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Abstract. We improve a result due to Masser and Zannier, who showed that the set

{λ ∈ C \ {0, 1} : (2,
√
2(2− λ)), (3,

√
6(3− λ)) ∈ (Eλ)tors}

is finite, where Eλ : y
2 = x(x − 1)(x − λ) is the Legendre family of elliptic curves. More

generally, denote by T (α, β), for α, β ∈ C \ {0, 1}, α 6= β, the set of λ ∈ C \ {0, 1} such
that all points with x-coordinate α or β are torsion on Eλ. By further results of Masser
and Zannier, all these sets are finite. We present a fairly elementary argument showing
that the set T (2, 3) in question is actually empty. More generally, we obtain an explicit
description of the set of parameters λ such that the points with x-coordinate α and β are
simultaneously torsion, in the case that α and β are algebraic numbers that not 2-adically
close.

We also improve another result due to Masser and Zannier dealing with the case that
Q(α, β) has transcendence degree 1. In this case we show that #T (α, β) ≤ 1 and that we
can decide whether the set is empty or not, if we know the irreducible polynomial relating
α and β. This leads to a more precise description of T (α, β) also in the case when both α
and β are algebraic. We performed extensive computations that support several conjectures,
for example that there should be only finitely many pairs (α, β) such that #T (α, β) ≥ 3.

1. Introduction

Let
Eλ : y2 = x(x− 1)(x− λ)

be the Legendre family of elliptic curves over C. For α ∈ C \ {0, 1} let Pα(λ) be a point
on Eλ with x-coordinate α and set

T (α) = {λ ∈ C \ {0, 1} : Pα(λ) ∈ (Eλ)tors} .
Write T (α, β) = T (α) ∩ T (β). In [MZ08,MZ10], Masser and Zannier show that T (2, 3) is
finite. This was the first step in a series of successively more general finiteness results on
the set of parameters such that a given section in a family of two-dimensional (semi-)abelian
varieties is torsion, see [MZ12,MZ14,MZ] (or see the book [Zan12] for an overview). An
alternative, ‘dynamical’ proof of the results of [MZ10,MZ12] is given by de Marco, Wang
and Ye in a recent paper [dMWY14].

In this note, we give a 2-adic proof that T (2, 3) is actually empty. The proof is rather
elementary and shows more generally that (for example) 2 and 3 can be replaced by any pair
consisting of an even and an odd integer (different from 0 and 1). We also give examples of
numbers α and β such that T (α, β) has exactly one or two elements. We then give a partial
result along the same lines for the two-parameter Weierstrass family y2 = x3 + Ax+B.

Date: October 4, 2015.
1



Returning to the Legendre family, we consider the sets T (α, β) when α and β generate a
field of transcendence degree 1 over Q (the case of transcendence degree 2 is trivial; we
have T (α, β) = ∅ in this case). In [MZ13], Masser and Zannier show that, if we are given
an irreducible polynomial F over Q such that F (α, β) = 0, we can effectively compute the
set T (α, β), and they give a bound on its size: #T (α, β) ≤ 6 · (12 degF )32. We improve
this result considerably; in fact, we prove the best possible bound #T (α, β) ≤ 1 and also
provide better upper bounds for the occurring torsion orders, leading to a more efficient
determination of the set. We also obtain a fairly precise description of T (α, β) in general.
See Proposition 20. This more precise description is then used as the basis for extensive
computations studying pairs (α, β) such that #T (α, β) ≥ 2. These computations exhibited
only a small number of such pairs where the set T (α, β) has three or more elements, and
so we conjecture that the set of such pairs is actually finite (Conjecture 23). Based on our
computations, we also conjecture that the heights of α and β are uniformly bounded when
#T (α, β) ≥ 2 (Conjecture 27).

This note is organized as follows. We first prove a general statement on the 2-adic behavior
of elements in a ring defined by a certain kind of recurrence relation. We then apply this
to the division polynomials of the Legendre elliptic curve. This allows us to deduce ‘mod 2’
information on the set T (α), for α ∈ Q̄, leading to our first main result that T (α, β) ⊆ {α, β}
if α and β are distinct ‘mod 2’ (see Corollary 4) or even ‘mod 4’ (Corollary 8 for rational
α, β). We use this to show that the intersection of T (α) with the set of all roots of unity
can be determined effectively; the set has size at most 3, and we determine all α that reach
this bound. We also apply our approach to the Weierstrass family y2 = x3 + Ax + B. This
leads to a partial result for the set of parameters (A,B) such that three x-coordinates are
simultaneously torsion. The restriction is that we need to assume that B is integral at 2.
See Corollary 15. We then turn to the case of transcendence degree 1 in the Legendre family
and prove our second main result. The description of T (α, β) obtained as a consequence of
this result is then used as the basis for the computations mentioned above. We report on
the results and state the conjectures already mentioned.

Acknowledgments. I would like to thank the organizers of the Second ERC Research Pe-
riod on Diophantine Geometry for inviting me to attend this event; the first result presented
here was obtained during the meeting. I would also like to thank David Masser and Umberto
Zannier for fruitful discussions. The computations we report on in Sections 6 and 7 were
performed with the computer algebra system Magma [BCP97].

2. 2-adic behavior of division polynomials

Let R be a commutative ring and fix elements f, g ∈ R. Let (hn)n≥1 be a sequence of
elements of R satisfying

h1 = 1, h2 = 1, h3 ≡ −g2 mod 4R and h4 ≡ 2g3 mod 4R
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and the recurrence relations (for m ≥ 3, 1, 2, respectively)

h2m = hm
(
hm+2h

2
m−1 − hm−2h2m+1

)
h4m+1 = 4fh2m+2h

3
2m − h2m−1h32m+1

h4m−1 = h2m+1h
3
2m−1 − 4fh2m−2h

3
2m .

(Relations of this form are satisfied by the division polynomials of an elliptic curve; we will
apply the results of this section soon in this setting.)

We define, for n ∈ Z>0,

d(n) =

⌊
n2 − 1

4

⌋

and

e(n) = max{0, v2(n)− 1} ,

where v2 denotes the 2-adic valuation.

Proposition 1. For n ∈ Z>0, we have

hn ≡ 2e(n)gd(n) mod 2e(n)+1R .

Proof. We first determine hn mod 4R: We have

h2m+1 ≡ (−1)mgd(2m+1) mod 4R

h4m+2 ≡ (−1)mgd(4m+2) mod 4R

h8m+4 ≡ 2gd(8m+4) mod 4R

h8m ≡ 0 mod 4R
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The statements are correct by assumption for hn with n ≤ 4. We proceed by induction using
the recurrence relations. All congruences below are mod 4R.

h4m+1 ≡ −h2m−1h32m+1

≡ −(−1)m−1(−1)3mgd(2m−1)+3d(2m+1) = (−1)2mgd(4m+1)

h4m−1 ≡ h2m+1h
3
2m−1

≡ (−1)m(−1)3(m−1)gd(2m+1)+3d(2m−1) = (−1)2m−1gd(4m−1)

h8m+2 = h4m+1(h4m+3h
2
4m − h4m−1h24m+2)

≡ (−1)2m(−(−1)2m−1)gd(4m+1)+d(4m−1)+2d(4m+2) = (−1)2mgd(8m+2)

h8m−2 = h4m−1(h4m+1h
2
4m−2 − h4m−3h24m)

≡ (−1)2m−1(−1)2mgd(4m−1)+d(4m+1)+2d(4m−2) = (−1)2m−1gd(8m−2)

h16m+4 = h8m+2(h8m+4h
2
8m+1 − h8mh28m+3)

≡ 2gd(8m+2)+d(8m+4)+2d(8m+1) = 2gd(16m+4)

h16m−4 = h8m−2(h8mh
2
8m−3 − h8m−4h28m−1)

≡ 2gd(8m−2)+d(8m−4)+2d(8m−1) = 2gd(16m−4)

h16m+8 = h8m+4(h8m+6h
2
8m+3 − h8m+2h

2
8m+5)

≡ 2
(
gd(8m+4)+d(8m+6)+2d(8m+3) − gd(8m+4)+d(8m+2)+2d(8m+5)

)
≡ 0

h16m = h8m(h8m+2h
2
8m−1 − h8m−2h28m+1) ≡ 0

The relations d(2m− 1) + 3d(2m+ 1) = d(4m+ 1) etc. are easily verified.

This shows the claim when e(n) ≤ 1. We now show by induction on e(n) that it holds in
general. So let n = 2e+1m with e ≥ 2 and m odd. Then

hn = h2em(h2em+2h
2
2em−1 − h2em−2h22em+1) .

The second factor is (mod 4R)

h2em+2h
2
2em−1 − h2em−2h22em+1 ≡ (−1)2

e−2mgd(2
em+1)+2d(2em−1)

− (−1)2
e−2m−1gd(2

em−2)+2d(2em+1)

≡ 2gd(2
e+1m)−d(2em) ,

whereas the first is
h2em ≡ 2e−1gd(2

em) mod 2eR .

Multiplying gives the desired congruence

h2e+1m ≡ 2egd(2
e+1m) mod 2e+1R . �

3. Application to the Legendre family

We consider the Legendre family Eλ : y2 = x(x − 1)(x − λ) of elliptic curves. We denote
by ψn(λ, x) the nth reduced division polynomial of Eλ; its roots are the x-coordinates of
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the points of order dividing n and > 2. These polynomials are related to the ‘bicyclotomic
polynomials’ B∗n(x, T ) of Masser and Zannier [MZ13] via

ψn(λ, x) =
∏
26=d|n

B∗d(x, λ) .

We have ψ1 = ψ2 = 1,

ψ3(λ, x) = 3x4 − 4(λ+ 1)x3 + 6λx2 − λ2

ψ4(λ, x) = 2(x2 − λ)(x2 − 2x+ λ)(x2 − 2λx+ λ)

and

ψ2m(λ, x) = ψm(λ, x)
(
ψm+2(λ, x)ψm−1(λ, x)2 − ψm−2(λ, x)ψm+1(λ, x)2

)
ψ4m+1(λ, x) = 16x2(x− 1)2(x− λ)2ψ2m+2(λ, x)ψ2m(λ, x)3 − ψ2m−1(λ, x)ψ2m+1(λ, x)3

ψ4m−1(λ, x) = ψ2m+1(λ, x)ψ2m−1(λ, x)3 − 16x2(x− 1)2(x− λ)2ψ2m−2(λ, x)ψ2m(λ, x)3

It follows that ψn(λ, x) ∈ Z[λ, x] for all n ≥ 1.

We note that

ψ3(λ, x) ≡ −(λ− x2)2 mod 4Z[λ, x] and

ψ4(λ, x) ≡ 2(λ− x2)3 mod 4Z[λ, x] .

So we can apply Proposition 1 with R = Z[λ, x], f = 4x2(x − 1)2(x − λ)2 and g = λ − x2.
This gives the following.

Proposition 2. For n ∈ Z>0, we have

ψn(λ, x) ≡ 2e(n)(λ− x2)d(n) mod 2e(n)+1Z[λ, x] .

Furthermore, degλ ψn(λ, x) = d(n) and degψn(λ, x) = degx ψn(λ, x) = 2d(n), where deg
denotes the total degree.

Proof. The congruence follows from Proposition 1. The upper bounds degλ ψn(λ, x) ≤ d(n)
and degx ψn(λ, x) ≤ degψn(λ, x) ≤ 2d(n) follow easily by induction, using the recurrence
relations. Since the reduction of ψn(λ, x) modulo a suitable power of 2 has λ-degree d(n)
and x-degree 2d(n), we actually have equality. �

Recall the definitions

T (α) = {λ ∈ C \ {0, 1} : Pα(λ) ∈ (Eλ)tors} and T (α, β) = T (α) ∩ T (β) .

It is clear that T (α) ⊆ Q̄ if α ∈ Q̄. More generally, if λ ∈ T (α), then λ is algebraic over Q(α)
and α is algebraic over Q(λ). This immediately implies that T (α, β) = ∅ whenever the
transcendence degree of Q(α, β) is 2 (compare [MZ13, p. 636]). We will now consider the
other extreme, when α and β are both algebraic over Q.

For the following, fix an embedding i : Q̄ ↪→ Q̄2. Write Z ⊆ Q̄ for the subring of elements α
such that i(α) is integral and denote the natural ‘reduction’ map Q̄ ↪→ P1(Q̄2) → P1(F̄2)
by ρ. We write v : Q̄ → Q ∪ {∞} for the valuation associated to i, normalized such that
v(2) = 1.

Theorem 3. Let α ∈ Q̄ \ {0, 1}. Then T (α) = {α} ∪ T ′(α), where ρ
(
T ′(α)

)
⊆ {ρ(α2)}.
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Proof. Let λ ∈ T (α) and let n ≥ 2 be the order of the point Pα(λ) ∈ Eλ(Q̄). If n = 2, then
λ = α. Otherwise n ≥ 3 and ψn(λ, α) = 0.

First assume ρ(α) 6=∞, so that α ∈ Z. Proposition 2 then shows that 2−e(n)ψn(t, α) ∈ Z[t]
with unit leading coefficient, so λ ∈ Z and

0 = 2−e(n)ψn(λ, α) ≡ (λ− α2)d(n) mod 2Z ,

which implies ρ(λ) = ρ(α2) (note that d(n) > 0 for n ≥ 3).

Now consider the case ρ(α) = ∞. Assuming that λ ∈ Z, Proposition 2 shows that the
term coming from the monomial x2d(n) is the unique term in 2−e(n)ψn(λ, α) with minimal
valuation (= 2d(n)v(α)), so ψn(λ, α) cannot vanish. This shows that λ ∈ Q̄ \ Z, so ρ(λ) =
∞ = ρ(α2). �

We note that Mavraki [Mav15, Section 4] has recently given an alternative proof based on
the 2-adic dynamics of the associated Lattès map. We come back to this approach after
stating the following easy corollary.

Corollary 4. Let α, β ∈ Q̄ \ {0, 1} such that ρ(α) 6= ρ(β). Then

T (α, β) ⊆ {α, β} .
In particular, T (α, β) is finite and effectively computable.

Proof. Theorem 3 shows that any λ ∈ T (α, β) \ {α, β} must satisfy ρ(λ) = ρ(α2) = ρ(β2).
The existence of such a λ would imply that ρ(α) = ρ(β) (recall that squaring is a bijection
on P1(F̄2)), contradicting the assumption. Regarding the effectivity statement, note that
it is easy to decide for any given λ if λ ∈ T (α, β) or not: just check if the points with
x-coordinate α or β are torsion on Eλ. �

To get somewhat stronger results, we use the Lattès map

fλ : x 7−→ (x2 − λ)2

4x(x− 1)(x− λ)

that expresses the x-coordinate of 2P in terms of the x-coordinate of P , for a point P ∈ Eλ.
Then T (α) can also be characterized as the set of λ ∈ C \ {0, 1} such that α is preperiodic
under iteration of fλ on P1. We will use the obvious fact that P is torsion if and only if 2P
is, which implies that

λ ∈ T (α) ⇐⇒ fλ(α) ∈ {0, 1, λ,∞} or λ ∈ T (fλ(α)) .

Note that (for α, λ 6= 0, 1)

fλ(α) ∈ {0, 1, λ,∞} ⇐⇒ λ ∈
{
α, α2, α(2− α),

α2

2α− 1

}
.

Lemma 5. Let α, λ ∈ Q̄\{0, 1} such that λ ∈ T (α). Then λ ∈ {α, α2, α(2−α), α2/(2α−1)}
or ρ(fλ(α)) = ρ(α).

Proof. If Pα(λ) has order dividing 4, then λ is in the first set. Otherwise 2Pα(λ) = Pfλ(α)(λ)
is a point of order > 2, and the claim follows from (the proof of) Theorem 3, which tells us
that ρ(fλ(α)2) = ρ(λ) = ρ(α2). �
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We use this to strengthen Theorem 3 in the following way.

Theorem 6. Let α ∈ Z \ {0, 1}. Then

T (α) ⊆
{
α, α2, α(2− α),

α2

2α− 1

}
∪ {α2 + 2uα(1− α) : u ∈ Z, ρ(u2) = ρ(α)}

⊆ {α} ∪ (α2 + 2Z) .

For α ∈ Q̄ with ρ(α) =∞ we have

T (α) ⊆
{
α, α2, α(2− α),

α2

2α− 1

}
∪
{ α2

1 + 2(α− 1)u
: u ∈ Z, ρ(u) = 0

}
.

Proof. We use Lemma 5; we have to show that ρ(fλ(α)) = ρ(α) implies that λ is in the secon
set in the union in each case.

We first assume ρ(α) /∈ {0, 1,∞}. Then ρ(λ) = ρ(α2) 6= ρ(α), so α(α − 1)(α − λ) ∈ Z×,
and a necessary condition is that fλ(α) ∈ Z×, which is equivalent to 2v(α2 − λ) = 2, so
λ = α2 + 2uα(1− α) with some u ∈ Z×.
Next we consider ρ(α) = 1. Write α = 1 + δ and λ = 1 + δ− ε with v(δ), v(ε) > 0. We have
α(α − 1)(α − λ) = αδε and α2 − λ = δ(δ + 1) + ε, so the necessary condition v(fλ(α)) = 0
means

2v(δ(δ + 1) + ε) = 2 + v(δ) + v(ε) .

If v(δ) 6= v(ε), then we obtain the contradiction
2 + v(δ) + v(ε) > 2 + 2 min{v(δ), v(ε)} > 2v(δ(δ + 1) + ε) .

Otherwise, we find that v(α2 − λ) = 1 + v(δ) = v(2δ), so again λ = α2 + 2α(1− α)u with a
unit u ∈ Z×. Using this in the expression for fλ(α), we find (in both cases considered) that

ρ(α)
!

= ρ(fλ(α)) = ρ(u2) .

The cases ρ(α) = 0 and ρ(α) = ∞ can be reduced to ρ(α) = 1 by noting that λ ∈ T (α) is
equivalent to 1− λ ∈ T (1− α) and to 1/λ ∈ T (1/α). �

Note that we have only used one step in the iteration of fλ, so further improvements should
be possible.

When α ∈ Q̄ \ {0, 1} we write

R(α) =

{α
2 + 2uα(1− α) : u ∈ Z, ρ(u2) = ρ(α)} if α ∈ Z,{

α2

1+2(α−1)u : u ∈ Z, ρ(u) = 0
}

otherwise

and
S(α) =

{
α, α2, α(2− α),

α2

2α− 1

}
.

Proposition 7. Let α, β ∈ Q̄ \ {0, 1}. If R(α) ∩R(β) = ∅, then
T (α, β) ⊆

(
S(α) ∩ S(β)

)
∪
(
S(α) ∩R(β)

)
∪
(
R(α) ∩ S(β)

)
⊆ S(α) ∪ S(β) .

In particular, T (α, β) is finite and effectively computable.

The condition R(α) ∩R(β) = ∅ holds in the following situations.
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(1) ρ(α) 6= ρ(β);
(2) ρ(α) = ρ(β) /∈ {0, 1,∞} and v(α− β) ≤ 1/2;
(3) ρ(α) = ρ(β) = 1, 0 < v(α− 1) ≤ 1 and v(α− β) = v(α− 1);
(4) ρ(α) = ρ(β) = 0, v(α) ≤ 1 and v(α− β) = v(α);
(5) ρ(α) = ρ(β) =∞, v(α) ≥ −1 and v(α− β) = v(β).

Proof. The first statement is clear, since by Theorem 6, T (α) ⊆ S(α) ∪ R(α) and S(α) is
finite.

Case (1) was already dealt with in Corollary 4. For case (2), we observe that v(α−β) ≤ 1/2
implies v(α2 − β2) ≤ 1. The difference δ of an element in R(α) and an element of R(β)
satisfies v(δ − (α2 − β2)) > 1, which implies that δ cannot be zero. In case (3), we write
α = 1 + ε, β = 1 + ε′; then v(ε) ≤ 1 and either v(ε′) > v(ε) or v(ε′) = v(ε) = v(ε− ε′). An
element of R(α) has the form 1+2ε+ε2+2ε(1+ε)(1+η1) = 1+ε2+2εη where v(η1), v(η) > 0,
and similarly for R(β). So the difference is δ = ε2 − ε′2 + 2(εη − ε′η′). If v(ε) < v(ε′), then
v(δ) = 2v(ε), so δ 6= 0. In the other case v(δ) = v(ε2 − ε′2) = 2v(ε − ε′) = 2v(ε), so again
δ 6= 0. The remaining cases can be reduced to case (3) in the usual way. �

We consider the case of rational numbers in more detail.

Corollary 8. Let α, β ∈ Q \ {0, 1}.

(1) If ρ(α) 6= ρ(β), then T (α, β) = ∅.
(2) If α ≡ 3 mod 4 and β ≡ 1 mod 4, then T (α, β) ⊆ {α2, β}.
(3) If α ≡ 2 mod 4 and β ≡ 0 mod 4, then T (α, β) ⊆ {α(2− α), β}.
(4) If v(α) = −1 and v(β) ≤ −2, then T (α, β) ⊆ {α2/(2α− 1), β}.

Proof. For (1) see Corollary 4 and note that ρ(α2) = ρ(α) and ρ(β2) = ρ(β). Statement (2)
follows by obseerving that all elements of T (β) except possibly β are in 1 + 8Z, whereas α2

is the only element of T (α) with this property. Parts (3) and (4) are deduced from (2). �

This can be interpreted as saying that when α and β ‘differ mod 4’, then we can determine
T (α, β) effectively and the set has at most two elements.

Examples 9. We apply the results above to give examples of numbers α, β ∈ Q̄ \ {0, 1}
such that T (α, β) can be determined explicitly and has zero, one or two elements.

(1) T (2, 3) = ∅. This is a special case of Corollary 8 (1).
(2) Let ω be a primitive cube root of unity. Then T (ω, ω2) = {ω, ω2}. The second statement

of Corollary 4 gives the inclusion ‘⊆’. It is easily checked that Pω(ω) and Pω2(ω2) have
order 2, while Pω(ω2) and Pω2(ω) have order 4.

(3) T (2, 4) = {4}. The inclusion T (2, 4) ⊆ {4} follows from Corollary 8 (3) (recall that zero
is not a permissible value). On the other hand, 4 = 22 is clearly in T (2, 4).

(4) T (3,−3) = {−3, 9}. The inclusion ‘⊆’ follows from Corollary 8 (2). Clearly 9 = 32 =
(−3)2 ∈ T (3,−3), and one checks that −3 ∈ T (3).
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In a similar (but even simpler) way as we did it above regarding the 2-adic behavior of
the ψn, one can show the following.

Proposition 10. For every n ≥ 1, we have

ψn(λ, 0) = anλ
d(n)

ψn(λ, 1) = an(1− λ)d(n)

ψn(λ, λ) = an
(
λ(1− λ)

)d(n)
where a2m+1 = (−1)m and a2m = (−1)m−1m.

From this, one can conclude that if a and b are integers and p is a prime such that a ≡ 0 mod p
and b ≡ 1 mod p, then for any λ ∈ T (a, b) \ {a, b}, the order of the points Pa(λ) and Pb(λ)
must be a multiple of 2p. Since this result is much weaker than what can be obtained from
the consideration of the 2-adic behavior, we will not pursue this further here. It may be
worth while, however, to study the p-adic behavior of the polynomials ψn for p 6= 2 in some
detail.

4. An unlikely intersection problem of Habegger, Jones and Masser

In a recent preprint [HJM15] Habegger, Jones and Masser consider various specific unlikely
intersection problems, one of which asks for the set T (2) ∩ µ, where µ = exp(2πiQ) ⊆ C
denotes the set of roots of unity. The result they obtain in this case (Theorem 5 in loc. cit.)
is that there is an effective constant C > 0 such that [Q(ζ) : Q] ≤ C for every ζ ∈ T (2)∩µ.
In this section we use the results of the previous section to obtain a much stronger result.

We continue to work with the ring Z ⊆ Q̄, the reduction map ρ : Q̄ → P1(F̄2) and the
valuation map v : Q̄→ Q ∪ {∞}.

Corollary 11. Let α ∈ Q̄ be such that some conjugate of α is not in Z× (i.e., is not a 2-adic
unit). Then T (α) ∩ µ = ∅. In particular, T (2) ∩ µ = ∅.

Proof. After applying an automorphism of Q̄ we can assume that α /∈ Z×, which implies
that ρ(α) ∈ {0,∞}. By Theorem 3 we have T (α) = {α} ∪ T ′(α) with ρ(T ′(α)) ⊆ {ρ(α2)}.
So ρ(T (α)) ⊆ {0} or ρ(T (α)) ⊆ {∞}. Since clearly ρ(µ)∩{0,∞} = ∅, the claim follows. �

The case of 2-adic units is more interesting. Note that α ∈ T (α) ∩ µ when α ∈ µ, so
we can definitely have non-empty intersections in this case. Theorem 3 tells us that any
α 6= ζ ∈ T (α) ∩ µ must satisfy ρ(ζ) = ρ(α2). There is a unique ζ0 ∈ µ of odd order
satisfying this requirement, and we obtain that

T ′(α) ∩ µ ⊆ {ζ0ζ : ζ ∈ µ2∞}
where µ2∞ denotes the group of roots of unity of order 2m for some m. From Theorem 6 we
get the more precise requirement

T ′(α) ⊆ α2 + 2Z .

Write ζ−10 α2 = 1 + ε with v(ε) > 0. Then we must have

ζ ≡ 1 + ε mod 2Z .
9



This leads to the following.

Corollary 12. Let α ∈ Q̄ be such that all conjugates of α are in Z×. Then T (α)∩µ has at
most two elements different from α; the set can be effectively determined.

If α ∈ µ, then
{α, α2} ⊆ T (α) ∩ µ ⊆ {α, α2,−α2}

except when α = −1, where we have T (−1) ∩ µ = {−1}.

Proof. We note first that µ∩(1+2Z) = {−1, 1}. Assume that ζ ∈ µ satisfies ζ ≡ 1+ε mod 2.
If ζ ′ is another such root of unity, then ζ ′ζ−1 ∈ 1 + 2Z and so ζ ′ = ±ζ. We conclude that
T ′(α) ∩µ ⊆ {±ζ0ζ}. Note that we can effectively decide whether ζ exists, and if so, find it.
This implies effectivity.

For the second statement note that α and α2 (unless α2 = 1) are always in T (α). If α ∈ µ,
then we can take ζ0 = α2 and ε = 0 in the argument above, so that −ζ0 = −α2 is the only
remaining possibility. When α = −1, we have {α,±α2} \ {0, 1} = {−1}. �

When α ∈ µ, we can actually rule out the occurrence of −α2 in most cases. Note that
−α2 ∈ T (α) implies that

ρ(α) = ρ(f−α2(α)) = ρ
( α2

α2 − 1

)
.

This implies ρ(α2 +α+ 1) = 0, which means that the order of α is of the form 3 · 2m. In the
next step, we have

f−α2

( α2

α2 − 1

)
=

(α4 − α2 + 1)2

4α2(α2 − 1)
,

which must be zero or a 2-adic unit. In the first case α4 − α2 + 1 = 0, which is satisfied
by the primitive 12th roots of unity. Otherwise we must have v(α4 − α2 + 1) = 1. Since
α4 − α2 + 1 ≡ (α2 + α+ 1)2 mod 2Z and α− 1 is a unit, we get α3 = 1 + ε with v(ε) ≥ 1/2,
and we know that (1 + ε)2

m
= 1 for some m. This implies m ≤ 2, so that the order of α

is 3, 6 or 12. One can check that in each of these cases we have indeed −α2 ∈ T (α). We
summarize our findings.

Proposition 13. If α ∈ µ, then

T (α) ∩ µ =


{α} if α = −1,
{α, α2,−α2} if ord(α) ∈ {3, 6, 12},
{α, α2} otherwise.

Together with the previous results of this section, this implies that

max
α∈C\{0,1}

#
(
T (α) ∩ µ

)
= 3

and the maximum is attained exactly for the eight roots of x8 + x4 + 1.
10



5. Application to the Weierstrass family

In this section, we consider the family

EA,B : y2 = x3 + Ax+B

of elliptic curves. We denote the corresponding division polynomials by Ψn(A,B, x). Then
Ψ1 = Ψ2 = 1 as before, and

Ψ3 = 3x4 + 6Ax2 + 12Bx− A2

≡ −(A− x2)2 mod 4Z[A,B, x]

Ψ4 = 2
(
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− (8B2 + A3)

)
≡ 2(A− x2)3 mod 4Z[A,B, x] .

We have the same recurrence relations as before, with the factor 4x(x− 1)(x− λ) replaced
by 4(x3 + Ax + B). We apply Proposition 1, taking R = Z[A,B, x], f = 4(x3 + Ax + B)2

and g = A− x2, to obtain the following.

Proposition 14. For all n ≥ 1, we have

Ψn(A,B, x) ≡ 2e(n)(A− x2)d(n) mod 2e(n)+1Z[A,B, x] .

We also have degA Ψn = d(n).

For α ∈ C, let Pα(A,B) (for 4A3 + 27B2 6= 0) be a point with x-coordinate α on EA,B and
define

TW (α) = {(A,B) ∈ C2 : 4A3 + 27B2 6= 0, Pα(A,B) ∈ (EA,B)tors} .
For any subset {α1, . . . , αn} ⊆ C, we set

TW (α1, . . . , αn) = TW (α1) ∩ . . . ∩ TW (αn) .

Corollary 15. Let α, β, γ ∈ Z such that ρ(α), ρ(β) and ρ(γ) are pairwise distinct. Then
the intersection TW (α, β, γ) ∩ (C× Z) is contained in

{
(
−(α2 +αβ+β2), αβ(α+β)

)
,
(
−(α2 +αγ+γ2), αγ(α+γ)

)
,
(
−(β2 +βγ+γ2), βγ(β+γ)

)
} .

Proof. Assume that (A,B) ∈ TW (α, β, γ) with B ∈ Z. Assume further that at least two
of the points Pα(A,B), Pβ(A,B) and Pγ(A,B) have order ≥ 3, say the first two. Then
Proposition 14 implies that A ∈ Z and that ρ(α2) = ρ(A) = ρ(β2), which contradicts the
assumption. It follows that at least two of the points must have order 2, say again the first
two. We must then have

α3 + Aα +B = β3 + Aβ +B = 0 .

The unique solution of this system of linear equations is

(A,B) =
(
−(α2 + αβ + β2), αβ(α + β)

)
.

The other two choices of two points give rise to the other two possible pairs. �
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If one could rule out the possibility that B /∈ Z, then it would follow that TW (α, β, γ) is
finite.

What one can say is the following. Assume that B /∈ Z and that Pα(A,B) has order 2. Then
A = −B/α − α2, so v(A) ≤ v(B). The polynomials Ψn(A,B, x) are weighted-homogeneous
of degree 2d(n) if x has weight 1, A has weight 2 and B has weight 3. Also, as a polynomial
in A, 2−e(n)Ψn has degree d(n) and odd leading coefficient. This implies that in Ψn(A,B, β)
(say), the term involving the monomial Ad(n) will be the unique term with minimal valuation,
hence Ψn(A,B, β) 6= 0. So it remains to exclude the possibility that all three points have
finite order ≥ 3 and v(B) < 0.

We note that Mavraki [Mav15] studies the case A = 0.

6. The case of transcendence degree 1 in the Legendre family

We now return to the Legendre family. We have seen above that T (α, β) = ∅ if α and β
are algebraically independent over Q. What can we say when Q(α, β) has transcendence
degree 1? Let F ∈ Z[a, b] be primitive and irreducible and such that F (α, β) = 0. Assume
that λ ∈ T (α, β). This means that ψm(λ, α) = 0 for some m ≥ 3 or λ = α, and ψm′(λ, β) = 0
for some m′ ≥ 3 or λ = β. We can replace both m and m′ by their least common multiple n.
Eliminating λ, we see that F (a, b) must divide the resultant with respect to λ of ψn(λ, a)
and ψn(λ, b), or else F divides ψn(a, b) or ψn(b, a).

Definition 16. For m ≥ 3, let

Rm(a, b) =
Resλ

(
ψm(λ, a), ψm(λ, b)

)
(a− b)degλ ψm

∈ Z[a, b] .

The following result provides the key step in the proof that T (α, β) has at most one element
in the case of transcendence degree 1.

Proposition 17. For all m ≥ 3, the polynomial Rm(a, b) is squarefree in Q[a, b].

Proof. We consider the behavior of Rm(a, b) as a tends to zero. By Proposition 10, if
ψm(λ, a) = 0 and a → 0, then λ → 0 as well. Since clearly Rm(a, b) divides Rn(a, b) if
m divides n, it is sufficient to consider the case that m = 2n is even.

In the following, we use the symbol ∝ to denote equality up to a multiplicative constant. By
standard properties of resultants, we have

(b− a)n
2−1R2n(a, b) ∝

n2−1∏
j=1

ψ2n(λj(a), b) ,

where the λj(a) are Puiseux series over C that represent the roots of ψ2n(λ, a) as a polynomial
in λ over the power series ring C[[a]]. Since λj tends to zero with a, all these series have
positive valuation. Factoring ψ2n(λ, x) ∝

∏2n2−2
j=1

(
x− xj(λ)

)
, where xj(λ) are Puiseux series

in λ, we get the decomposition

(b− a)n
2−1R2n(a, b) ∝

n2−1∏
j=1

2n2−2∏
j′=1

(
b− (xj′ ◦ λj)(a)

)
.

12



If we can show that the series xj′ ◦ λj are pairwise distinct (except when (xj′ ◦ λj)(a) = a,
which will occur for a unique j′ for each j), then this will prove that R2n(a, b) is squarefree.

To write down these series explicitly, we use the Tate parameterization of Eλ. Recall that
there are power series

a4(q) = −5
∞∑
n=1

n3qn

1− qn
and a6(q) = − 1

12

∞∑
n=1

(7n5 + 5n3)qn

1− qn

and

X(u, q) =
∞∑

n=−∞

uqn

(1− uqn)2
− 2

∞∑
n=1

qn

(1− qn)2
∈ Q(u)[[q]]

Y (u, q) =
∞∑

n=−∞

u2qn

(1− uqn)3
+
∞∑
n=1

qn

(1− qn)2
∈ Q(u)[[q]]

such that
(
X(·, q), Y (·, q)

)
induces a group isomorphism of C×/qZ with the C-points on

ETate(q) : y2+xy = x3+a4(a)x+a6(q), when 0 < |q| < 1. See for example [Sil94, Chapter V].

We match this up with Eλ: for suitable q = Q2, we have an isomorphism φ : ETate(Q
2) ∼= Eλ

such that φ
(
X(−1, Q2), Y (−1, Q2)

)
= (1, 0) and φ

(
X(Q,Q2), Y (Q,Q2)

)
= (0, 0). The x-

coordinate on Eλ is then given in terms of u by

x(u,Q) =
X(u,Q2)−X(Q,Q2)

X(−1, Q2)−X(Q,Q2)

= − 4

(1− u)2

(
u− 2(1 + u)2Q+ (1 + u)2(1 + 8u+ u2)

Q2

u

− 8(1 + u)2(1 + 3u+ u2)
Q3

u
+ . . .

)
∈ Q(u)[[Q2/u]] +QQ(u)[[Q2/u]]

and from x(−Q,Q) = λ we have the relation

λ = 16(Q− 8Q2 + 44Q3 − 192Q4 + 718Q5 − 2400Q6 + 7352Q7 + . . .) .

We use Q as our parameter instead of λ and ξ(u,Q) = −x(u,Q)/4 instead of x; this simplifies
the formulas.

We first consider the series in Q expressing the ξ-coordinates. To obtain a further simplifi-
cation, we set ξ = Ξ/(1 − Ξ)2 (with Ξ tending to zero with ξ). Then we get the somewhat
simpler relation

Ξ(u,Q) = u− 2(1− u2)Q+ (1− u2)(1− 3u2)
Q2

u
+ 4(1− u2)2Q3 +O(Q4/u) .

Fix an nth root w of Q. We set ζm = exp(2πi/m). The Ξ-coordinates of the 2n-torsion
points are then given by Ξ(ζk2nw

`, Q), where ` ∈ {0, 1, . . . , n} and k ∈ {0, 1, . . . , 2n− 1}. For
` = 0 or ` = n, we restrict to 0 < k < n (this also excludes the 2-torsion points). Plugging
u = ζk2nw

` = ζk2nQ
`/n into the series for ξ, we obtain the relation

Ξk,`(Q) = ζk2nQ
`/n − 2Q+ ζ−k2n Q

2−`/n +O(Q1+2`/n) .
13



We set γk = ζk2n − 2 + ζ−k2n = 2(cos kπ
n
− 1). For ` = 0, we get

ξk,0(Q) =
1

γk

(
1− 2(γk + 4)Q+ (γk + 4)(γk + 10)Q2 + . . .

)
,

which tends to the nonzero value γ−1k as Q→ 0. For 0 < ` < n, the first two leading terms
in Ξk,`(Q) are

Ξk,`(Q) = ζk2nQ
`/n − 2Q+ . . . ,

and for ` = n, we have

Ξk,n(Q) = γkQ+ 2γk(γk + 2)Q3 + . . . .

Now we express Q in terms of Ξ. We know that Q tends to zero with Ξ, so we must have
0 < ` ≤ n in the relations above. Solving for Q, we obtain for 0 < ` < n

Qk,`(Ξ) = ζ−k2` Ξn/` +
2n

`
ζ−2k2` Ξ2n/`−1 + . . . ,

where we can restrict to 0 ≤ k < 2`. For ` = n, we get

Qk,n(Ξ) =
1

γk
Ξ− 2

γk + 2

γ3k
Ξ3 + . . . .

Here, 0 < k < n as before. In total, we obtain(
2 + 4 + 6 + . . .+ (2n− 2)

)
+ (n− 1) = (n− 1)n+ (n− 1) = n2 − 1 = d(2n) = degλ ψ2n

values of Q in terms of Ξ; this accounts for all possibilities. We observe that the n2−1 series
Qk,` all have distinct leading terms (note that 0 > γ1 > γ2 > . . . > γn−1 > −4).

We first consider the series of the form ξk′,0 ◦Qk,`. They have the form

(ξk′,0 ◦Qk,`)(α) =
1

γk′

(
1− 2(γk′ + 4)Qk,`(α) + . . .

)
.

The constant term determines k′, and the next term determines the leading term of Qk,` and
therefore k and `. So all these series are pairwise distinct (and also distinct from all series
ξk′,`′ ◦Qk,` with `′ > 0, since these series have positive valuation).

For the remaining series, we work with Ξ instead of ξ, so we consider Ξk′,`′ ◦Qk,`, where now
`′ > 0. We obtain the following different cases, where `, `′ < n.

(Ξk′,`′ ◦Qk,`)(α) = ζk
′`−k`′

2`n α`
′/` +

2`′

`
ζk
′`−k`′

2`n ζ−k2` α
(n+`′)/`−1 + . . . if `′ < `

(Ξk′,`′ ◦Qk,`)(α) = ζk
′−k

2n α + 2(ζk
′−k

2n − 1)ζ−k2` α
n/` + . . . if `′ = `

(Ξk′,`′ ◦Qk,`)(α) = ζk
′`−k`′

2`n α`
′/` − 2ζ−k2` α

n/` + . . . if `′ > `

(Ξk′,`′ ◦Qk,n)(α) =
ζk
′

2n

γ
`′/n
k

α`
′/n − 2

γk
α + . . .

(Ξk′,n ◦Qk,`)(α) = γk′ζ
−k
2` α

n/` +
2n

`
γk′ζ

−2k
2` α2n/`−1 + . . .

(Ξk′,n ◦Qk,n)(α) =
γk′

γk
α + 2

γk′(γk′ − γk)
γ3k

α3 + . . .
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We note that the second term vanishes if and only if (k′, `′) = (k, `), in which case we obtain
the excluded trivial series α. The last case in the list above is distinguished from the second
by the fact that the leading coefficient has absolute value 6= 1. Taking this into account, the
orders of the first two terms determine ` and `′. In all cases but the last, one easily sees
that the coefficients of the first and the second term together determine k and k′. In the last
case, writing ρ = γk′/γk 6= 1 for the first coefficient, the second coefficient can be written as
2ρ(ρ− 1)/γk, so both together determine k and then also k′ again.

So in all cases, the series Ξk′,`′ ◦ Qk,` determines the two pairs (k, `) and (k′, `′) uniquely
(unless (k, `) = (k′, `′)). As noted earlier, this implies the claim. �

Before we deduce consequences of this result, we need to introduce some further objects. For
n ≥ 3, let Zn ⊆ P1

a × P1
b × P1

λ be the curve given by the equations ψn(λ, a) = ψn(λ, b) = 0,
but excluding the components contained in the plane a = b. Since (for given λ) the roots
of ψn(λ, x) correspond to the x-coordinates of the points in Eλ[n]\Eλ[2], the Galois group Gn

of ψn(λ, x) over Q(λ) is PGL(2,Z/nZ) when n is odd, and is the subgroup of PGL(2,Z/nZ)
consisting of elements represented by matrices reducing to the identity mod 2 when n is
even. Over C(λ), we have to replace PGL by PSL; write G′n for the resulting group.

Denote by Tn the set of pairs of opposite elements of (Z/nZ)2 that are not killed by 2. Then
the action of Gn on the roots is the standard action on Tn. It follows that over C, Zn → P1

λ

is a Galois covering with group G′n acting diagonally on Tn × Tn \∆, where ∆ denotes the
diagonal. Therefore Zn splits into geometric components corresponding to the orbits of G′n
on Tn × Tn \∆. (The irreducible components over Q correspond to the orbits of Gn).

Note that the equation Rn(a, b) = 0 describes the projection of Zn to P1
a×P1

b . Proposition 17
then says that this projection maps Zn birationally onto its image, which we denote Cn.

We can write
ψn(λ, x) =

∏
d|n

ψ̃d(λ, x) ,

where ψ̃n(λ, x), considered as a polynomial in x over Q(λ), has as its roots exactly the x-
coordinates of points of exact order n on Eλ (if n > 2; we obviously have ψ̃1 = ψ̃2 = 1).
In [MZ13, Lemma 2.1], Masser and Zannier prove that ψ̃n is absolutely irreducible if n ≥ 3

is odd and that ψ̃n splits into three irreducible factors in Q[λ, x], which are absolutely
irreducible if n ≥ 4 is even (they correspond to fixing the point of order 2 obtained as
(n/2) · Px(λ)). We will reserve the term bicyclotomic polynomial for these (absolutely)
irreducible factors. So in the notation of [MZ13], a bicyclotomic polynomial B(λ, x) has the
form (note the reversal of the order of the variables)

B(λ, x) = B∗n(x, λ) for n ≥ 3 odd

or
B(λ, x) = B(0)

n (x, λ), B(1)
n (x, λ) or B(∞)

n (x, λ) for n ≥ 4 even.
The index n is the order of B. (There are also the three polynomials x, x− 1 and x− λ of
order 2, which we will not call ‘bicyclotomic’.)

Lemma 18. Let C be some geometric irreducible component of Cn, for some n ≥ 3. There
are bicyclotomic polynomials B1(λ, x) and B2(λ, x) such that C is contained in the projection
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of B1(λ, a) = B2(λ, b) = 0. Let F (a, b) = 0 be an equation for C. Then dega F = degb F ,
and this degree is a multiple of lcm(degλB1, degλB2).

Proof. Since each ψn is a product of (absolutely irreducible) bicyclotomic polynomials, it
is clear that every component of Zn must be contained in a curve of the form B1(λ, a) =
B2(λ, b) = 0. Let Z be the component of Zn projecting to C. By Proposition 17, the map
π : Z → C is birational. We have the following commuting diagram.

Z
πa,λ

}}
π

��

πb,λ

!!
Za,λ

�� !!

C

}}   

Zb,λ

��~~
P1
a P1

λ P1
b

Here Za,λ ⊆ P1
a × P1

λ is given by B1(λ, a) = 0; similarly for Zb,λ. Note that πa,λ is dominant,
since B1 is irreducible; similarly for πb,λ. It follows that

(1) degb F = (deg πa,λ)(degλB1) and dega F = (deg πb,λ)(degλB2) .

Considering the two factorizations of Z → P1
λ, we obtain (using that degxBj = 2 degλBj)

2 degb F = (degxB1)(deg πa,λ) = (degxB2)(deg πb,λ) = 2 dega F .

This shows the equality of degrees, and the relations (1) imply that the common degree is
divisible both by degλB1 and by degλB2. �

Corollary 19. No geometric component of any of the curves Cn for n ≥ 3 satisfies an
equation B(a, b) = 0 or B(b, a) = 0, where B is any bicyclotomic polynomial.

Proof. By Lemma 18, the polynomial F defining a component of Cn satisfies dega F = degb F .
But we have degxB = 2 degλB, so F cannot be a scalar multiple of B. �

We write C for the union of all the curves Cn, together with all curves given by equations of
the form B(a, b) = 0 or B(b, a) = 0 with a bicyclotomic polynomial B. The results shown
so far imply that for each (geometric) component C of C that is not of the form B(a, b) = 0
or B(b, a) = 0 for a bicyclotomic polynomial B, there is a unique n ≥ 3 such that C ⊆ Cm
exactly when n | m.

Proposition 20. Let α, β ∈ C \ {0, 1} with α 6= β.

(1) If (α, β) /∈ C, then T (α, β) = ∅. (This is true whenever Q(α, β) has transcendence
degree 2.)

(2) If (α, β) is a smooth point on C (i.e., it is a smooth point on one component of C and
not contained in any other component), then #T (α, β) ≤ 1.
In particular, #T (α, β) ≤ 1 whenever Q(α, β) has transcendence degree 1.

(3) If #T (α, β) ≥ 2, then (α, β) is one of the countably many singular points of components
of C or intersection points two distinct components of C. In particular, α and β are
algebraic.
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In general, #T (α, β) is at most the number of branches of C passing through (α, β).

Proof. Let Z be the union of the Zn, together with the curves defined by α = λ,B(λ, β) = 0
or by B(λ, α) = 0, β = λ. Then Z is smooth at all points (α, β, λ) with α, β, λ /∈ {0, 1,∞}.
(This is because the x-coordinates of torsion points on Eλ are all distinct, as long as λ 6=
0, 1,∞. In particular, for every n the projection of {ψn(λ, x) = 0} ⊆ P1

x × P1
λ to P1

λ is étale
over P1

λ \{0, 1,∞}. Since Zn is contained in the fiber square of this projection, its map to P1
λ

is also étale outside 0, 1,∞. Including points of order 2 and passing to the filtered union of
the Zn, we get the claim.)

By definition, T (α, β) is the projection to P1
λ of the preimage of (α, β) under the projection

Z → P1
a × P1

b , excluding {0, 1,∞}. Let λ ∈ C \ {0, 1} be such that P = (α, β, λ) ∈ Z. Since
P is smooth on Z, there is exactly one branch of C passing through (α, β) that locally is the
image of a neighborhood of P in the component of Z it lies on. The results shown above
imply that no two such branches can coincide. So we get the last statement (‘In general,
. . . ’) of the proposition; the others follow as special cases. �

Note that the inequality in the second statement of the proposition above is an equality
unless the corresponding value of λ is in {0, 1,∞}. This will never be the case when α or β
are transcendental. So in the case that the transcendence degree of Q(α, β) is 1, we have
the following (where we also use that non-smooth points on C must be algebraic).

Corollary 21. Let α, β ∈ C \ {0, 1} with α 6= β and such that Q(α, β) has transcendence
degree 1.

(1) If (α, β) ∈ C, then #T (α, β) = 1.
(2) Otherwise, T (α, β) = ∅.

Compare this to the upper bound #T (α, β) ≤ 6(12d)32 (where d is the degree of an irreducible
polynomial F ∈ Q[u, v] such that F (α, β) = 0) given in [MZ13]!

We can also improve on [MZ13] regarding an effective statement in this case. If α and β
satisfy a polynomial of degree d, then Masser and Zannier give a bound of π(12d)17/2 in
the main part of the paper and of 180πd log(180πd) in the appendix for the orders of the
corresponding torsion points on Eλ for λ ∈ T (α, β). We observe that the λ-degree of a
bicyclotomic polynomial of order n is

δ(n) =
n2

4

∏
p|n

(
1− 1

p2

)
>

2n2

π2

when n is odd, and is

δ(n) =
n2

12

∏
p|n

(
1− 1

p2

)
>

n2

2π2

when n is even. By Lemma 18, any component of C that is related to points of order n must
have degree (with respect to a or b) at least that large. So if α and β are related by an
equation of degree d, this implies that n < π

√
2d. This makes it fairly easy to enumerate all

curves of small degree that are components of C.
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In fact, we can obtain a list of the degrees of the components of C arising from two given
bicyclotomic polynomials by the following combinatorial approach. Let Ĝ0 denote the prin-
cipal congruence subgroup of level 2 of GL(2, Ẑ), where Ẑ is the pro-finite completion of Z,
so

Ĝ0 =
{
γ ∈ GL(2, Ẑ) : γ ≡ ( 1 0

0 1 ) mod 2
}
,

and let Ĝ be Ĝ0/{±I}, where I is the identity matrix. Then Ĝ acts on

M =
(
(Q/Z)2 \ {0}

)
/{±1} ,

which, after fixing a basis of the Q/Z-module Eλ,tors, can be identified with the set of x-
coordinates of torsion points of order ≥ 2 on Eλ. In particular, the Ĝ-orbits onM (except the
three consisting of a point of order 2) correspond bijectively to the bicyclotomic polynomials.
Also, Ĝ, with its diagonal action on M ×M , is the automorphism group of the pro-covering
Z → P1

λ over Q. The components of Z (and therefore also the components of its birational
image C) correspond bijectively to the orbits of Ĝ on M × M . Let O be such an orbit,
corresponding to the component Z of Z. Then the projection of O ⊆ M ×M to the first
factor will be an orbit of Ĝ onM , so corresponds to a bicyclotomic polynomial B1. Similarly,
the projection of O to the second factor corresponds to a bicyclotomic polynomial B2, and
Z is contained in the curve given by B1(λ, a) = B2(λ, b) = 0. We assume that none of the
projections consists of a point of order 2 (they lead to components of C given by equations
B(a, b) = 0 or B(b, a) = 0, where B is a bicyclotomic polynomial; these components are
easy to describe). Then the component C of C that is the projection of Z is given by an
equation F (a, b) = 0 with dega F = degb F = d, say. By the considerations in the proof
of Lemma 18, we have d = (deg πa,λ)(degλB1). So to determine d, we have to find the
degree of the covering Z → Za,λ, where Za,λ is given by B1(λ, a) = 0. But fixing a point
on Za,λ corresponds to fixing a representative m ∈ M of the projection of O to the first
component. Up to changing the basis of Eλ,tors used for the identification with (Q/Z)2, we
can take m = 1

n
mod Z, where n is the order of the points whose x-coordinates are the roots

of B1(λ, ·). Then deg πa,λ is the size of the fiber of O above m. The possible fibers are the
orbits of the stabilizer of m in Ĝ on the subset M2 of M corresponding to B2. If the order
of the points coming from B2 is n′, then the relevant group is

Gn,n′ =
{
γ ∈ GL(2,Z/n′Z) : γ ≡ I mod gcd(n′, 2), γ ≡ ( 1 ∗

0 ∗ ) mod gcd(n, n′)
}
/{±I} ,

acting on M2. This allows us to find the degrees of all components of C arising from B1

and B2. To illustrate this, we present a table giving the number of components of C for
small bidegrees (the bidegree of F ∈ Q[a, b] is the pair (dega F, degb F )).

bidegree (1, 2) (2, 4) (4, 8) (6, 12) (8, 16) (12, 24) (16, 32) (18, 36) (24, 48)

#components 3 4 3 4 3 4 3 4 3

bidegree (2, 1) (4, 2) (8, 4) (12, 6) (16, 8) (24, 12) (32, 16) (36, 18) (48, 24)

#components 3 4 3 4 3 4 3 4 3

bidegree (1, 1) (2, 2) (4, 4) (6, 6) (8, 8) (12, 12) (16, 16) (18, 18) (24, 24)

#components 3 18 45 44 57 68 96 76 161
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This is related to the sets Fd defined in [MZ13], which consist of polynomials of total degre d
defining components of C. Working with the bidegree instead of the total degree appears
to be more natural, since it is invariant under the action of the group S3 (generated by the
involutions (a, b) 7→ (1− a, 1− b) and (a, b) 7→ (1/a, 1/b)) that stabilizes C.
The file at [Stoa], when read into Magma, results in a list of defining polynomials F for all
components of C such that dega F + degb F ≤ 192.

(1, 1) : a+ b, a+ b− 2, 2ab− a− b.
(1, 2) : a− b2, a+ b2 − 2b, 2ab− a− b2.
(2, 1) : a2 − b, a2 − 2a+ b, a2 − 2ab+ b.

(2, 2) : a2 + b2 − 2b, a2 − 2a+ b2, a2 − 2ab2 + b2, 2a2b− a2 − b2,
a2 + 2ab− 4a+ b2, a2 + 2ab+ b2 − 4b, a2 − 2ab− 3b2 + 4b,

a2 + 2ab2 − 4ab− b2 + 2b, a2 + 4ab2 − 2ab− 3b2, a2 + 4ab2 − 6ab− 3b2 + 4b,

a2 − 4ab2 + 2ab+ b2, a2 − 4ab2 + 6ab− 4a+ b2, 3a2 + 2ab− 4a− b2,
2a2b− a2 − 4ab+ 2a+ b2, 4a2b− a2 − 2ab− b2, 4a2b− a2 − 6ab− b2 + 4b,

4a2b− 3a2 − 2ab+ b2, 4a2b− 3a2 − 6ab+ 4a+ b2.

(2, 4) : a2 + 4ab3 − 6ab2 − 3b4 + 4b3, a2 − 4ab3 + 6ab2 − 4ab+ b4,

4a2b− a2 − 6ab2 − b4 + 4b3, 4a2b− 3a2 − 6ab2 + 4ab+ b4.

(4, 2) : a4 − 4a3b+ 6a2b− 4ab+ b2, a4 − 4a3 + 6a2b− 4ab2 + b2,

a4 − 6a2b+ 4ab2 + 4ab− 3b2, 3a4 − 4a3b− 4a3 + 6a2b− b2.

Table 1. Polynomials of small bidegree defining components of C

As an illustration, in Table 1 we list the 35 polynomials of bidegrees (1, 1), (1, 2), (2, 1),
(2, 2), (2, 4) and (4, 2) defining components of C. The correctness of the list for bidegree (1, 1)
provides a simple proof of [MZ13, Theorem 2]. In general, we obtain the following refinement
of Corollary 21.

Corollary 22. Let α, β ∈ C \ {0, 1} with α 6= β such that Q(α, β) has transcendence
degree 1. Then #T (α, β) ≤ 1. If we are given an irreducible Polynomial F ∈ Q[a, b]
such that F (α, β) = 0, then we can effectively determine the set T (α, β).

Note that for the effectivity statement, we need to know that α and β generate a field
of transcendence degree 1, and we need to know the algebraic relation linking them. For
example, we cannot say whether T (e, π) is empty or not, since we do not know whether e
and π are algebraically dependent or not.

We have computed the complete list of all polynomials of bidegree (d, d) defining components
of C for all d up to 96. They were obtained either by computing resultants like Rm (but
using two bicyclotomic polynomials instead of twice ψm) and factoring the result, or by using
the relation between x(P ) and x(nP ) for suitable n, in cases where such a dependency was
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satisfied in the relevant Ĝ-orbit on M ×M . We used these polynomials as input for the
computations described in the next section.

7. Speculations on the size of T (α, β)

In the last case of Proposition 20 one would in general not expect that more than two
branches pass through the same point: such intersections are unlikely. This leads to the
following (perhaps somewhat bold) conjecture.

Conjecture 23. There are only finitely many pairs (α, β) ∈ Q̄×Q̄ with α, β /∈ {0, 1}, α 6= β
and #T (α, β) ≥ 3.

It would be interesting to investigate if this conjecture would follow from some version of
the Zilber-Pink Conjecture(s).

To get some evidence related to this question, we took all irreducible components over Q of C
given by equations f(a, b) = 0 with degab f := dega f + degb f ≤ 192 (as mentioned at the
end of the previous section, we had computed all these equations). We then computed all
intersections of two components {f1 = 0} and {f2 = 0} such that (degab f1)·(degab f2) ≤ 384,
and all singularities of components {f = 0} with (degab f)2 ≤ 384. After removing parts
contained in {a(1−a)b(1−b)(a−b) = 0}, we split the resulting finite schemes into irreducible
components over Q and computed the set T50(α, β) for a representative point (α, β) for each
of these irreducible components. Here

Tn(α, β) = {λ ∈ C \ {0, 1} : Pα(λ) and Pβ(λ) are both torsion of order ≤ n} .

To reduce the amount of computation, we make use of the fact that the group Γ = S3 × C2

acts on C, where the action of S3 is diagonal on both coordinates and generated by the
involutions x 7→ 1 − x and x 7→ 1/x, and the action of the cyclic group C2 is given by
swapping the coordinates. (This action lifts to an action on Z, where S3 acts diagonally on
(a, b, λ).) This implies that Γ also acts on the countable disjoint union of Q-integral finite
schemes making up the set of all (α, β) with #T (α, β) ≥ 2. It is therefore sufficient to find
one representative scheme in each Γ-orbit.

This computation produced 82 717 irreducible finite schemes, falling into 8 083 Γ-orbits,
and containing 2 212 784 geometric points in total, consisting of points (α, β) such that
#T50(α, β) ≥ 2. Of these, 180 schemes making up 24 orbits and containing 558 geometric
points have sets T50(α, β) with three or more elements. This supports Conjecture 23 in
that it shows that such pairs are quite rare. A list of representatives of all such orbits
with #T50(α, β) = 2 is obtained by loading the file at [Stob] into Magma. The orbits with
#T50(α, β) ≥ 3 are given with more detailed information in the file at [Stoc]. The latter
orbits are as follows. We begin with those that have #T50 = 3.

There is one example with α, β ∈ Q, which is represented by

{α, β} =
{3

8
,− 9

16

}
with T50(α, β) =

{
− 9

16
,

3

128
,

81

256

}
.

Note that α and β both reduce to ∞ mod 2, illustrating Corollary 4. The orders of the
points with x-coordinate α and β on Eλ are (4, 2), (6, 6) and (8, 4).
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Then there are six examples with α and β in a quadratic field, as listed in the following
table. The entry ‘orders’ records the torsion orders of the points with x-coordinate α and β,
for each of the given values of λ. (Note that this order may change by a factor of 2 under
the S3-action, since x 7→ 1/x interchanges the origin on Eλ with a point of order 2.)

α β T50(α, β) orders
7+5
√
−7

14
7−11

√
−7

14
{7−11

√
−7

14
, 21+31

√
−7

42
, 49−13

√
−7

98
} (6, 2), (8, 8), (6, 6)

1 +
√

2 −1 +
√

2 {−1, 7− 4
√

2± (4− 2
√

2)
√

2−
√

2} (4, 4), (5, 10), (5, 10)

5+3
√
−15

10
15−7

√
−15

30
{5−13

√
−15

10
, 45+11

√
−15

90
, 75+61

√
−15

150
} (6, 3), (4, 6), (12, 6)

15+7
√
−15

30
45−11

√
−15

90
{27+19

√
−15

54
, 45−11

√
−15

90
, 75−61

√
−15

150
} (5, 5), (6, 2), (6, 3)

1+
√
17

2
−7+

√
17

2
{−7+

√
17

2
, 33−7

√
17

2
, −31−7

√
17

2
} (4, 2), (3, 4), (3, 6)

−7+
√
17

2
33−7

√
17

2
{33−7

√
17

2
, −895+217

√
17

2
, 3+11

√
17

6
} (4, 2), (6, 4), (10, 10)

There are nine examples over quartic fields, one each over Q(
√

2,
√

3) (orders ((4, 4), (6, 3),
(10, 5)), Q(

√
−3,
√

13) (orders (4, 6), (6, 4), (10, 10)), a dihedral field containing Q(
√

2) (or-
ders (4, 8), (8, 4), (10, 10)), one containing Q(

√
5) (orders (4, 4), (6, 7), (6, 7)), one con-

taining Q(
√
−7) (orders (4, 2), (6, 6), (7, 7)), one containing Q(

√
17) (orders (3, 4), (4, 6),

(5, 10)) and one containing Q(
√

33) (orders (3, 6), (6, 4), (9, 6)). Another dihedral field con-
taining Q(

√
17) shows up twice, with orders (2, 6), (4, 6), (7, 7) and (4, 6), (5, 5), (7, 7).

There are two examples over fields of degree six, one over Q(ζ7) with orders (7, 7), (8, 8),
(9, 9), and one over a quadratic extension of the cubic field of discriminant −31 (orders (3, 6),
(6, 6), (7, 7)). In addition, there is one example over the octic field Q(ζ15) (orders (8, 4),
(8, 8), (6, 10)), one over another octic field that is Galois over Q and a quadratic extension
of Q(

√
−1,
√

5) (orders (4, 4), (7, 7), (7, 7)), and one example over a field of degree 16 (orders
(6, 6), (10, 10), (10, 10)).

Then there are two further orbits that have #T50 = 4. One is represented by

{α, β} =
{−7 +

√
17

2
,
9 +
√

17

2

}
with

T50(α, β) =
{−31− 7

√
17

2
,
33− 7

√
17

2
,
17− 23

√
17

34
,
3 + 11

√
17

6

}
.

The pairs of orders of the points are (6, 4), (4, 6), (6, 6), (10, 10). The other example is over
the (sextic) Hilbert class field of Q(

√
−23) and has orders (3, 6), (6, 6), (7, 7) and (14, 14).

Finally, we have

{α, β} = {
√
−1,−

√
−1} with T100(α, β) =

{
−1, 3± 2

√
2,

1± 2
√
−2

3

}
of size 5. The pairs of orders of the points are here (4, 4), (6, 6), (6, 6), (10, 10), (10, 10). All the
number fields occurring here have trivial class group, except for Q(

√
−15) and Q(

√
−3,
√

13),
which both have class number 2.
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Note that for any given bicyclotomic polynomial B(λ, x), we can take the factors of B(λ, α)
as a polynomial in λ over Q(α) and for each factor f consider a root λ0 of f and check if
the points on Eλ0 with x-coordinate β have finite order or not (for example by considering
the reductions modulo suitable prime ideals of small degree; note that a point of finite order
reduces to a point of the same finite order modulo all odd primes of good reduction, so if
we find two different orders in this way, we know that the point must have infinite order).
In this way, we checked that for any λ ∈ T (

√
−1,−

√
−1) not in the list above, the orders

of both pairs of points on Eλ must be larger than 200. We also found that all B(λ,
√
−1) of

orders up to 200 are irreducible over Q(
√
−1), with one exception at order 10. In addition,

we checked for each of the other 23 orbits of points with #T50 ≥ 3 that for any unknown
λ ∈ T (α, β) both points Pα(λ) and Pβ(λ) must have order > 100. This suggests the following
conjecture.

Conjecture 24.

(1) T (
√
−1,−

√
−1) = {−1, 3± 2

√
2, 1

3
± 2

3

√
−2}.

(2) All other sets T (α, β) have at most four elements.

We also remark that in our computations, we never found more than two branches through
any singular point of an irreducible component of C. So we propose:

Conjecture 25. There is a number N such that for any irreducible component C of C and
any (singular) point P on C outside the ‘bad set’ given by a(a− 1)b(b− 1)(a− b) = 0, there
are at most N branches of C through P (equivalently, P has at most N preimages in the
component Z of Z that maps birationally to C).

Our computations suggest that perhaps one can even take N = 2. Note that it would follow
that every λ ∈ T (α, β) has the property that [Q(α, β, λ) : Q(α, β)] ≤ N . This implies that
Conjecture 25 with an explicit N would give an effective procedure for determining T (α, β)
for algebraic α and β. Namely, we can find an explicit bound for the height of the elements
of T (α), say (see [Sil83]); together with the bound on the degree, this leaves finitely many
candidates for λ, which we can check for membership in T (α, β).

Our computations also suggest the following further conjecture.

Conjecture 26. Fix d ≥ 1. Then there are only finitely many α, β ∈ Q̄, both of degree at
most d, with α, β /∈ {0, 1}, α 6= β and #T (α, β) ≥ 2.

For example, it appears that other than the orbit mentioned above with #T (α, β) ≥ 3,
there might be only six further orbits (each of size 12) of pairs of rational numbers α and β
with #T (α, β) ≥ 2, represented by (−3, 3), (−5/4, 5/2), (−4/5, 8/5), (−3, 9), (−9/16, 9/4)
and (−27/5,−3/5). Note that for the first two of these, one can deduce that in fact
#T (α, β) = 2 via Corollary 8.

Conjecture 26 would follow from the following:

Conjecture 27. There is an absolute bound B such that for all α, β ∈ Q̄\{0, 1} with α 6= β
and #T (α, β) ≥ 2, we have h(α), h(β) ≤ B.
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degree [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6,∞)
1 0 0 1 3 0 2 0
2 7 13 16 19 12 5 2
3 6 15 37 17 5 1 0
4 21 44 78 34 23 2 4
5 13 37 47 19 3 1 0
6 28 68 125 44 7 7 0
7 0 30 58 20 3 0 0
8 10 104 105 40 11 3 0
9 2 52 64 22 3 0 0

10 13 92 113 48 5 2 0
11 3 51 66 15 1 1 0
12 14 94 137 41 10 7 0
13 1 59 55 9 5 0 0

total 118 659 902 331 88 31 6

Table 2. Distribution of heights of schemes with #T ≥ 2

Here h : Q̄→ R≥0 denotes the absolute logarithmic height.

We set h̄(α) =
(
h(α) + h(1 − α) + h(1 − 1/α)

)
/3; then h̄ is invariant under the S3-action

on P1(Q̄). Note that

h̄(α)− 2

3
log 2 ≤ h(α) ≤ h̄(α) +

1

3
log 2

(with equality on the left for α = −1 and on the right for α ∈ {2, 1
2
}), so that we could

formulate an equivalent conjecture using h̄ instead of h. To test Conjecture 27, we computed
h̄(α) + h̄(β) for a representative point (α, β) in each Γ-orbit of points of degree at most 13
that we encountered in our computation. This gave rise to the statistics in Table 2, where
we give the distribution of these height sums according to intervals of length 1 for the orbits
of given degree (excluding those with #T (α, β) ≥ 3).

The largest height sum encountered was ≈ 6.723796, occurring for degree 4. There is no
tendency towards a systematic increase of these heights with increasing degree of the points
or with increasing degree of the curves that were intersected. This lends some credibility to
Conjecture 27.
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