projective codes are extracted in [18]. If not mentioned otherwise,

the remaining complete classification results are obtained with the software package

LinCode [4]. For the parameters marked with ≥ 1 we constructed at least one code

by prescribing an automorphism group, see [5].

We mark the non-existence results with the keyword “None” in the comment

column of Table 3.1 and give a reference to the used method. One frequently showing

up is the following.

Lemma 3.1. ([15, Proposition 5], cf. [30]) Let C be an [n, k, d]2-code with all weights

divisible by ∆ = 2a and let (Ai)i=0,1,...,n be the weight distribution of C. Put

α := min{k − a− 1, a+ 1},
β := b(k − a+ 1)/2c, and

δ := min{2∆i | A2∆i 6= 0 and i > 0}.

Then the integer

T :=

bn/(2∆)c∑
i=0

A2∆i

satisfies the following conditions.

(i) T is divisible by 2b(k−1)/(a+1)c.

(ii) If T < 2k−a, then

T = 2k−a − 2k−a−t

for some integer t satisfying 1 ≤ t ≤ max{α, β}. Moreover, if t > β, then C

has an [n, k− a− 2, δ]2-subcode and if t ≤ β, it has an [n, k− a− t, δ]2-subcode.

(iii) If T > 2k − 2k−a, then

T = 2k − 2k−a + 2k−a−t

for some integer t satisfying 0 ≤ t ≤ max{α, β}. Moreover, if a = 1, then C

has an [n, k− t, δ]2 subcode. If a > 1, then C has an [n, k− 1, δ]2 subcode unless

t = a+ 1 ≤ k − a− 1, in which case it has an [n, k − 2, δ]2 subcode.

A special and well-known subcase of Lemma 3.1 is that the number of even weight

codewords in a [n, k]2 code is either 2k−1 or 2k, see Lemma 5.1. As an example, For
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n = 32, k = 10, and weight triple w = (8, 16, 24) we obtain (Aw1 , Aw2 , Aw3) =

(61, 899, 63). Applying Lemma 3.1 gives ∆ = 8, a = 3, α = 4, β = 4, δ = 16, and

T = 900. As required by Part (i), T is divisible by 4. However, Part (iii) gives t = 5,

which contradicts 0 ≤ t ≤ max{α, β}, so that a code cannot exist.

Bounds for the largest possible minimum distance for given length and dimension

are well studied in the literature, see e.g. the online tables [17]. For length n =

64 and dimension k = 11 the largest possible minimum distance is known to be

either 26 or 27, which rules out the existence of a projective code with weight triple

w = (28, 32, 36). We use the comment “codetables” in this case. For n = 64 and

w = (24, 32, 40) we use a classification result from [19], i.e., every 13-dimensional 8-

divisible binary linear code with non-zero weights in {24, 32, 40, 56, 64} has to contain

a codeword of weight 64. Anticipating the results from Section 5 we also apply

Corollary 5.7, which shows that the length n has to be divisible by 4. The case n = 58

is excluded by that criterion. For length n = 64 and weight triple w = (16, 32, 48),

the dimension can be at most 11 by Theorem 3.2. Just four cases remain undecided.

They occur for length n ∈ {40, 48, 56, 64} and are marked by “Open”. For each

feasible case we give a suitable generator matrix as an example in Appendix A.

Table 3.1: Admissible and realizable parameters of bi-

nary projective three-weight codes

n k (w1, w2, w3) (Aw1 , Aw2 , Aw3) isom. types

4 3 (1, 2, 3) (1, 3, 3) 1

8 4 (2, 4, 6) (1, 11, 3) 1

8 5 (2, 4, 6) (5, 19, 7) 1

8 6 (2, 4, 6) (13, 35, 15) 1

12 5 (4, 6, 8) (6, 16, 9) 4

12 6 (4, 6, 8) (18, 24, 21) 2

16 5 (6, 8, 10) (6, 15, 10) 5

16 6 (6, 8, 10) (22, 15, 26) 1

16 7 (6, 8, 10) (54, 15, 58) None Lem. 3.1

16 5 (4, 8, 12) (1, 27, 3) 1

16 6 (4, 8, 12) (5, 51, 7) 1

16 7 (4, 8, 12) (13, 99, 15) 2

20 5 (8, 10, 12) (5, 16, 10) 3
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20 6 (8, 10, 12) (25, 8, 30) None Lem. 3.1

24 5 (10, 12, 14) (3, 19, 9) 1

24 6 (10, 12, 14) (27, 3, 33) None Lem. 3.1

24 6 (8, 12, 16) (6, 48, 9) 8

24 7 (8, 12, 16) (18, 88, 21) 52

24 8 (8, 12, 16) (42, 168, 45) 66

24 9 (8, 12, 16) (90, 328, 93) 13

24 10 (8, 12, 16) (186, 648, 189) 2

24 11 (8, 12, 16) (378, 1288, 381) 1

32 6 (12, 16, 20) (6, 47, 10) ≥ 1

32 7 (12, 16, 20) (22, 79, 26) ≥ 1

32 8 (12, 16, 20) (54, 143, 58) ≥ 1

32 9 (12, 16, 20) (118, 271, 122) ≥ 1

32 10 (12, 16, 20) (246, 527, 250) ≥ 1

32 6 (8, 16, 24) (1, 59, 3) 1

32 7 (8, 16, 24) (5, 115, 7) 1

32 8 (8, 16, 24) (13, 227, 15) 2

32 9 (8, 16, 24) (29, 451, 31) 1

32 10 (8, 16, 24) (61, 899, 63) None Lem. 3.1

40 6 (18, 20, 22) (25, 3, 35) None Lem. 3.1

40 6 (16, 20, 24) (5, 48, 10) ≥ 1

40 7 (16, 20, 24) (25, 72, 30) ≥ 1

40 8 (16, 20, 24) (65, 120, 70) ≥ 1

40 9 (16, 20, 24) (145, 216, 150) ≥ 1

40 10 (16, 20, 24) (305, 408, 310) Open

48 6 (22, 24, 26) (18, 15, 30) 1

48 6 (20, 24, 28) (3, 51, 9) 1

48 7 (20, 24, 28) (27, 67, 33) ≥ 209 586

48 8 (20, 24, 28) (75, 99, 81) ≥ 86

48 9 (20, 24, 28) (171, 163, 177) Open

48 7 (16, 24, 32) (6, 112, 9) 8

48 8 (16, 24, 32) (18, 216, 21) 66

48 9 (16, 24, 32) (42, 424, 45) ≥ 7

48 10 (16, 24, 32) (90, 840, 93) ≥ 2

48 11 (16, 24, 32) (186, 1672, 189) ≥ 2
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48 12 (16, 24, 32) (378, 3336, 381)

52 6 (24, 26, 28) (13, 24, 26) 1

56 6 (26, 28, 30) (7, 35, 21) 1

56 7 (24, 28, 32) (28, 64, 35) ≥ 1

56 8 (24, 28, 32) (84, 80, 91) ≥ 1

56 9 (24, 28, 32) (196, 112, 203) ≥ 1

56 10 (24, 28, 32) (420, 176, 427) Open

58 8 (24, 31, 32) (76, 128, 51) None Cor. 5.7

64 7 (28, 32, 36) (28, 63, 36) ≥ 1

64 8 (28, 32, 36) (92, 63, 100) ≥ 1

64 9 (28, 32, 36) (220, 63, 228) ≥ 1

64 10 (28, 32, 36) (476, 63, 484) Open

64 11 (28, 32, 36) (988, 63, 996) None codetables

64 7 (24, 32, 40) (6, 111, 10) ≥ 1

64 8 (24, 32, 40) (22, 207, 26) ≥ 1

64 9 (24, 32, 40) (54, 399, 58) ≥ 1

64 10 (24, 32, 40) (118, 783, 122) ≥ 1

64 11 (24, 32, 40) (246, 1551, 250) 42

64 12 (24, 32, 40) (502, 3087, 506) 1

64 13 (24, 32, 40) (1014, 6159, 1018) None [19]

64 7 (16, 32, 48) (1, 123, 3) ≥ 1

64 8 (16, 32, 48) (5, 243, 7) ≥ 1

64 9 (16, 32, 48) (13, 483, 15) ≥ 1

64 10 (16, 32, 48) (29, 963, 31) ≥ 1

64 11 (16, 32, 48) (61, 1923, 63) 1 [23]

64 12 (16, 32, 48) (125, 3843, 127) None Theorem 3.2

64 13 (16, 32, 48) (253, 7683, 255) None Theorem 3.2

64 14 (16, 32, 48) (509, 15363, 511) None Theorem 3.2

64 15 (16, 32, 48) (1021, 30723, 1023) None Theorem 3.2

68 9 (30, 32, 40) (64, 299, 148) None Theorem 3.2

Based on [24, Thm. 4] (for the projective case an alternative proof is found in [21,

Sec. 4]), we derive the following classification result on three-weight codes.
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Theorem 3.2. Let ∆ = 2a with a ≥ 3 an integer and let C be a full-length [n, k]2

three-weight code with the non-zero weights ∆, 2∆ and 3∆ and length 3∆ ≤ n ≤ 4∆.

Then k ≤ 2a + 3. In the case of equality, we have that n ∈ {4∆ − 1, 4∆}, C is

projective and falls into one of the following two cases.

(i) For n = 4∆−1, C is isomorphic to the direct sum of the binary simplex code of

dimension a+ 1 and the binary first order Reed-Muller code of dimension a+ 2.

The weight enumerator of C is

WC(x) = 1 + (6∆− 3)x∆ + (8∆2 − 8∆ + 3)x2∆ + (2∆− 1)x3∆.

(ii) For n = 4∆, C is isomorphic to the code with the generator matrix
Ra+2

1 · · · 1

Ra+2

1 · · · 1

 ∈ F(2a+3)×4∆
2 ,

where  Ra+2

1 · · · 1

 ∈ F(a+2)×2∆
2

denotes a generator matrix of the binary first order Reed-Muller code of dimen-

sion a + 2, such that the all-one word is the last row of the generator matrix.

The weight enumerator of C is

WC(x) = 1 + (4∆− 3)x∆ + (8∆2 − 8∆ + 3)x2∆ + (4∆− 1)x3∆.

Proof. After appending zero positions, we may consider C as a code of length 4∆. Let

1 be the all-one word of length 4∆. The code C̄ = C+〈1〉 is a ∆-divisible binary linear

code of effective length 4∆ containing the all-one word 1. By [24, Thm. 4], dim(C̄) ≤
2a + 4, and in the case of equality we may assume C̄ = RM2(a + 2) ⊕ RM2(a + 2),

up to isomorphism. So k = dim(C) ≤ 2a + 3, and in the case of equality, C is a

codimension 1 subcode of C̄ not containing 1.

We switch to the geometric description of linear codes. The corresponding point

set of C̄ = RM2(a + 2) ⊕ RM2(a + 2) has the form C̄ = A1 ∪ A2 with A1 = V1 \W1

and A2 = V2 \ W2, where V1 and V2 are vector spaces over F2 of dimension a + 2

having trivial intersection, and W1 < V1, W2 < V2 are codimension 1 subspaces.2

2Remember that V1 \W1 is a lazy way for writing
[
V1

1

]
q
\
[
W1

1

]
q
.
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The ambient vector space is V = V1 ⊕ V2. The codeword 1 ∈ C̄ corresponds to

a hyperplane H0 of V not containing any point of C̄. By the dimension formula,

dim(H0 ∩ V1) ≥ a + 1, which forces H0 ∩ V1 = W1. In the same way, H0 ∩ V2 = W2

and therefore, W1 +W2 < H0. Since W1 +W2 has codimension 2 in V , there are only[
2
1

]
2

= 3 hyperplanes of V containing W1 +W2. Two of these are V1 +W2 and W1 +V2

which do contain points of C̄, so H0 is the third one.

As C is a subcode of C̄ of codimension 1, a corresponding point set C of C is

given by the multiset image πP (C̄) of the projection πP : V → V/P , x 7→ x + P

with respect to a suitable point P ∈
[
V
1

]
q
. Since 1 /∈ C, we have that P /∈ H0,

so P must be contained in one of the other two hyperplanes containing W1 + W2.

Without restriction, we may assume P ∈ V1 + W2. Together with P /∈ H0, this

implies P ∈ (V1 +W2) \ (W1 +W2).

Case 1: P ∈ C̄, so P ∈ V1 \W1. We get that πP (A1) is the set of all points in a

subspace of algebraic dimension a+1, πP (A2) is again an affine subspace of dimension

a + 2, and 〈πP (A1)〉 ∩ 〈πP (A2)〉 = {0}. Therefore, C ∼= Sim2(a + 1) ⊕ RM2(a + 2).

The weight enumerator is computed as WC(x) = WSim2(a+1)(x) ·WRM2(a+2)(x).

Case 2: P /∈ C̄, so P ∈ (V1 +W2)\ ((W1 +W2)∪V1). A moment’s reflection shows

that all these choices for P lead to equivalent point sets C̄. As P is not collinear

with two different points of C̄, the projection C with respect to P is a proper set

and therefore, C is projective. So C is the disjoint union of the two affine subspaces

πP (A1) and πP (A2) of dimension a+ 1.

The dimension formula leads to dim(πP (V1)∩πP (V2)) = 1. There are unique points

Q1 ∈ V1 \W1 and Q2 ∈ W2 such that P is the third point on the line L = Q1 + Q2

The affine space πP (A2) has the hyperplane at infinity (W2 + P )/P , which contains

the single point (Q1 + P )/P = (Q2 + P )/P = L/P of the affine space πP (A1). So

the point πP (V1) ∩ πP (V2) = L/P is contained in πP (A1) and in the hyperplane at

infinity of πP (A2). This leads to the generator matrix stated in the theorem.

By construction, the code corresponding to the point set C is a projective [2a+1, 2a+

3]2-code with (at most) the weights ∆, 2∆ and 3∆. Equations (7), (8) and (9) evaluate

to the stated weight enumerator of C.

Looking at the feasible cases in Table 3.1, we notice that all of them satisfy

w2 = n/2, which corresponds to θ2 = 0, θ3 = −θ1 for the eigenvalues of s-SWRGs,

see Equation (1). While we conjecture that all integral solutions of Equation (1)

satisfy this extra constraint for all s ≥ 5, see Section 4, the condition θ1 +θ2 +θ3 = 0,
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Table 3.2: Parameters of potential counterexamples to Conjecture 3.3

n w1 w2 w3 y = 2k−2 A1 A2 A3 B3

112 50 54 64 128 48 336 127 322

116 54 56 64 128 256 56 199 440

120 54 62 64 64 72 120 63 1180

124 56 64 66 64 72 119 64 1296

140 64 72 74 64 71 120 64 1840

202 96 103 104 64 67 128 60 5396

212 96 110 112 256 297 640 86 1860

212 96 110 112 512 649 896 502 1090

240 110 122 128 256 288 480 255 2450

i.e., w1 + w2 + w3 = 3n(q − 1)/q, is sufficient for s = 3. So, it is an interesting open

question, if 3-SWRGs obtained from the coset graph of the dual code of a projective

three-weight code also have to satisfy this extra condition. To stimulate research into

this direction we propose:

Conjecture 3.3. Let C be a projective [n, k]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

. Then w2 = n
2
.

We remark that the MacWilliams identities, using the non-negativity and inte-

grality constraints, are not sufficient to prove Conjecture 3.3. As an example, the

values (n,w1, w2, w3) ∈ {(58, 24, 31, 32), (68, 30, 32, 40)} go in line with these condi-

tions for q = 2 but are excluded with more sophisticated methods, see the details

stated above. Given the results obtained so far we can state that Conjecture 3.3 is

true for all n < 72. The next case, where all non-negativity and integrality con-

straints for the Bi are satisfied, is given by (n,w1, w2, w3) = (100, 46, 48, 56). Here

we have k = 7, Aw1 = 32, Aw2 = 145, Aw3 = 78, and B3 = 580. However, we can

apply Lemma 3.1 to conclude the non-existence of a binary linear code with these

parameters. More precisely, Lemma 3.1.(iii), applied with a = 1 and T = 224, yields

a contradiction since T −2k + 2k−a = 96 is not a power of two. In Table 3.2 we list all

parameters
(
n,w1, w2, w3, y = 2k−2, A1, A2, A3, B3

)
up to n = 256, where all Bi are

integral and non-negative and also Lemma 3.1 does not yield a contradiction, i.e., the

parameters of potential counterexamples to Conjecture 3.3:
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3.2 Feasible parameters for projective ternary three-weight

codes with w1 + w2 + w3 = 2n

In Table 3.3 we list the admissible parameters for projective ternary three-weight

codes with w1 + w2 + w3 = 2n. For each length 3 ≤ n ≤ 39 we list the admissible

dimensions k and weight triples (w1, w2, w3), and the weight distribution in the form

(Aw1 , Aw2 , Aw3). The last column contains known results about the existence of codes

with these parameters, For some cases we can also state the number of isomorphism

types of those codes. If not mentioned otherwise, the classification results are obtained

with the software package LinCode [4]. For the parameters marked with ≥ 1 we

constructed at least one code by prescribing an automorphism group, see [5].

We also list those non-existence results where more sophisticated methods are nec-

essary. We mark the non-existence results with the keyword “None” in the comment

column of Table 3.3 and give a reference to the used method.

For n = 27, k = 6, and weight triple (9, 18, 27) we have used exhaustive enumer-

ation using LinCode to exclude the existence of the corresponding code. It would

be nice to also have a theoretical argument. For 36 ≤ n ≤ 39 four cases remain

undecided, which we mark with the keyword “Open”. For each feasible case we give

a suitable generator matrix in Appendix A.

Table 3.3: Admissible and realizable parameters of

ternary projective three-weight codes

n k (w1, w2, w3) (Aw1 , Aw2 , Aw3) isomorphism types

3 3 (1, 2, 3) (6, 12, 8) 1

6 3 (3, 4, 5) (8, 6, 12) 1

9 3 (5, 6, 7) (6, 8, 12) 1

9 4 (3, 6, 9) (6, 66, 8) 1

18 4 (9, 12, 15) (8, 60, 12) 4

18 5 (9, 12, 15) (44, 150, 48) 213

18 6 (9, 12, 15) (152, 420, 156) 52

27 4 (15, 18, 21) (6, 62, 12) 2

27 5 (15, 18, 21) (60, 116, 66) ≥ 2 695 546

27 6 (15, 18, 21) (222, 278, 228) 6

27 5 (9, 18, 27) (6, 228, 8) 1
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27 6 (9, 18, 27) (24, 678, 26) None exhaustive enumeration

36 5 (21, 24, 27) (72, 90, 80) ≥ 1

36 6 (21, 24, 27) (288, 144, 296) ≥ 1

36 7 (21, 24, 27) (936, 306, 944) Open

39 5 (21, 27, 30) (42, 188, 12) Open

39 6 (21, 27, 30) (156, 494, 78) Open

39 7 (21, 27, 30) (498, 1412, 276) Open

Similar to Conjecture 3.3, the numerical data suggests the conjecture w2 = 2
3
n.

Based on our computational data, we dare to state the following q-ary version of

Conjecture 3.3.

Conjecture 3.4. Let C be a projective [n, k]q three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3(1− 1
q
)n. Then w2 = (1− 1

q
)n. Moreover,

w1 = w2 − t and w3 = w2 + t, where t is a power of the characteristic p of Fq.

For q = 2, Conjecture 3.4 follows from Conjecture 3.3 by Lemma 5.10. We further

remark that the precondition w1 +w2 +w3 = 3(1− 1
q
)n cannot be dropped, as seen by

the binary [7, 4]2 Hamming code, which is a three-weight code with weight distribution

(01334371).

4 Plane curves given by the sum of all monomials

of given degree

In this section, we present some results on rational (or integral) solutions of the

equation ∑
h+i+j=s−2

θh1θ
i
2θ
j
3 = 0 , (12)

which for pairwise distinct θ1, θ2, θ3 is equivalent to (1) by Lemma 2.6. We restrict to

the case that s is odd. When s is even, then there are no nontrivial real solutions, so

a fortiori no rational solutions.

We denote by Cs−2 the plane projective curve defined by (12), and we will rename

the variables θ1, θ2, θ3 in this section as x, y, z. As already mentioned, C1 is the line
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x + y + z = 0, and there are many rational points on this curve. In general, it is

not hard to see that Cd is smooth over Q, so the curve is in particular geometrically

irreducible and has genus g(Cd) = (d− 1)(d− 2)/2.

For d = 3 (corresponding to s = 5), C3 is a curve of genus 1 with some rational

points, so it is an elliptic curve. A standard procedure (implemented, for example,

in Magma [3]) produces an isomorphic curve in Weierstrass form. It turns out that

C3 is isomorphic to the curve with label 50a1 in the Cremona database (50.a3 in the

LMFDB [26]). In Cremona’s tables or under the link above, one can check that this

curve has exactly three rational points. This proves the following.

Lemma 4.1.

C3(Q) = {(1 : −1 : 0), (−1 : 0 : 1), (0 : 1 : −1)} .

The curve C5 is a plane quintic of genus 6. Note that there is an action of the

symmetric group S3 on three letters on every curve Cd by permuting the coordinates.

We can restrict this action to an action of the subgroup A3 generated by a cyclic

permutation. The quotient C ′5 of C5 by this action of A3 is a curve of genus 2. We

can compute a singular plane model of C ′5 by taking the image of C5 under the map

P2 → P2 , (x : y : z) 7→ (xyz : (xy + yz + zx)(x+ y + z) : (x− y)(y − z)(z − y)) .

A procedure implemented in Magma [3] then produces the hyperelliptic equation

H5 : y2 = −3x6 + 8x5 − 28x4 − 30x3 + 40x2 + 16x− 15

for C ′5. A 2-descent as described in [31] (and implemented in Magma) shows that

the Mordell-Weil rank of the Jacobian J of H5 is at most 1. Since one finds a point

on J of infinite order (with Mumford representation (x2 − x + 2, 7x + 7)), the rank

is indeed 1. Using the Magma implementation of Chabauty’s method combined with

the Mordell-Weil sieve (see [10]), one quickly finds that the only rational point on

this hyperelliptic curve is (−1, 0). This point must be the image of the three obvious

rational points on C5. Since any other rational point would have to map to a different

point on H5, this proves the following.

Lemma 4.2.

C5(Q) = {(1 : −1 : 0), (−1 : 0 : 1), (0 : 1 : −1)} .

The combination of Lemma 4.1 and Lemma 4.2 with Lemma 1.1 leads to the

following theorem.
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Theorem 4.3. Let Γ be a k-regular graph with four distinct eigenvalues k > θ1 >

θ2 > θ3 and let s ∈ {5, 7}. Then Γ is an s-SWRG if and only if θ2 = 0 and θ3 = −θ1.

Considering larger odd d, we can say the following. The quotient C ′′7 of C7 by the

full S3-action is an elliptic curve, which is isomorphic to the curve with label 10368w1

in the Cremona database (10368.j1 in the LMFDB [25]). Unfortunately, this curve

has rank 2 and therefore has infinitely many rational points. So we cannot use this

approach to determine the set of rational points on C7.

The quotient C ′′9 of C9 by the S3-action is a smooth plane quartic curve, isomorphic

to the curve with equation

x4 + 2x3y + x2y2 − xy3 − y4 + 2x3z − 4x2yz − 3xy2z

+ 2y3z + 4x2z2 − 3xyz2 + 3y2z2 + 3xz3 − 4yz3 + z4 = 0 .

A point search finds the two rational points (−5 : 1 : 4) and (−1 : 1 : 0). The first

is the image of the three obvious rational points on C9, whereas the second point

does not lift to a rational point on C9. Let J be the Jacobian of the curve. Then

#J(F3) = 33 and #J(F7) = 11 · 31, so J(Q) has trivial torsion subgroup. Therefore,

the point in J(Q) given by the difference of the two rational points has infinite order.

It might be possible to use the methods of [9] to determine the rank of J(Q). If the

rank turns out to be ≤ 2, then an application of Chabauty’s method might show that

the two known rational points are the only ones.

In any case, searching for rational points does not exhibit any other points than

the obvious ones when d ≥ 3 is odd. This leads to the following conjecture, which

generalizes the results of Lemma 4.1 and 4.2.

Conjecture 4.4. If d ≥ 3 is odd, then

Cd(Q) = {(1 : −1 : 0), (−1 : 0 : 1), (0 : 1 : −1)} .

Equivalently, all solutions (θ1, θ2, θ3) in integers of (1) with s ≥ 5 odd and θ1 > θ2 >

θ3 satisfy θ2 = 0 and θ3 = −θ1.

5 Divisibility for binary linear codes with few weights

In this section we want to study the divisibility properties of the weights and the

length of the binary linear codes with few weights. A first but very powerful tool

21

http://www.lmfdb.org/EllipticCurve/Q/10368/j/1


are the MacWilliams identities. Since we do not want to assume that the codes are

binary or projective, i.e., B2 6= 0 is possible, we replace Equations (3)-(6) by∑
i>0

Ai = qk − 1, (13)∑
i≥0

iAi = qk−1n, (14)∑
i≥0

i2Ai = qk−1(B2 + n(n+ 1)/2), (15)∑
i≥0

i3Ai = qk−2(3(B2n−B3) + n2(n+ 3)/2), (16)

for an [n, k]q code C with B1 = 0.

Lemma 5.1 (Folklore). Let C be an [n, k]2 code and C2 the subset of all codewords

of even weight. Then C2 is a linear subcode of C of dimension k or k − 1.

Proof. Consider the F2-linear map f : C → F2, c 7→
∑n

i=0 ci. Then C2 = ker f is a

linear subspace of C. By the rank-nullity theorem, the codimension of C2 in C equals

dim ker f ∈ {0, 1}.

We call C2 the even-weight subcode of C.

A direct consequence of Lemma 5.1 is the following

Lemma 5.2. Let C be an [n, k]2 code of dimension k ≥ 2. Then C has a non-zero

even weight.

Lemma 5.3. Let C be a linear binary [n, k]2 three-weight code. Then k ≥ 2. If C is

projective, then k ≥ 3.

Proof. if k ≤ 1, then C consists of at most a single non-zero codeword, so C cannot

have three different weights.

Assume that C is projective of dimension k = 2 and let G be a generator matrix

of C. Then G neither has a zero column, nor a repeated column. Therefore, each of

the 2k − 1 = 3 possible column vectors in F2
2 \ {0} appears at most once as a column

of G, implying that n ≤ 3. As C has three different non-zero weights, n ≥ 3, so

together we get n = 3 and each of the 3 non-zero vectors appears exactly once as

a column of G. Therefore, C is isomorphic to the simplex code Sim2(2), which is a

constant weight code. Contradiction.
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Remark 5.4. There are indeed (many) non-projective binary three-weight codes of

dimension 2. An example for the smallest possible length n = 3 is given by the

generator matrix ( 1 0 0
0 1 1 ), which spans a code with the weight distribution (01112131).

Lemma 5.5. Let C be a projective full-length [n, k]2 three-weight code with non-zero

weights w1 < w2 < w3, such that n is even and exactly one weight is odd. W.l.o.g. let

w2 be the odd weight. Then w2 = n
2

and the even-weight subcode C2 of C has effective

length n and is a 2-fold replication of a projective
[
n
2
, k − 1

]
2

two-weight code with

non-zero weights w1

2
and w3

2
.

Proof. Let Awi
be the number of codewords of weight wi in C. Furhtermore, let

(Bi) be the dual weight distribution of C and (B′i) the dual weight distribution of

C2. Since C is projective, we have B1 = B2 = 0. We set y = 2k−2 = 1
4
#C. By

Lemma 5.3, y ∈ Z. Since w2 is the only odd weight, Lemma 5.1 gives Aw2 = 2y. Now

Equation (4) applied to C yields

w1Aw1 + w3Aw3 = 2y(n− w2).

From Lemma 5.1 we conclude that C2 is a two-weight code of dimension k − 1 and

effective length n′ ≤ n with non-zero weights w1 and w3. Since C is projective, we

have n′ ∈ {n − 1, n}. Noting that Aw1 and Aw3 are also the numbers of codewords

of weights w1 and w3 in C2, the application of equation (14) to the full-length code

arising from C2 after (possibly) removing the zero position yields

w1Aw1 + w3Aw3 = n′y. (17)

Hence n′y = 2y(n−w2) and thus n′ = 2(n−w2) is even. By the assumtion that n is

even, n′ = n − 1 is not possible. Therefore n′ = n and w2 = n
2
. So C2 is full-length

and hence B′1 = 0. Now the difference of Equations (15) for C and C2 with w2 = n
2
,

Aw2 = 2y and B2 = 0 gives

n2

4
· 2y = 2y · n(n+ 1)

2
− y

(
B′2 +

n(n+ 1)

2

)
,

which simplifies to n2

2
= n(n+1)

2
− B′2 and further to B′2 = n

2
. As C is projective,

the position multiplicities of the codimension 1 subcode C2 are at most 2. Denoting

the number of position pairs of multiplicity 2 by m, Lemma 2.4 yields m = B′2 = n
2
.

Therefore, all positions of C2 appear with multiplicity 2 and thus, C2 is the two-fold

repetition of a projective two-weight code with non-zero weights w1

2
and w3

2
.
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Remark 5.6. As seen in the above proof, in the situation of Lemma 5.5 we have

Aw2 = 2y. Moreover, we can use Equations (13) and (14) to compute the frequencies

Aw1 =
(2y − 1)w3 − yn

w3 − w1

and Aw3 =
yn− (2y − 1)w1

w3 − w1

depending on the weights w1 and w3.

From now on, we add the extra constraint w1 + w2 + w3 = 3n
2

.

Corollary 5.7. Let C be a projective [n, k]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

. Then n is a multiple of 4.

Proof. Since w1 + w2 + w3 is an integer, n has to be even, so that we assume n ≡ 2

(mod 4). Then 3n
2

= w1 + w2 + w3 is odd. By Lemma 5.2, C has an even weight,

so exactly one weight of C is odd. Without restriction, let w2 be the odd weight.

Lemma 5.5 yields w2 = n
2
. From w1 + w2 + w3 = 3

2
n we may further assume w1 <

w2 < w3. As an abbreviation we set w1 = n
2
− t and w3 = n

2
+ t for some positive

integer t. Since w1 and w3 are even, t has to be odd. Moreover, Lemma 5.5 says that
w1

2
and w3

2
are the weights of a projective binary two-weight code. By Lemma 2.2 the

weight difference w3

2
− w1

2
= t has to be a power of 2. Since t is odd, we conclude that

t = 1, so

w1 =
n

2
− 1, w2 =

n

2
and w3 =

n

2
+ 1.

Writing y = 2k−2, the frequencies from Remark 5.6 evaluate to

Aw1 = y − n

4
− 1

2
, Aw2 = 2y and Aw3 = y +

n

4
− 1

2
. (18)

Plugging these expressions into Equation (5) leads to

n2y + 2y +
n2

4
− 1 = n(n+ 1)y

and further to the quadratic equation

n2 − 4ny + (8y − 2) = 0

with the two solutions n ∈ {2, 4y − 2}. Since the length of a three-weight code is at

least 3, necessarily n = 4y − 2. Now Equation (18) yields Aw1 = 0 – a contradiction.
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Using the abbreviation y = 2k−2, we prepare equations (7)–(10) in the special case

w1 = n
2
− t, w2 = n

2
and w3 = n

2
+ t.

Aw1 =
n(4y − n− 2t)

8t2
(19)

Aw2 = 4y − 1− n(4y − n)

4t2
(20)

Aw3 =
n(4y − n+ 2t)

8t2
(21)

3B3 =
n(n− 2t)(n+ 2t)

8y
(22)

Lemma 5.8. Let C be a projective [n, 3]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

. Then C has length n = 4, weight

distribution (01112333) and is isomorphic to the code spanned by the generator matrix1 0 0 0

0 1 0 1

0 0 1 1

 .

Proof. By Lemma 2.3, n ≤ 5, and by Corollary 5.7, 4 | n. Therefore n = 4. The

code C is isomorphic to a systematic code, which has a generator matrix of the form

(I3 | v), where I3 denotes the 3 × 3 unit matrix and v is a vector in F3
2. As C is

projective, w(y) ≥ 2. Furthermore, w(y) = 3 is not possible, as C would have only

the two weights 2 and 4. So w(y) = 2. We note that the three possibilities for y lead to

equivalent codes, and that the resulting code has the stated weight distribution.

We remark that geometrically, the above [4, 3]2 code corresponds to the comple-

ment of a triangle in the projective plane PG(2, 2).

Theorem 5.9. Let C be a projective [n, k]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

. Then n is a multiple of 4, and one of

the following cases occurs.

(i) k ≥ 4, n ≥ 8 and all weights of C are even.

(ii) The code C has the parameters [4, 3]2 and is isomorphic to the code in Lemma 5.8.

Proof. By Corollary 5.7, n is a multiple of 4.

In the case that n has only even weights, the largest weight is at least 6, so n ≥ 8.

Moreover, k ≥ 4 by Lemma 5.8.
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Now we assume that C has an odd weight. As n
2

is even, C has at least two odd

weights by Lemma 5.5. Since w1 + w2 + w3 = n is even, we get that C has exactly

two odd weights, say w1 and w3. Let C2 be the even-weight subcode of C. The code

C is projective and by Lemma 5.1, the codimension of C2 in C is 1. Therefore, the

maximum position multiplicity of C2 is at most 2, and the effective length n′ of C2 is

either n− 1 or n. Since w2 is the only even weight of C, the subcode C2 is a code of

constant weight w2 and frequency Aw2 = #C2 − 1 = 2k−1 − 1. From Lemma 2.1 we

conclude that w2 = u · 2k−2 and n′ = u · (2k−1 − 1) with an integer u ∈ {1, 2}, where

u ≤ 2 follows from the maximum position multiplicity.

Let us first investigate the case u = 2. Here, n′ = 2k − 2 and n ∈ {2k − 2, 2k − 1}.
Let G be a generator matrix of C. Since C is projective, G neither has a zero column,

nor a repeated column. So each of the 2k−1 non-zero vectors in Fk2 occurs exactly once

as a column in G, possibly with the excection that a single vector might not occur

at all. In the case n = 2k − 1, all vectors occur as a column in G, so C = Sim2(k),

which is a code of constant weight 2k−1. In the case n = 2k−2, C is the simplex code

Sim2(k) punctured in a single position, so C has the two weights 2k−1 and 2k−1 − 1.3

This contradicts the assumption that C is a three-weight code.

It remains to consider u = 1. Here, w2 = 2k−2 and n′ = 2k−1 − 1, which is odd.

Since n is even, necessarily n′ = n − 1, so n = 2k−1 and w2 = n
2
. Combined with

w1 +w2 +w3 = 3n
2

we can write w1 = n
2
− t and w3 = n

2
+ t for some positive integer t.

Together with the abbreviation y = 2k−2, equations (19)–(21) can be simplified to

Aw1 =
y(y − t)

2t2

Aw2 = 4y − 1− y2

t2

Aw3 =
y(y + t)

2t2
.

Now we use Aw2 = 2k−1 − 1 = 2y − 1 to conclude y = 2t2 (or y = 0, which is

impossible). As y is a power of 2, so is t. From w1 = t(2t− 1) odd we get that t is is

odd. Together, this forces t = 1, which gives y = 2 and therefore k = 3. Therefore,

C is isomorphic to the code in Lemma 5.8.

Lemma 5.10. Let C be a projective [n, k]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

and w2 = n
2
. Then w1 = w2 − t and

3In fact, in this case C is a MacDonald code.

26



w3 = w2 + t where t is a power of 2. Moreover, 2t | n, and t is the largest integer ∆

such that C is ∆-divisible.

Proof. Equations (19) and (21) give Aw3 − Aw1 = n
2t

, so 2t | n. Therefore t | w2 = n
2
,

implying that t is the greatest common divisor of w1 = w2− t, w2 and w3 = w2 + t, so

∆ = t. Since C is projective, C cannot be the proper repetition of some code. Now

as a consequence of [33, Theorem 1], the number ∆ = t must be a power of 2.

Lemma 5.11. Let C be a projective [n, k]2 three-weight code with non-zero weights

w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

and w2 = n
2
. Let a ≥ 0 be the largest

integer such that C is 2a-divisible. Then k ≤ 8a+ 9.

Proof. As before, we will use the abbreviation y = 2k−2 and write w1 = n
2
− t and

w3 = n
2

+ t with an integer t ≥ 1. By Lemma 5.3, y ∈ Z. By Lemma 5.10, t = 2a

is the largest integer ∆ such that C is ∆-divisible. There is an odd integer z and a

non-negative integer x with n = 2x · z. Since C is projective, n ≤ 2k − 1. Together

with 2t | n, we get a+ 1 ≤ x ≤ k − 1.

Plugging t = 2a, n = 2xz and y = 2k−2 into Equations (19)–(22) we get

Aw1 =
z · (2k−a−1 − 2x−a−1z − 1)

2a+2−x , (23)

Aw2 = 22(x−a−1)z2 + 2k − 2x+k−2a−2z − 1, (24)

Aw3 =
z · (2k−a−1 − 2x−a−1z + 1)

2a+2−x , (25)

3B3 =
z · (2x−a−1z − 1) · (2x−a−1z + 1)

2k−x−2a−1
. (26)

First case: k ≥ x+2a+2. Equivalently, k−x−2a−1 ≥ 1, so the denominator of

the right hand side of Equation (26) is even. By B3 ∈ Z, the numerator is even, too.

Since z is odd, this implies a = x− 1. Now 0 < w1 = n
2
− t = 2x−1z − 2a = 2a(z − 1)

yields z > 1. Equation (26) with a = x− 1 yields

3B3 =
z · (z − 1) · (z + 1)

2k−3x+1
.

From our precondition k ≥ x + 2a + 2 = 3x we have k − 3x ≥ 0, so 2k−3x is an

integer. Since gcd(z − 1, z + 1) = 2, we have that 2k−3x either divides z − 1 or z + 1.

Therefore, z = s · 2k−3x + α for some integer s and α ∈ {−1, 1}. By z > 1, s ≥ 1.

Now Equation (23) yields

0 <
2a+2−x

z
· Aw1 = 2k−x −

(
s · 2k−3x + α + 1

)
≤ 2k−x − s · 2k−3x,
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so that s < 22x and hence s ≤ 22x − 1.

Using Equation (24) we get

0 < s(Aw2 + 1)

= s(z2 + 2k) + s · z · 2k−x

≤ (22x − 1)((s2k−3x + α)2 + 2k)− s(s2k−3x + α)2k−x

= (22x − 1)(s222k−6x + 2αs2k−3x + 1 + 2k)− s(s2k−3x + α)2k−x

= s222k−4x + 2αs2k−x + 22x + 2k+2x − s222k−6x − αs2k−3x+1 − 1− 2k

− s222k−4x − αs2k−x

= αs(2k−x − 2k−3x+1) + (22x + 2k+2x)− s222k−6x − (1 + 2k)

≤ 2s · 2k+2x + 2s · 2k+2x − s22k−6x

= s(2k+2x+2 − s2k−6x),

where in the second last step s ≥ 1 has been used. Therefore k + 2x + 2 > 2k − 6x

and hence

k ≤ 8x+ 1 = 8(a+ 1) + 1 = 8a+ 9.

Second case: k ≤ x+ 2a+ 1. Equation (19) implies

0 <
8t2

n
Aw1 = 4y − n− 2t < 4y − n.

We have 2x | n and from x ≤ k − 1 also 2x | 2k = 4y. Therefore 2x | 4y − n > 0 and

thus 4y − n ≥ 2x.

By Equation (20),

0 < 4t2Aw2

= 4t2(4y − 1)− n(4y − n)

≤ 4t2 · 4y − n · 2x

= 2k+2a+2 − 22xz

≤ (2k+2a+2 − 22x)

and thus k+ 2a+ 2 > 2x and k ≥ 2x− 2a− 1. Combined with k ≤ x+ 2a+ 1, finally

k = 2k − k ≤ 2(x+ 2a+ 1)− (2x− 2a− 1) = 6a+ 3 < 8a+ 9.
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By Lemma 5.11 and Lemma 2.3, the following numbers K(r) and N(r) are well-

defined.

Definition 5.12. Let a ≥ 1 be an integer. We define K(a) (resp. N(a)) as the

largest dimension (resp. length) of a projective [n, k]2 three-weight code C with non-

zero weights w1 < w2 < w3 satisfying w1 + w2 + w3 = 3n
2

and w2 = n
2

such that C is

not 2a-divisible.

Theorem 5.13. Let a ≥ 1 be an integer. Then

2a+ 1 ≤ K(a) ≤ 8a+ 1 and 22a+1 − 2a+1 ≤ N(a) ≤ 2K(a) − 3.

Proof. K(a) ≤ 8(a − 1) + 9 = 8a + 1 by Lemma 5.11 and N(a) ≤ 2K(a) − 3 by

Lemma 2.3.

For the lower bounds, let C = Sim2(a)⊕RM2(a+1). It is a projective three-weight

code of length n = (2a − 1) + 2a = 2a+1 − 1, dimension k = a + (a + 1) = 2a + 1

and weights w1 = 2a−1, w2 = 2a and w3 = 3 · 2a−1.4Since C does not have the weight

2k−1 = 22a, the anticode C{ is defined. It is a projective three-weight code of the

same dimension k, length n{ = (2k − 1) − n = 22a+1 − 2a+1 and the three non-zero

weights

w{
1 = 2k−1 − w3 = 22a − 3 · 2a−1 = 2a−1(2a+1 − 3),

w{
2 = 2k−1 − w2 = 22a − 2a = 2a−1(2a+1 − 2) and

w{
3 = 2k−1 − w1 = 22a − 2a−1 = 2a−1(2a+1 − 1),

so C{ is 2a−1-divisible, but not 2a-divisible. Furthermore

w{
1 + w{

2 + w{
3 = 3 · 22a − 3 · 2a =

3

2
n{ and w{

2 =
n{

2
.

Therefore, K(a) ≥ k = 2a+ 1 and N(a) ≥ n{ = 22a+1 − 2a+1.

For small values of a, we can determine the exact values of N(a) and K(a).

Theorem 5.14.

(a) K(1) = 3 and N(1) = 4.

(b) K(2) = 6 and N(2) = 56.

4We have already seen the code C in Theorem 3.2 Case (i), with a− 1 in instead of a.
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(c) K(3) = 11 and N(3) = 2024.

Proof. The case a = 1: The values K(1) = 3 and N(1) = 4 are a direct consequence

of Theorem 5.9.5

The case a = 2: Using K(2) ≤ 17 from Theorem 5.13 and t = 2a = 4 from

Lemma 5.10, we determined all feasible parameters computationally. The ones with

k ≥ 7 are listed below.
n k w1 w2 w3

244 8 120 122 124

116 7 56 58 60

112 7 54 56 58

16 7 6 8 10

The last code has already been excluded in Section 3 via Lemma 3.1. Of the first three

codes, the anticodes would have the parameters [11, 8, 4], [11, 7, 4] and [15, 7, 6]. The

application of the Hamming-bound to the punctured parameters [10, 7, 3], [10, 6, 3]

and [14, 7, 5] shows that these codes do not exist.

Among all feasible parameters with k ≤ 6, the ones with the largest possible

length are n = 56, k = 6, w1 = 26, w2 = 28 and w3 = 30. These parameters are

realized by the anticode of the binary [7, 6]2 parity check code.

The case a = 3: Similar as before, based on K(3) ≤ 25 and t = 8 we were able

to determine all feasible parameters computationally. There is only a single feasible

parameter set with k ≥ 12, which is n = 4040, k = 12, w1 = 2016, w2 = 2020 and

w3 = 2024. The anticode would have the parameters [55, 12, 24], which does not exist

according to the online tables [17].

Among all parameters with k ≤ 11, the ones with the largest possible length are

n = 2024, k = 11, w1 = 1008, w2 = 1012 and w3 = 1016. These parameters are

realized by the anticode C{ of the binary [23, 12]2 Golay code C. The code C has the

weight enumerator 1 + 506x8 + 1288x12 + 253x16.

Theorem 5.14 indicates that in general, neither the lower nor the upper bound of

Theorem 5.13 are sharp. We leave it as a research problem to improve the bounds

and further investigate the asymptotic growth.

5Theorem 5.9 refers to the code in Lemma 5.8. It is isomorphic to the code C{ considered in the

proof of Theorem 5.13 in the smallest case a = 1.
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A Generator matrix of projective three-weights codes

satisfying w1 + w2 + w3 = 3(q− 1)n/q

In this appendix we list examples of generator matrices corresponding to the

feasible cases listed in Section 3.

• q = 2, n = 4, k = 3, w = [1, 2, 3]:
(

1000
0101
0011

)
• q = 2, n = 8, k = 4, w = [2, 4, 6]:

(
01111011
01101010
10101100
10110010

)

• q = 2, n = 8, k = 5, w = [2, 4, 6]:

(
11101110
01010000
00111010
10001000
11000011

)

• q = 2, n = 8, k = 6, w = [2, 4, 6]:

( 00110110
00010001
01010011
10010110
10100110
01111101

)

• q = 2, n = 12, k = 5, w = [4, 6, 8]:

(
100100111001
010100111100
001000111101
000010110010
000001101010

)

• q = 2, n = 12, k = 6, w = [4, 6, 8]:

( 100000000111
010000110010
001000110100
000100111011
000010001011
000001100011

)

• q = 2, n = 16, k = 5, w = [6, 8, 10]:

(
1011111000110000
1111011001011001
0111111110101000
0110010100111111
1000011111101011

)

• q = 2, n = 16, k = 6, w = [6, 8, 10]:

( 0000100110010011
0010110001101000
0000011011001001
1001010000110100
0001001100100101
0101100001010010

)

• q = 2, n = 16, k = 5, w = [4, 8, 12]:

(
1100011101100100
1100110001001011
1010101001110010
1101100001101001
0111111011100111

)

• q = 2, n = 16, k = 6, w = [4, 8, 12]:

( 1101001010010101
1110001000011101
1101000101001011
1001011111100000
1100111011111011
1110011100011000

)

• q = 2, n = 16, k = 7, w = [4, 8, 12]:

 1000000111011110
0100000101100000
0010000001110000
0001000001101000
0000100001100100
0000010111011101
0000001101011111
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• q = 2, n = 20, k = 5, w = [8, 10, 12]:

(
11101110100010010100
00101001011100000110
10100101000111011001
11101000100110100011
11010101010001000001

)

• q = 2, n = 24, k = 5, w = [10, 12, 14]:

(
111011100010100000010111
011010110110000111101011
000011011110001101010110
010110011101101000001101
100000101111110110010001

)

• q = 2, n = 24, k = 6, w = [8, 12, 16]:

( 100000010111100100011111
010001010011011111001100
001000001011011010110111
000101011101010001111010
000011000100101000110001
000000101000011000001111

)

• q = 2, n = 24, k = 7, w = [8, 12, 16]:

 001111111011101110110001
010111110111011101101010
010110111111111010101001
100111101110111110011001
001111011101111101110010
100101111111110101011010
000000000011111111111100



• q = 2, n = 24, k = 8, w = [8, 12, 16]:


100011011110010011111111
011100111001100010001101
001101100110110000010111
001010101101010101100101
011101110001000111010001
110111011011101100101110
010011010110010111010001
001111011111101100111001



• q = 2, n = 24, k = 9, w = [8, 12, 16]:


011110011110001111001111
111101111000010111110101
001011101100101000011011
111110100101000000101101
001100110000101011110101
010101000001110001111011
001101010110000110101011
110000101110101110100001
001111111100001110110111



• q = 2, n = 24, k = 10, w = [8, 12, 16]:


100000000001101010001011
010000000101001001000111
001000000001111000010101
000100000000011100111100
000010000101001100101010
000001000001001001111001
000000100001001010110110
000000010101000100110101
000000001101000111001001
000000000010000110111011



• q = 2, n = 24, k = 11, w = [8, 12, 16]:


100000000000011011011010
010000000000010111000111
001000000000110010011101
000100000000110001110011
000010000010011001010101
000001000010011110001001
000000100000011000101111
000000010010001011100011
000000001010001010111100
000000000100001101110110
000000000001000110111011


• q = 2, n = 32, k = 6, w = [12, 16, 20]:

( 10010000110101101100111100111000
10011001111100100111000010100011
11110111000111000110101101110110
00001111111111110001111000000000
10101010000101111011001110100100
00000100100100101101111011101101

)

• q = 2, n = 32, k = 7, w = [12, 16, 20]:

 01111000000111110000111111111110
11100110110010000111111000110000
10011111001000101101101100100100
10110110011001001011011100101000
01111100000000001111111111011111
11001111100100001110110100100010
01111110000000000000000001111110
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• q = 2, n = 32, k = 8, w = [12, 16, 20]:


11101100110111010010100111110011
10011000100011110110110010001101
11011101101110100001011110100111
00110101000110101101110100011001
10111111001101000110101101001111
01101010001100011111101000110001
01111110011011001001011011011011
11000100011001111011010001100101



• q = 2, n = 32, k = 9, w = [12, 16, 20]:


10000000001011011001111000001010
01000000010000011101100001101110
00100000000010010101011011001101
00010000010010101011101111110110
00001000000001011011001011100011
00000100011111001101000000111000
00000010011000110000001110110011
00000001011011000010001100011110
00000000100110011110101000101001



• q = 2, n = 32, k = 10, w = [12, 16, 20]:


11111000001111110000001000000000
00000111111111110000000100000000
00011000110000111111100010000000
01101000010011010011110001000000
10110011011101000100100000100000
01100101110101001000110000010000
11010010110111000001010000001000
11100011011010100011000000000100
10101010110011101000100000000010
10011001000011101011010000000001


• q = 2, n = 32, k = 6, w = [8, 16, 24]:

( 01111011100101011111111101101111
01001000011110111001110001101001
01010011011000001100111010110011
10011110100001010010011010110110
01000110101011010100110101011010
10011000101110001110100111100010

)

• q = 2, n = 32, k = 7, w = [8, 16, 24]:

 11010100001101001100010111100101
01010011101101010011000101010110
11101110100111100010000010110100
11100110010010111100111001100000
11111101000001001111100001011000
01000011101110010000011101110110
10001000111111010101110011010000



• q = 2, n = 32, k = 8, w = [8, 16, 24]:


10000001011111101000000101111110
01000001010000010100000101000001
00100001001000010010000100100001
00010001000100011110111011101110
00001001000010011111011011110110
00000101000001011111101011111010
00000011000000111111110011111100
00000000111111111111111100000000



• q = 2, n = 32, k = 9, w = [8, 16, 24]:


10101110000101001100011100001111
01010101001101110001010100101011
10100010100110111000011100001111
00110000101001101110100101101101
11001111111111111110110110100101
01101111010110010000101010101010
10010000000000000001100010001110
01100000000000000001000110011100
01011000010100110111010100101011


• q = 2, n = 40, k = 6, w = [16, 20, 24]:( 0100111000101111011110010010110000010011

1010010100011111101111001001011000001001
1101001010000111110111101100100100000101
0110100101001011110011110110010010000011
0011010010101101111001111011000001001001
1001100001011110111100110101100000100101

)

• q = 2, n = 40, k = 7, w = [16, 20, 24]: 1000011111010101011111010011111001101010
0000100101101011101110100000011011011101
0100000011110101110110010001001100101111
0001001001011101111101000000110100111011
1000011110101011011110101101111001110100
0010010000111011111010001001100011010111
0111100000000111011110000000000111111111
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• q = 2, n = 40, k = 8, w = [16, 20, 24]:
1111100000011111011111000000111111010110
0110011000101000110100111101011011000011
1100010001110000101001111011110101000011
0001100110100010100101101111010111000011
0000011111000000111111000001000001011010
1000100011100001110010110111101011000011
0011001100100100101010011111101101000011
1111100000011111000000000001000001111001


• q = 2, n = 40, k = 9, w = [16, 20, 24]:

0100010100011110100101111111111011001101
1101110000010010111011001100011011000101
0001001100100111100011111100111011111110
0000011101111101110100001100101000110110
1101001011110010001000001010000011100001
1000101000100000100110010000010010111111
1111110100101101100101001001011111010101
0010100010101001000010011111000010110100
0110010000100111001101001010010010110000


• q = 2, n = 48, k = 6, w = [22, 24, 26]:( 100100010010111011001011111101000110011100111001

100010001101011101100101111110000011001110111100
100001010110101010110110111011100001000111011110
100000101111010001011111011101110000100011001111
110000010011101100101111101110011000110001100111
101000001101110110010111110011001100111000110011

)

• q = 2, n = 48, k = 6, w = [20, 24, 28]:( 111011100011101101000010100000100001101111100110
001011011110010000100111110011000100111011100100
111110001110011011000100001000001010011111001101
010110110101100000001111101110000001111110001001
111101010101110110000001010000010100110111010011
100101101011001000010111011101000010111101010010

)

• q = 2, n = 48, k = 7, w = [20, 24, 28]: 100010111101100101011111000000010001010100111101
001010110111010101110100011001000101000111110001
000101111011001010111110001000100010100101111010
010100101111100011101000111010000010001111100110
010001111110010110101011100000001000101110011110
101000011111001111010001110100000100010111001101
000000000000111000000111111111111111111111111100


• q = 2, n = 48, k = 8, w = [20, 24, 28]:

111111111000000000111111111100000000000001000000
000000000111111111111111111100000000000000100000
000011111000011111000001111111111111000000010000
001100111001100111001110001100001111111100001000
010101001010101001010000110101110011000110000100
100101010111111110010010011010010101011010000010
111101010001111011100110111000100110101000000001
101001000000010011001010111001011011011110000000


• q = 2, n = 48, k = 7, w = [16, 24, 32]: 100101110010111001011100101110010111001011000000

110100000110111111100011001101011010010001010100
100111000010110000001001010101111011101100001111
110101101001000111010000011011111110001100010001
111010000011011111110001100110101101001000001010
100010000111110101001100010000111110101001101101
111100111100111100111100111100111100111100011110


• q = 2, n = 48, k = 8, w = [16, 24, 32]:

100111101111101111110001110001110111101011101100
101000110000110000010010010010001000101100110000
001010011001011001001110001110001010001011101111
001010101010010101111101000010100101111010011001
100111111010111010100100100100000111101011100000
111001010001010001110110110110001001110111010000
001010011001011001110001110001111010001011101100
001111010011101100010000101111100000110110101001



37



• q = 2, n = 48, k = 9, w = [16, 24, 32]:
110110000011101101100000111010100001011000101111
100111011100100110001000110110010001101111001010
110000000011110011111111000001101000011011110010
100100011100101001000111001011111101001110100100
011001010101101001101010100100111101111001000001
001100011110100011000111101010100001011000101111
110011001100110011001100110010010101010101010110
101011011100011010110111000100000011101001110100
111011101011111110111010111101011100010110001011


• q = 2, n = 48, k = 10, w = [16, 24, 32]:

100100110000001011001110110100110001111101101100
000110000011010001000000101110111111110011100111
110001010110011100100101011100100101011011000101
000001101100110001101010001110010101001111111001
011100100101100100111010100100111010010101110010
111110000111001100010010001100010010011111111000
111111100001100011000100100011000100000111111110
011110011011101000111001010111000110010010000110
001011000001111001011011111001011011000100101100
101010011001010111101011101000010100011001010110


• q = 2, n = 48, k = 11, w = [16, 24, 32]:

100110100101001011010101010101011010100110100110
000110110011001011010101010101011010011001011001
000000001111000000000000000000111111111111000000
010011100000000000000011000011001111000000110011
001111000000000110000011000000001111110011000000
000000000000100111000000000000110011110011111100
000000000000011110000000000000001111111100110011
000000000000000000110011000000111100110011110011
000000000000000000001111000000001111001111111100
000000000000000000000000110011110011001111110011
000000000000000000000000001111001111110011001111


• q = 2, n = 48, k = 12, w = [16, 24, 32]:

100101000010110010101011001011001101001010110111
010011000010110010101011001101010010110010101111
001111000000000000000001100110000111100111100000
000000100001100000000110000001111000000111111001
000000010001100000000111100111100110000001100010
000000001001110000000111100110011111111111111000
000000000111100000000110000001111111111000000000
000000000000001000000110000111100111100110011100
000000000000000110000111100111111000011000011000
000000000000000001100111100001100001111111100000
000000000000000000011001100001111111100001111000
000000000000000000000000011111111110011111100000


• q = 2, n = 52, k = 6, w = [24, 26, 28]:( 0110011010101010101101010010101001010101010101100000

1110110110000110011011001001100100110011001100010000
1101110001100001111000111000011100001111000011001000
0011110000011111111000000111111100000000111111000100
0000001111111111111000000000000011111111111111000010
0000000000000000000111111111111111111111111111000001

)

• q = 2, n = 56, k = 6, w = [26, 28, 30]:( 01011001100101011111011100100001001101100011111010000100
10001111101110110100110100101000001001111001001111101010
01110111001001000011000111011111010001111001011111010000
10011111000011000111100111111000111100000111000100100001
11011010110001000100011000011100010110111101010010111111
00000110101101000110100101000110011111110000110000100111

)

• q = 2, n = 56, k = 7, w = [24, 28, 32]: 11001100110101111111011001000101111101000001100011011101
01100111011010011111101100101010111010100010110001101110
10110010101101101111100110011101011001010001011000110111
11011001010110110111110011001110101000101000101101011011
01101100101011111011101001101111010000010100010111101101
00110111010101111101100100110111101100001010001011110110
10011011101010111110110010011011110010000111000100111011


• q = 2, n = 56, k = 8, w = [24, 28, 32]:
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00111011101011010100101010111101100110111001010100001111
01110110010110111001010001111011001101110010101100011110
11101100101101100010100111110110011011100101011000111100
11011001011011010101001011101101110111001010110001111000
10110011110110101010010011011011101110010101100111110000
01100111101101010100100110110111011100111011001011100001
11001110011010111001001001101111111001100110010111000011
10011101110101100010010111011110110011011100101010000111


• q = 2, n = 56, k = 9, w = [24, 28, 32]:

10000000011111000000111111110000001111111100001111111111
01000010011100010000010110010100110111011110010100001010
00100010010110011100000010100111111010101001010010001100
00010010000110000110101111100000110011110000111101001000
00001010101010000110011000100101110110111001000100110010
00000110111010001011101100000001111000000001110001111100
00000001001111011110111011000001101001100001000011100010
00000000000000111111111111110000000000000011111111111111
00000000000000000000000000001111111111111111111111111111


• q = 2, n = 64, k = 7, w = [28, 32, 36]: 1010111010110001100001101011011110110111100111100110101000101001

0011000011000101110101110110111111101100100010100011100111100111
0111110001001111011001100101001001100110001001100101000001110111
0001110111000100110010001000100110111101001100100000001110111000
1100000111011000010011000010101011110010000100110011100000111010
0000101101001100010001110111100010010100111011100001111010010111
1111100010001110110011011010000011001110010011001000000011101111


• q = 2, n = 64, k = 8, w = [28, 32, 36]:

1000000000111101101011011100000010010011001110100110001100100011
0100000000100011011110110010000011011010101001110101001010110010
0010000001010111010010111101000111011000000111010000110000111100
0001000000101011101001011110100011101100000011101000011000011110
0000100001010011001001001011010111000011010010011110011001101010
0000010100001111111001101001110010100111101001000000010110000011
0000001101010111001100001000101001011001001110110111100011111011
0000000011110110101101110000001001001100111010011000110010001101


• q = 2, n = 64, k = 9, w = [28, 32, 36]:

1000000000111101101011011100000010010011001110100110001100100011
0100000000100011011110110010000011011010101001110101001010110010
0010000000101100000100000101000011111110011010011100101001111011
0001000000101011101001011110100011101100000011101000011000011110
0000100000101000011111110011010011100101001111010010000000101101
0000010100001111111001101001110010100111101001000000010110000011
0000001100101100011010110000101101111111010011111011111010111100
0000000010001101111011001000001101101010100111010100101011001010
0000000001111011010110111000000100100110011101001100011001000111


• q = 2, n = 64, k = 7, w = [24, 32, 40]: 0100111111000111001110101011100000010111100001010100101001011100

0010111101111100111000100110011001001110100100010010100101110010
1010010111110011100110010101110100001011110000001010110100001110
0101011011111001110011001000111010001101101000000101101010100110
1001011110101110011101010011001000101111000010001001110010111000
1111100000000000111111111100000111111111100000000000100000111111
1111100000000000000000000011111000001111111111111111100000111110


• q = 2, n = 64, k = 8, w = [24, 32, 40]:

1011111101010110101001010001010100011100001111101000011000001101
0111111110101001010101100000101100011100001111100100010100001101
0011111111111111111100110001100011111110001000001101011100011101
1100011111111100000000001111100000011100001000111110100011110101
1110100110010010010000001100011101101111100011100010110010010111
1111010001001001001000000110011110110110110101100010110001010111
1101101000100100100100001010011111011011010110100010110000110111
0011100000000011111111001111111000000010001111100010001111100110


• q = 2, n = 64, k = 9, w = [24, 32, 40]:

1000110111000011000011000010010100111011001011011110011010011011
0100000100001100111100111101100111110111111011010000110000110000
0000010000010011110011110110111111011111011101100001000011000010
1011001111100111101100111100001000010001011010001000001010111101
1011001011001000101000100110111001101001101101100001110101110100
1000110001110011100101010101111101111111101111000011011010110111
0000011101110010111111011001111101010110000101001011000010011000
0001101100001001100100001001110001001010010101001010001011010000
1111101001010011010101100001011001100100001001111100000011101110
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• q = 2, n = 64, k = 10, w = [24, 32, 40]:
1000000100001100100000110000100110010001010101101110000011011001
0100000011011100000100101000010110100011101100101010001000001001
0010000111011100110001101000000001001110101001100000011000010010
0001000011001100111010000100100110000001010110000100110101110000
0000100010010010000011001001100001000000011100010011010011101111
0000010110000010001111011010100101001111011100110111111110000001
0000001100000010110110011011010100010010100100000101101110000010
0000000000111010001100001010100000100001100010101001011001101111
0000000000000001111111111111110000000111111111111111100000000010
0000000000000000000000000000001111111111111111111111100000000001


• q = 2, n = 64, k = 11, w = [24, 32, 40]:

0000011010000001000110111110001110100101111000110010010000000000
0111001100100010000011101000001011100100101101101010001000000000
0000101110101011000110100111100101110100100101000000000100000000
0111101110001010001100101011001010000101010011010000000010000000
1001110100000110100000011010000101011011000100111001100001000000
1101010010011110010001000110111100000011001100001000100000100000
0101010001111110001011000001110100001000000011000111100000010000
0011001111111110000111000000010010111000111110111111100000001000
0000111111111110000000111111110001111000000001111111100000000100
0000000000000001111111111111110000000111111111111111100000000010
0000000000000000000000000000001111111111111111111111100000000001


• q = 2, n = 64, k = 12, w = [24, 32, 40]:

0000110001101110000100100100100011011000011011011110100000000000
1011110000100110010000001100010000111101001110111000010000000000
1010110001001010110010000000101111110000001100101011001000000000
1111100000001100000010100100111101000011011011101000000100000000
0111000000001010110110001100011000000110111100110011000010000000
0000000100001001111110011010010101001101010101010101000001000000
0101011111010000010001111001110011000100100000101100000000100000
0011010011001000001111111001111111011111010011011100000000010000
0000101111000110000000000111101111000011001111000011000000001000
0000011111000001111111111111100000111111000000111111000000000100
0000000000111111111111111111100000000000111111111111000000000010
0000000000000000000000000000011111111111111111111111000000000001


• q = 2, n = 64, k = 7, w = [16, 32, 48]: 1110001110001101110111000101111010000010001011110100001100100110

0000101111010000111110100101001111100101101101100000110011100010
0010111101001001011011001011000001111100001001111100101110001001
0111101000011110000111000111110010110100101000011010110001110001
1110100001011000011101111111001010010010110001101011000111000100
0111000111000100010001111101000010111011101010000101111010010011
1111010000100011110010101111100101010110100000110101100011100010


• q = 2, n = 64, k = 8, w = [16, 32, 48]:

1000110100011000110100010111001011100101111111000110111001010000
1101100001001100110101011110000010101100110010111001000110111001
1111011000010010001100101100111011110000010010101110010001111001
0011110110000101011101110000010101100111011010110100110100001001
0011110110000101011100101011001110111100001010110100110100000011
1000010011110110111000111011110000010101101011101000101000101001
1000010011110101000111010110011101111000000010010111101000110101
0111101100001001000111100000101011001110110100010111101000110011


• q = 2, n = 64, k = 9, w = [16, 32, 48]:

0101011110000011010000110100011010001101001110111011100010011101
0110111110010000000011011011011011011011000101101000111101010000
1010101010100100011101000110100011010001101010111100101011010101
1010101010100001101100011010001101000110101010111100101011010101
0101010011100100011101000110100011010001100011111010111001000111
1100010100110110100010110011101111000001101111010100010110000101
1111110010011100101111001011100101110010010010000110100100100100
0001110011011000110111100000101011001110111110001101011000010001
0000000110110111001101110010111001011100110110000001101101101100


• q = 2, n = 64, k = 10, w = [16, 32, 48]:

0010011111000000110010110100111010101001010101111111110000011000
1001000110100111000010000111101011001111000111011101101001100001
1110001110010011001001010000011111011111010001001000011011011010
1110000011100110100100010100000100010111110111111011000110101100
1101100000000001111000000000101000000000000001010000000000111100
0101010010100000111011001001001110101100010011101011010111100011
1010100110001111000111110101110001010100001100010110011100011100
1111111000011101001010100101010010001011010100101110000111100100
1111110010110110010011110000100100100001111001001100101101001001
1111110101101001001011100001010010000011110100101101011010100100
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• q = 2, n = 64, k = 11, w = [16, 32, 48]:
0100001000110000111100001111111100000000000000000000000000000000
0010000100001100000011111111111100000000000000000000000000000000
0001000010000011111111110000111100000000000000000000000000000000
0000100001111111001100110011001100000000000000000000000000000000
0000011111010101010101010101010100000000000000000000000000000000
0000000000000000000000000000000011000011110000111111111100000000
0000000000000000000000000000000000110000001111111111110011000000
0000000000000000000000000000000000001111111111000011110000110000
0000000000000000000000000000000011111100110011001100110000001100
0000000000000000000000000000000011111111001100110000110000000011
1111111111111111111111111111111110101010101010101010101010101010


• q = 3, n = 3, k = 3, w = [1, 2, 3]:

(
001
112
210

)
• q = 3, n = 6, k = 3, w = [3, 4, 5]:

(
111101
121011
100122

)
• q = 3, n = 9, k = 3, w = [5, 6, 7]:

(
011011001
110002111
100121202

)
• q = 3, n = 9, k = 4, w = [3, 6, 9]:

(
100111110
010201211
221211121
112112221

)

• q = 3, n = 18, k = 4, w = [9, 12, 15]:

(
111111110000001000
001112221111100100
120120120112210010
002000221120110001

)

• q = 3, n = 18, k = 5, w = [9, 12, 15]:

(
111111110000010000
000011221111001000
011201010012100100
111122220012200010
012021121200000001

)

• q = 3, n = 18, k = 6, w = [9, 12, 15]:

( 110011111100100000
001111122200010000
010201201111001000
112112212202000100
220001011221000010
122011022001000001

)

• q = 3, n = 27, k = 4, w = [15, 18, 21]:

(
111111111111110000000001000
000011111222221111111000100
112200122001120011222110010
120212001120211202012120001

)

• q = 3, n = 27, k = 5, w = [15, 18, 21]:

(
011011001111111111111110101
121000110120001122021011111
210101012002010120222102222
100110102211111221112112020
002201101200222211110001221

)

• q = 3, n = 27, k = 6, w = [15, 18, 21]:


000111110100110011111111101
001210101001100122112121011
012200010011001212122221101
122000100110012110221221011
220002001101121100211222101
200021011010211002111212011

]


• q = 3, n = 27, k = 5, w = [9, 18, 27]:

(
111111110000000000000010000
000000001111111100000001000
001112220011122211111000100
120120121201201201122100010
121202011212020120112200001

)

• q = 3, n = 36, k = 5, w = [21, 24, 27]:

(
111001001111011111111011111011101011
001112110012110222221120221110211010
220010022110221212112212100212210110
022201100212202121211101212201210101
100220212011122022122222021221001101

)
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• q = 3, n = 36, k = 6, w = [21, 24, 27]:

( 101011111100001011001101001011101101
110102021110100101100110100102210210
211020002111110020010011010010121021
021101200211012002001001101102012202
102120210021202200100100110210101120
010221211002020210010010011122010012

)
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