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1. Introduction

In [4], a reduction theory for binary forms of degrees three and four with integer
coefficients was developed in detail, the motivation in the case of quartics being to
improve 2-descent algorithms for elliptic curves over Q. In this paper we extend
some of these results to forms of higher degree. One application of this is to the
study of hyperelliptic curves, which are given by affine equations of the form

Y 2 = f(X) ,

where f(X) is a polynomial of degree n ≥ 5; we will show how to reduce such
an equation to one with smaller coefficients, via a unimodular transformation,
in a systematic and (in a certain sense) optimal way. This is often useful, since
the construction of such equations often results in polynomials with extremely
large coefficients. For example, see [14], where rather ad hoc methods are used for
reduction.

The goals of a reduction theory for binary forms (or for the corresponding poly-
nomials) are two-fold, corresponding to two basic problems: first, given such a
form defined over R, find an equivalent one (with respect to integral unimodu-
lar transformations) with ‘smaller’ coefficients; second, for forms defined over Z,
enumerate (up to equivalence) all forms with a given discriminant, or a given set
of invariants. Both these problems were studied for cubics and quartics over Z
in [4]; in this paper we only consider the first, but for forms of arbitrary degree.
The methods we use are inspired by Julia’s treatise [9]: we observe, however, that
Julia’s results are only explicit for degrees three and four.

The basic principle behind reduction in any set S on which the modular group
SL(2, Z) acts (on the right), is to associate to each element s ∈ S a covariant point
z(s) in the upper half-plane H. Here, covariance means that for each g ∈ SL(2, Z)
we have

z(s · g) = g−1(z(s)) ,

where SL(2, Z) acts on H in the usual way (on the left) via fractional linear
transformations. Each SL(2, Z)-orbit in H has a representative in the standard
fundamental region F defined as follows:

F = {z ∈ H : |z| ≥ 1, −1
2
≤ Re(z) ≤ 1

2
} ;

the representative in F is unique except if it is on the boundary of F , when
there are up to two representatives. We define s ∈ S to be reduced if and only
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if z(s) ∈ F . Note that there may be more than one way of defining the system
of covariant points s 7→ z(s), in which case there will be more than one notion
of ‘reduced’ for the set S. In such situations other considerations will determine
which is best. In particular, this happens when S is the set of real binary forms
of fixed degree n, where either n ≥ 5, or 3 ≤ n ≤ 4 and we fix a signature which
is neither totally real nor totally imaginary.

When S is the set of binary forms of fixed degree, the action of g = ( a b
c d ) ∈

SL(2, Z) on F (X,Z) is by substitution: (F · g)(X, Z) = F (aX + bZ, cX + dZ).

An alternate viewpoint is to associate to each s ∈ S a positive definite real
quadratic form Q(s) which is SL(2, Z)-covariant, instead of a point z(s) ∈ H.
There is no essential difference, since each such form Q has a unique root in the
upper half-plane, and conversely each point z ∈ H is the root of a positive definite
real quadratic, unique up to multiplication by a positive constant. In this paper
we will use both the language of covariant points and that of covariant quadratics,
and make use of the hyperbolic geometry of H in some of our arguments.

The paper is organised as follows. After setting up some notation, we take up
Gaston Julia’s thesis [9], where he introduces an approach to reducing real (and
also complex) forms of arbitrary degrees greater than two, which builds on earlier
work of Hermite. Julia develops some of the theory in general, but only gives
complete and explicit details for degrees three and four. We extend this to the
general case, and show how this approach leads to a reduction algorithm. We
then give some examples for the application of this algorithm, and finish with
some additional results for forms with only real roots.

We are grateful to David Masser and the referee for pointing out to us that in
A. Baker’s paper [1], bounds are obtained for the coefficients of an integer quartic
in terms of its invariants, using a reduction method. The method used by Baker
is based on precisely the same covariant quadratics as in [4] and here, and one
can check that the bounds on the leading coefficient obtained in [1] are almost the
same as those in [4]. The former point is not so surprising, given the uniqueness of
the covariant quadratic which we prove (see Proposition 3.4 below). However, we
note that in [4] a slightly improved bound is obtained for real quartics with exactly
two real roots (compare inequality (49) in [4], which agrees precisely with Baker,
to the improved inequalities (57) and (58)). Baker’s paper refers to Hermite [6],
but not to either Julia [9] or Birch and Swinnerton-Dyer [3].

In this paper we do not give explicit results on the bounds on the coefficients of
reduced forms. We defer this to a sequel [12], in which we will discuss the question
of whether the forms which are reduced, in the sense defined here, are in some
sense the “smallest” representatives of their SL(2, Z)-orbit.

We thank the referee for suggesting to us to relate our results to the notions of
stable and semi-stable forms.

2. Notation and Basics

In the following, it is is useful to consider the upper half-plane H to be a vertical
cross-section of hyperbolic 3-space or upper half-space H3. If we coordinatise H3
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as
H3 = {(z, u) | z ∈ C, u ∈ R+} ,

then H = {(t, u) | t ∈ R}, where we identify (t, u) ∈ H3 with t + iu ∈ H. The
action of SL(2, R) on H is then compatible with the action of SL(2, C) on H3.
This enlarged viewpoint was already used by Julia (following Hermite, Humbert,
Bianchi and others), and allows the unification of several cases which otherwise
have to be treated separately. In addition, this is the appropriate context in which
to consider the reduction of complex (as opposed to real) forms, which is necessary
in developing a reduction theory over number fields which are not totally real.

In this case, positive definite quadratic forms are replaced by positive definite
Hermitian forms; the correspondence between them and points in H3 is as follows.
A positive definite Hermitian form can be expressed as

Q(X, Z) = a |X|2 + b XZ̄ + b̄ X̄Z + c |Z|2 = a(|X − t Z|2 + u2 |Z|2)
with a, c, u > 0 and b, t ∈ C. The corresponding point in H3 is then (t, u).

In order to be able to treat the real and the complex cases in parallel later on,
we set HR = H and HC = H3. The symbol K will stand for either R or C. Let
K[X, Z]n be the space of forms of degree n in two variables with coefficients in K,
and let K[X, Z]′n denote the subset of forms without repeated factors. If K = R,
we also use the notations R[X, Z]r,s and R[X, Z]′r,s for the space of forms and the
subset of squarefree forms of signature (r, s), respectively.

To define a suitable covariant map F 7→ z(F ) for binary forms F , we can forget
that we are primarily interested in the action of SL(2, Z) on forms with integral
coefficients, and consider SL(2, K), acting on forms with coefficients in K (of fixed
degree, and maybe fixed signature when K = R). Then we will require the stronger
property that z be covariant with respect to the action of SL(2, K).

We further denote by H(R) the set of positive definite binary quadratic forms
and by H(C) the set of positive definite binary Hermitian forms. Note that H(R)
is naturally embedded in H(C) by

a X2 + 2b XZ + c Z2 7→ a |X|2 + b XZ̄ + b X̄Z + c |Z|2

(where a, b, c ∈ R). We denote the canonical map H(K) −→ HK by z (see above
for its definition). The maps for K = R and K = C are compatible, so we can use
the same name for both of them. There is an action of SL(2, C) on H(C), defined
by

Q(X,Z) · ( a b
c d ) = Q(aX + bZ, cX + dZ) ;

then z : H(C) → HC is covariant with respect to this action and the usual one
on HC. The analogous action of SL(2, R) on H(R) is compatible with this action.

Furthermore, for our purposes, we define the discriminant of the form Q ∈
H(C), with coefficients (a, b, c) as above, (with a, c ∈ R>0 and b ∈ C), by

disc Q = 4 (ac− |b|2) ∈ R>0 .

Then z(Q) = (t, u) with t = −b/a and u = disc(Q)1/2/(2a). It is easily seen
that the discriminant is invariant under the SL(2, C)-action. The same definition
applies also to forms Q ∈ H(R), which are characterised by b ∈ R, and in this case
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the discriminant is the negative of the usual discriminant. (We use the negative
here for notational convenience, since it is positive for positive definite forms.)

To summarise, we want to find an SL(2, K)-covariant map

z : K[X, Z]′n −→ HK (or −→ H(K))

that is computable (in a practical sense), and has the property that a form F is
‘small’ if its image z(F ) is in the fundamental domain F .

In the complex case, the map z should also be compatible with complex conjuga-
tion (acting on HC through the first coordinate). This implies that the restriction
of the complex map to real polynomials has image in HR ⊂ HC and thus also
provides a suitable solution for the problem over R.

We will use throughout the convention of using uppercase letters for binary
forms F (X,Z) of a given degree, and lowercase letters for the dehomogenised
polynomials f(X) = F (X, 1).

3. Julia’s approach

In his thesis [9], Gaston Julia deals with the problem of how to define a good
notion of being reduced for binary forms over R of degree larger than two, building
on earlier work of Hermite [6], [7]. His approach (cast in slightly more modern
language) is as follows. Let

F (X, Z) = a0X
n + a1X

n−1Z + a2X
n−2Z2 + · · ·+ anZ

n

be a binary form of degree n; we suppose1 that a0 6= 0. Then we can write

F (X, Z) = a0(X − α1Z)(X − α2Z) . . . (X − αnZ)

with some complex numbers αj. To obtain a representative point in the upper
half-plane, we construct a positive definite quadratic form

Q(X,Z) =
n∑

j=1

tj(X − αj Z)(X − ᾱj Z) ,

where the tj are positive real numbers that have to be determined.2 Julia shows
that the set of possible representative points is the convex hull (in hyperbolic
geometry) of the roots αj that lie in the upper half-plane or on the real axis.
If we act on F by some element from SL(2, R), and simultaneously perform an
appropriate operation on the tj, then the resulting Q will be the result of acting
on the original Q by the same substitution. Julia notes that the expression (first
introduced by Hermite in [6])

θ0 =
a2

0 (disc(Q))n/2

t1t2 . . . tn
is then an invariant. Furthermore, the leading coefficient of a form that has its
representative point in the fundamental domain F can be bounded in terms of θ0

1This is not an essential restriction (the relevant quantities can be obtained by a suitable
limiting process when a0 = 0), but serves to simplify the exposition.

2Julia uses t2j and u2
j to denote the positive real numbers tj .
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(and the same is true for the other coefficients if a2
0 is bounded below, as when

we are considering forms with integral coefficients). Therefore he chooses the
representative point that belongs to the quadratic Q that makes θ0 minimal. We
will see below that this gives indeed a well-defined point (i.e., there is a unique Q
that minimises θ0; Julia proves existence but not uniqueness). This then implies
that this point (or the quadratic Q) is a covariant (under SL(2, R)) of F , hence
can be used to define a reduction theory.

Julia has solved the optimisation problem for degrees three and four. His results
coincide with those obtained by one of us [4] by a different method. In [4] the
problem is approached from a different direction, by looking for positive definite
quadratic covariants of the given form. We now show why the results are neces-
sarily the same (at least in the purely real and purely complex cases in degrees
three and four). The reason is that the presence of sufficiently many symmetries
forces a unique covariant.

Lemma 3.1. Let G be a group acting on two sets A and B. Suppose that for
all a ∈ A, the stabiliser Ga of a in G has a unique fixed point z(a) ∈ B. Then
z : A → B is the unique G-equivariant map from A to B.

Proof: For definiteness, let us assume that G acts on the right on both sets. Let
a ∈ A and g ∈ G; then Ga·g = g−1Gag, and therefore, z(a) · g is fixed by Ga·g,
whence z(a · g) = z(a) · g. So z is indeed equivariant. Now let f : A → B be any
equivariant map, and let a ∈ A. Then for all g ∈ Ga, we have f(a) · g = f(a · g) =
f(a), hence f(a) is fixed by Ga, so f(a) = z(a) and f = z. 2

We can apply this to forms of degrees three and four, represented by the (un-
ordered) set of their roots.

Lemma 3.2.

(1) A set of three distinct points on the real line has exactly one SL(2, R)-
covariant point in the upper half-plane.

(2) A set of four distinct points on the real line has exactly one SL(2, R)-
covariant point in the upper half-plane.

(3) A set of two distinct points in the upper half-plane has exactly one SL(2, R)-
covariant point in the upper half-plane.

Proof: We use the Poincaré disk model for the hyperbolic plane. In each case,
we show that the stabiliser in SL(2, R) of the given configuration has a unique
fixed point in H. The claim then follows from Lemma 3.1.
(1) Since SL(2, R) acts transitively on sets of three real points, we can move
the points such that they become the vertices of an equilateral triangle on the
boundary of the disk. This shows that the set of three points has a stabiliser of
order three (given by rotations of the disk) with a unique fixed point.
(2) The group SL(2, R) preserves the cyclic ordering of the four points. Hence the
two diagonals of the ideal quadrilateral formed by the points are covariant, and
so is their point of intersection. Conversely, we can move this intersection point
to become the centre of the Poincaré disk; then the four points must be at the
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corners of a rectangle. This shows that the set of four points is stabilised by the
rotation by π around the centre, which is the unique fixed point.
(3) A similar argument as in part (2) shows that the midpoint of the geodesic
segment connecting the two points is the unique fixed point of the stabiliser. 2

The lemma implies that to a real form of degree three with three real roots,
or a real form of degree four with either four real roots or two pairs of conjugate
complex roots, we can assign one and only one covariant point in the upper half-
plane. Hence the methods of Julia in [9] and Cremona in [4] must obtain the same
result in these cases. For all real cubics and quartics, Julia’s covariant quadratic
may be expressed as follows (with n = 3 or n = 4):

Q0(F )(X, Z) =
n∑

j=1

1

|f ′(αj)|2/(n−2)
(X − αjZ)(X − ᾱjZ)

(where, as usual, f(X) = F (X, 1)); in fact, this expression gives a covariant for
all degrees n ≥ 3.

Lemma 3.3. Q0 is positive definite and a covariant of F for all n ≥ 3.

Proof: Positive definiteness is clear. Covariance with respect to translations is
obvious, and covariance with respect to the inversion (X, Z) 7→ (Z,−X) follows
from an easy calculation. 2

For complex forms F , we define Q0(F ) ∈ H(C) by

Q0(F )(X, Z) =
n∑

j=1

|X − αjZ|2

|f ′(αj)|2/(n−2)
;

then the same conclusions hold.

It follows from the uniqueness lemma that, for purely real cubics and purely real
or purely complex quartics, Q0 is the unique covariant quadratic (up to a scaling
factor) and its root in the upper half-plane is the unique covariant point.

The lack of uniqueness in the mixed cases for degrees three and four is appar-
ent in the literature; for real cubics with a single real root, Matthews [10] and
Belabas [2] use the unique root in the upper half-plane as representative point,
while both Julia and Cremona in [4] use a different choice, defined below, which
depends on all three roots. Other choices are also possible. Similarly with mixed
quartics, where Birch and Swinnerton-Dyer in [3] also use as covariant point the
unique root in the upper half-plane.

However, if we enlarge our perspective (again following Julia) by considering
the hyperbolic plane as embedded in hyperbolic three-space, so that we have an
action of SL(2, C) on complex forms, we find similar uniqueness results for general
forms of degrees three and four. Since SL(2, C) acts transitively on triples of
points in P1(C), the set consisting of the three roots of a form of degree three
has stabiliser isomorphic to the symmetric group S3, which fixes a unique point
in H3. Similarly, the set of roots of a form of degree four has a Klein four group
as stabiliser (coming from the symmetries of the cross-ratio), which again fixes
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a unique point in H3. If the given form has real coefficients, then this covariant
point lies in the ‘real’ hyperbolic plane; it is again given by Q0(F ) as above.

This enlarged perspective therefore eliminates the non-uniqueness of the covari-
ant point in H for real forms F of degrees three and four in the “mixed” cases.
While in these cases there is not a unique SL(2, R)-covariant point in H, there is
a unique SL(2, C)-covariant point z(F ) in H3, which lies in H. It is certainly a
good idea to profit from the inherent symmetry of the situation by treating real
and complex roots on an equal footing, all the more since this allows us to also set
up a reduction theory for complex forms with respect to a subgroup of SL(2, C),
e.g., SL(2, Z[i]). It therefore seems reasonable that this covariant z(F ) should be
the best one to use for reduction.

We summarize the conclusions for degrees three and four as follows, denoting
by z0(F ) the root z(Q0(F )) of Q0(F ) in HC.

Proposition 3.4. Let n = 3 or n = 4. There is a unique SL(2, C)-covariant map

z : C[X, Z]′n −→ HC (or −→ H(C))

given by F 7→ z0(F ) (or 7→ Q0(F )). This map is compatible with complex conju-
gation, and hence restricts to an SL(2, R)-covariant map

z : R[X, Z]′n −→ HR (or −→ H(R))

which, for real forms of pure signature, is the unique such covariant map.

For forms of degree five and higher, the stabiliser of the set of roots is usually
trivial, and symmetry does not help to fix a covariant. In this case, we fix it by
solving Julia’s optimisation problem. As it turns out (see Corollary 5.4 below), this
solution can also be characterised by a nice geometric property. This fact provides
some additional justification for considering Julia’s covariant as the ‘best’ one.

The root z0(F ) of Q0(F ) in H is a covariant for any real form F with distinct
roots. This means that we can use it to define a reduction theory — we call a
form F Q0-reduced if z0(F ) is in the usual fundamental domain F , and we can
Q0-reduce a form by moving z0(F ) into the fundamental domain by the action
of SL(2, Z). The advantage of this definition is that it is easily implemented, since
Q0(F ) is easy to write down. But it does not give optimal results in general. In
particular, it is not Julia’s covariant if the degree is five or more. (See Section 6
below for an example.)

4. Implementing Julia’s approach

We consider real and complex forms in parallel.

Definition 4.1. A nonzero binary form F of degree n is called stable, if none of
its factors (or roots) has multiplicity ≥ n/2. (In particular, we must have n ≥ 3.)

The name derives from the fact that these are exactly the forms that are sta-
ble with respect to the action of SL(2, K) in the sense of Mumford’s Geometric
Invariant Theory, compare [11].
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Recall our notation:

F (X, Z) = a0X
n + a1X

n−1Z + a2X
n−2Z2 + · · ·+ anZ

n ∈ K[X, Z]n

is a real or complex binary form of degree n; we suppose that a0 6= 0. Then we
have

F (X, Z) = a0(X − α1Z)(X − α2Z) . . . (X − αnZ)

with some complex numbers αj. Unless otherwise specified, we suppose that F is
stable.

The notation used in the following refers to Hermitian forms (i.e., the case
K = C). When K = R, a term like |X−α Z|2 is to be read as (X−α Z)(X− ᾱ Z),
corresponding to the embedding H(R) → H(C).

We consider the positive definite form

Q(X, Z) =
n∑

j=1

tj|X − αj Z|2 ∈ H(K) ,

where the tj are positive real numbers, and we want to choose them in such a way
as to minimise the quantity θ, where3

θ =
|a0|2(disc Q)n/2

nn t1t2 . . . tn
.

(Recall that with our definition of disc Q, it is a positive real number.)

If we write Q(X, Z) = s(|X − t Z|2 + u2 |Z|2) with s, u > 0 and t ∈ K, we then
find

(4.1)

s =
n∑

j=1

tj ;

st =
n∑

j=1

αj tj ;

s(|t|2 + u2) =
n∑

j=1

|αj|2 tj ;

1
4
disc Q = s2u2 =

∑
j<k

|αj − αk|2 tjtk .

To deduce the fourth equation from the first three (which are obvious from the
definition of Q), write

2s2u2 = s(|t|2 + u2) · s + s · s(|t|2 + u2)− st · st̄− st̄ · st

=
n∑

j,k=1

(αjᾱj + αkᾱk − αjᾱk − ᾱjαk)tjtk

=
n∑

j,k=1

(αj − αk)(ᾱj − ᾱk)tjtk =
n∑

j,k=1

|αj − αk|2tjtk = 2
∑
j<k

|αj − αk|2tjtk .

3Our θ differs by a factor of (2/n)n from Julia’s θ0.
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Now minimising θ is equivalent to minimising disc Q under the side condition
that t1t2 . . . tn is constant (equal to 1, say). Let V0 denote the subspace of Rn given
by

∑
j xj = 0. Writing tj = exp(xj) where xj ∈ R, we then have to minimise

D(x) =
∑
j<k

|αj − αk|2 exp(xj + xk)

on V0. Now we have the following lemma.

Lemma 4.2. If F is stable, then D is strictly convex from below on Rn. If x
varies in V0 in such a way that |x| tends to infinity, then D(x) tends to infinity as
well. In other words, the set {x ∈ V0 | D(x) ≤ C} is compact.

Hence D has a unique minimum on V0, and the minimising point is the only
critical point of D in V0.

Proof: For the first claim, consider a point x ∈ Rn and a line through it,
parametrised as y = x + λu, where 0 6= u ∈ Rn. Then

d2

dλ2
D(x + λu)

∣∣
λ=0

=
∑
j<k

|αj − αk|2(uj + uk)
2 exp(xj + xk) ≥ 0 .

If this expression vanishes, we must have uj + uk = 0 for all pairs (j, k) such
that αj 6= αk. This implies the contradiction u = 0, since there are at least
three distinct zeroes αj. Hence the second derivative of D is positive definite,
implying strict convexity. This already implies that there is at most one critical
point for D|V0 .

For the second claim, take some x in V0 and assume that xj + xk ≤ C for all
pairs (j, k) such that αj 6= αk (this is equivalent to saying that D is bounded).
We fix j and let I = {k | αj = αk} and J = {k | αj 6= αk}; we set d = #I. We
now add these inequalities over all k ∈ J ; this gives

(4.2) (n− d)C ≥ (n− d)xj +
∑
k∈J

xk = (n− d)xj −
∑
k∈I

xk .

Adding this now for all j ∈ I, we obtain

d(n− d)C ≥ (n− d)
∑
j∈I

xj − d
∑
k∈I

xk = (n− 2d)
∑
j∈I

xj .

Since 2d < n by assumption (F is stable), we then have∑
j∈I

xj ≤
d(n− d)

n− 2d
C .

Using this in inequality (4.2), we get

xj ≤
n− d

n− 2d
C ,

so all xj are bounded from above. Because
∑n

j=1 xj = 0, they have to be bounded
from below, too.

The statement in the second paragraph is then clear. 2
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The preceding lemma guarantees us a unique solution to our minimisation prob-
lem. Since θ is an invariant, this implies that the (unique) minimising Q ∈ H(K)
is a covariant of F under SL(2, K). This allows us to define a reduction theory.
We let z(F ) = z(Q) be the point in the upper half-plane or half-space associated
to Q; then z(F ) is also a covariant of F , as explained in the introduction.

Definition 4.3. A stable form F (X,Z) ∈ R[X, Z] is called reduced if z(F ) lies
in the standard fundamental domain F of SL(2, Z), where z(F ) is the root in the
upper half-plane H of the unique quadratic covariant Q(X, Z) which minimises θ.

The covariance of z(F ) implies the following result.

Proposition 4.4. Each SL(2, Z)-orbit of stable real binary forms contains at least
one reduced form F .

There will usually be exactly one reduced form in each orbit (up to sign when
the degree is odd), unless z(F ) is on the boundary of the fundamental domain,
when there may be two.

In order to find a reduced form in the orbit of a given form F , we can proceed
as follows. Find z(F ); then use the usual algorithm to find S = ( a b

c d ) in SL(2, Z)
such that S · z(F ) ∈ F . Then F · S−1 = F (dX − bZ,−cX + aZ) is reduced.

For complex forms F and a suitable subgroup Γ of SL(2, C), for example Γ =
SL(2,OK) for the ring of integers OK in an imaginary quadratic field K, we can
make a similar definition (given a fundamental domain for the action of Γ on HC).

More generally, if we want to set up a reduction theory for binary forms over
an arbitrary number field K, we consider the action of SL(2,OK) on a product
Hr1

R × Hr2
C (where K has r1 real and r2 pairs of conjugate complex embeddings)

through the various embeddings σ of K in R or C. Given a stable form F ∈
K[X, Z], we obtain a tuple of covariants

z(F ) = (z(F σ))σ ∈ Hr1
R ×Hr2

C .

We call F reduced if z(F ) is in a fixed fundamental domain for the action of
SL(2,OK).

To make this practical, we need some means of actually finding z(F ), or equiv-
alently, the minimising quadratic or Hermitian form Q.

The first step is to write down the conditions for a critical point of D on V0.
They are

n∑
k=1

|αj − αk|2 exp(xj + xk) = λ for all j ,

where λ is a Lagrange multiplier. Going back to our original variables, this means

(4.3) tj

n∑
k=1

|αj − αk|2 tk = λ for all j .
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Using the formulas (4.1), we find that

n∑
k=1

|αj − αk|2 tk = s(|t− αj|2 + u2) .

Summing equations (4.3) over j, we obtain 2s2u2 = nλ. Hence a set of minimising
values of tj must satisfy

(4.4) tj =
2

n

s u2

|t− αj|2 + u2
.

This shows that we can assume without loss of generality that s = 1. From
s = 1 =

∑
j tj and st = t =

∑
j αjtj, we deduce that the following two equations

must hold.

(4.5)

n∑
j=1

u2

|t− αj|2 + u2
=

n

2
n∑

j=1

t− αj

|t− αj|2 + u2
= 0

In the real case K = R, we can replace αj in the numerator of the second equation
by Re(αj) by combining the terms corresponding to conjugate roots.

Conversely, suppose that these two equations are satisfied for some t ∈ K and
u > 0. We can then define positive tj by formula (4.4) with s = 1. It is easily
checked that we then have

n∑
j=1

tj|X − αj Z|2 = |X − t Z|2 + u2 |Z|2

and that equations (4.3) are also satisfied with λ = 2u2/n. Hence every solution
to (4.5) gives rise to a critical point of D, which then must be the unique min-
imising point. We have therefore proved the first part of following result. For
the statement, we consider H = HR as embedded into HC by t + ui 7→ (t, u) as
described in Section 2.

Proposition 4.5. For a stable form F , the representative point z(F ) ∈ HK is
given as z(F ) = (t, u), where (t, u) is the unique solution (in K × R+) of the
system (4.5).

If F is a complex form and z(F ) = (t, u), then z(F̄ ) = (t̄, u). In particular, if
F is a real form, then z(F ) does not depend on whether we consider F to be real
or complex.

Proof: We only have to prove the second part. But this simply follows by
conjugating the system of equations (4.5) for F , leading to the corresponding
system for F̄ , but with t̄ instead of t. This then implies that for a real form F ,
considered as a complex form, z(F ) = (t, u) must have t ∈ R and hence is the
same as z(F ) for F considered as a real form (justifying the use of z for both
maps). 2
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We can use this proposition to find z(F ) numerically, by performing a search for
a solution of (4.5). From a practical point of view, the main point of this result
is that it reduces the original optimisation problem in the n variables tj to a new
optimisation problem in only two (or three) real variables t and u (or Re(t), Im(t)
and u if K = C).

5. A geometric criterion

In the following, we will always consider z(F ) as a point in HC; if F is real, this
is done via the embedding of HR in HC.

There is another nice description of z(F ). We introduce the following expression
in two variables t ∈ K and u ∈ R+ associated to the form F .

F̃ (t, u) = |a0|2
n∏

j=1

(|t− αj|2 + u2) .

Then it is easily verified that we obtain equations (4.5) by setting the logarithmic

partial derivatives of F̃ (t, u)/un (considered as a function of three real variables
when K = C) equal to zero. Hence:

Proposition 5.1. The representative point z(F ) of a stable form F is given as
z(F ) = (t, u) ∈ HK, where (t, u) is the unique minimising point (in K × R+) of
the function

(t, u) 7−→ F̃ (t, u)

un
.

Moreover, the minimal value of θ is given by

θ = θ(F ) = min
(t,u)

F̃ (t, u)

un
.

If F is a real form that splits over R, then we have F̃ (t, u) = |F (t+ui, 1)|2, and
hence z(F ) is the unique minimising point in the upper half-plane of

z 7−→ |F (z, 1)| · Im(z)−n/2 .

Proof: It is easily seen that F̃ (t, u)/un tends to infinity as u → 0 or u → ∞ or
|t| → ∞, hence there exists a (global) minimum. By the results of the preceding
section, this is then the unique critical point.

It remains to prove the assertion about θ. This follows from disc Q = 4 u2,

equations (4.4) and the definition of F̃ . 2

We can use this to extend the definition of θ to arbitrary forms F by letting

θ(F ) = inf
(t,u)

F̃ (t, u)

un
.

A form is called semi-stable if all its roots have multiplicity ≤ n/2. This definition
again follows Mumford’s GIT.

Proposition 5.2. A form F is semi-stable if and only if θ(F ) > 0.
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Proof: We always have that F̃ (t, u)/un tends to infinity if u or |t| tend to infinity.
Now suppose t stays away from all roots αk 6= αj for some fixed j. Then we see

easily that F̃ (t, u)/un ≥ C u2d−n where d is the multiplicity of the root αj. So for

semistable F , F̃ (t, u)/un is bounded from below by a positive constant.

On the other hand, when F is not semi-stable, we have a root α of multiplicity

d > n/2, and then F̃ (α, u)/un tends to zero as u tends to zero, so θ(F ) = 0. 2

If there are two roots of multiplicity n/2, then F is a power of a quadratic form,
and there is no reasonable choice of z(F ) (any point on the geodesic joining the
two roots could be taken). The exception is when K = R and the quadratic form
is positive definite; then there is a unique point of intersection of the geodesic
with HR ⊂ HC, which can serve as z(F ). If there is a unique root of maximal
multiplicity d ≥ n/2, then the only reasonable choice for z(F ) would be that root;
of course this z(F ) is no longer in the upper half-space, so we cannot use it for
reduction purposes.

Note also that if F is not semi-stable, then the coefficients of F can be made
arbitrarily small using suitable elements of SL(2, K), i.e., F is a “nullform” in the
sense of Hilbert [8].

To obtain a nice geometric description, we consider again the upper half-spaceH3,
and we view the roots αj of F as lying on the ‘floor’ or boundary of H3, identi-

fied with P1(C). Then an individual factor in the definition of F̃ is the squared
(Euclidean) distance from (t, u) to the root α, whereas

log
|t− α|2 + u2

u

measures the hyperbolic distance between (t, u) and α ∈ C, up to some arbitrary
additive constant. More precisely, the difference of these distances for two points
lying on a geodesic with α as a limit point is the same as their (oriented) hyper-
bolic distance. Furthermore, the points with the same ‘distance’ from α lie on a
horosphere at α. So we have the following interpretation.

Proposition 5.3. The representative point z(F ) is the unique point in upper half-
space such that the sum of its distances from all the roots of F is minimal.

Note that these distances are not preserved by the action of SL(2, C) — the
additive constant changes. If we add 2 log |a0|, then the sum of the distances
becomes invariant (if we act on F by S ∈ SL(2, C) and on (t, u) by S−1).

We can imagine a point in upper half-space that is drawn toward each of the
roots by a force of equal magnitude in an attempt to minimise the total distance
to the roots. The total distance will be at a minimum when the forces are in an
equilibrium. This gives the following.

Corollary 5.4. The point z(F ) is characterised by the property that the unit
tangent vectors at z(F ) in the directions of the roots of F add up to zero.

Proof: Up to a sign, the sum of unit tangent vectors mentioned in the statement

is the gradient of log(F̃ (t, u)/un). 2
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This property is obvious in the low degree cases n = 3 and n = 4; and it is this
property that gives the correct generalisation to higher degrees.

There is a slightly more elegant way of formulating Proposition 5.1. In order to
achieve this, we define the resultant of a binary form F and a Hermitian form Q
by the rules

Res(aX − bZ, Q) = Q(b, a) and Res(F1F2, Q) = Res(F1, Q) Res(F2, Q) .

This is inspired by some of the properties of the usual resultant of two binary
forms. Then it is easily seen that

F̃ (t, u)

un
=

2n Res(F, Q)

(disc Q)n/2

for Q ∈ H(C), if z(Q) = (t, u). Hence the following holds.

Corollary 5.5. For F ∈ C[X,Z]n, we have

θ(F ) = inf
Q∈H(C)

2n Res(F, Q)

(disc Q)n/2
.

When F is stable, then the infimum is a minimum and is attained at a unique
form Q, up to scaling, and we have z(F ) = z(Q).

A simple consequence of this is that θ(F1F2) ≥ θ(F1)θ(F2), with equality if and
only if z(F1) = z(F2) (provided that both are defined).

6. The reduction algorithm and examples

We are now considering only real forms F , with covariant point z(F ) ∈ H. We
want to find a reduced form in the orbit of F under SL(2, Z).

Given the definition of the covariant point z(F ) associated to each form F , the
procedure to reduce F is standard; we recall it here and make some remarks of a
practical nature.

Let F be a binary form of degree n ≥ 3 with integral coefficients; we want to find
a reduced form that is SL(2, Z)–equivalent to it. We proceed as follows. First find
z := z(F ). Repeat the following steps while z is outside the usual fundamental
domain F for SL(2, Z).

1. Let m be the integer nearest to Re(z) and set F (X, Z) := F (X + mZ, Z)
and z := z −m.

2. If |z| < 1, then set F (X, Z) := F (Z,−X) and z := −1/z.

After finitely many passes through the loop, z will be in F , and F will be reduced.

For a practical implementation, a few remarks are useful.

Firstly, it may be a good idea to use z0(F ) as given by Q0(F ) instead of z(F )
to start with, since it is much more easily (and speedily) computed. When z0(F )
is in F , we expect that in most cases z(F ) will not be very far away from F . This
should make numerical methods easier to apply than when z(F ) is very close to
the real axis. Furthermore, only a few extra steps will be necessary to move z(F )
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into F , so we will probably gain more than we lose by this slightly devious way of
performing the reduction.

Secondly, in order to compute z0(F ) or z(F ), we know of no better way than
first to find all the complex roots of F (X, 1) numerically. The resulting value of z
will have finite precision, and this precision will decrease during the computation.
Therefore it seems advisable to recompute z := z(F ) (or z0(F )) from time to time.

Thirdly, some care should be taken with the condition for leaving the loop. If
taken literally, infinite looping can result from rounding errors when z is near the
boundary of F .

We now proceed to give some examples that demonstrate how to use our ap-
proach to obtain smaller models for hyperelliptic curves over Q. Such a hyperel-
liptic curve can be given by an affine equation of the form

y2 = f(x) ,

where f(x) is a square-free polynomial with integral coefficients of degree d ≥ 5
(we are excluding curves of genus less than 2; the genus of the curve above is
g = b(d− 1)/2c). In order to obtain a smooth projective model, we write f(x) =
F (x, 1) with a form F (x, z) of even degree n = 2dd/2e = 2g + 2. The equation

y2 = F (x, z)

then gives a smooth projective model of the curve, embedded in a weighted projec-
tive plane P2

g (where x and z have weight 1 and y has weight g + 1). Equivalently,
we can glue together the two affine models

y2 = F (x, 1) and w2 = F (1, z)

with the identifications xz = 1, y = wxg+1. The modular group SL(2, Z) acts
on P2

g through its action on x and z; so we can use it to find a better model by
reducing the form F . In the examples below, we will make extensive use of our
convention f(x) = F (x, 1) (similarly for Fj and fj).

The first example is taken from H.-J. Weber’s thesis [14], in which he considers
certain hyperelliptic curves with modular Jacobians. Weber tries to simplify the
models he obtains by a trial-and-error approach. One of his final models is given
by

y2 = f(x) = 19x8 − 262x7 + 1507x6 − 4784x5 + 9202x4 − 10962x3

+ 7844x2 − 3040x + 475 .

(See [14] or [15, p. 284].) Let us follow the algorithm as applied to F in some
detail. For the first reduction steps, we use z0(F ). The roots of f are

0.42798171, 1.30152156, 1.31947230, 4.31651243,

1.69098301± 0.72287100 i, 1.52100984± 0.12866975 i .

From the roots, we compute Q0(F ) and its root

z = z0(F ) = 1.38323301 + 0.31233552 i .
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The integer m in the algorithm is 1, so we do a shift and replace f with

f1(x) = f(x + 1)

= 19x8 − 110x7 + 205x6 − 180x5 + 47x4 + 40x3 − 35x2 + 10x− 1

and z with z1 = z − 1 = 0.38323301 + 0.31233552 i. Since we have |z1| < 1, we
invert f1 to get

f2(x) = x8f1(−1/x)

= −x8 − 10x7 − 35x6 − 40x5 + 47x4 + 180x3 + 205x2 + 110x + 19

and set z2 = −1/z1 = −1.56792167 + 1.27785869 i. In the next pass through the
loop, m = −2, so

f3(x) = f2(x− 2) = −x8 + 6x7 − 7x6 − 12x5 + 27x4 − 4x3 − 19x2 + 10x− 5

and z3 = z2 + 2 = 0.43207833 + 1.27785869 i. Since z3 ∈ F , we see that F3 is
Q0-reduced. Now we use Julia’s covariant z(F ). We find the roots of f3 and use
some numerical method to compute

z4 = z(F3) = 0.64189877 + 1.18525166 i .

This is not in F , and m = 1 in our algorithm. Hence we set

f5(x) = f3(x + 1) = −x8 − 2x7 + 7x6 + 16x5 + 2x4 − 2x3 + 4x2 − 5

and z5 = z(F5) = z4 − 1 = −0.35810123 + 1.18525166 i ∈ F , so F5 is reduced.

To summarise, our algorithm produces after the first step (using z0(F )) the
model

y2 = −x8 + 6x7 − 7x6 − 12x5 + 27x4 − 4x3 − 19x2 + 10x− 5 ,

and after the second step (using z(F ))

y2 = −x8 − 2x7 + 7x6 + 16x5 + 2x4 − 2x3 + 4x2 − 5 .

Incidentally, the fact that these two are distinct justifies our claim that z0(F ) is
in general not Julia’s z(F ).

Another example is related to work by X. Wang.4 This time, it concerns a
genus 2 curve, and the initial model is

y2 = x6 + 30x5 + 371x4 + 2422x3 + 8813x2 + 16968x + 13524 .

After Q0-reduction, we obtain

y2 = x6 − 4x4 + 2x3 + 8x2 − 12x + 9 ,

and finally
y2 = x6 + 6x5 + 11x4 + 6x3 + 5x2 + 4 .

Here is a third example that shows that the Q0-reduced and the reduced form
do not always differ by a shift. Consider

f(x) = 6x6 + 8x5 − 10x4 − 4x3 + 10x2 − 6x + 5 .

4Wang’s work is described in [13]. The curve in the example is the curve of level 147; the
model was communicated by Wang to the authors of [5].
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This is Q0-reduced (z0(F ) is near i, and slightly above the unit circle), but in order
to find the reduced representative, we have to invert (since z(F ) is also near i, but
slightly below the unit circle).

7. More specific results in the totally real case

In this section, we make z(F ) rather explicit for totally real forms F , i.e., real
forms that split into linear factors over R. The result is as follows.

Proposition 7.1. Let F (X, Z) be a totally real form of degree n ≥ 3 with distinct
roots. Then z(F ) is the unique root in the upper half-plane of G(X, 1), where

G(X, Z) =
X FX(−FZ(X, Z), FX(X, Z)) + Z FZ(−FZ(X, Z), FX(X, Z))

n F (X, Z)

is a binary form of degree (n − 1)(n − 2). (Here, FX and FZ denote partial
derivatives).

Proof: Note that G(X, Z) is indeed a polynomial. To see this, let

G̃(X, Z) = X FX(−FZ(X, Z), FX(X, Z)) + Z FZ(−FZ(X, Z), FX(X, Z))

be the numerator of G. Let a be a root of F , so that F (X, Z) = (X−aZ)H(X, Z).
Then

FX(U, V ) = H(U, V ) + (U − aV )HX(U, V )

FZ(U, V ) = −aH(U, V ) + (U − aV )HZ(U, V ) ,

so

XFX(U, V ) + ZFZ(U, V )

= (X − aZ)H(U, V ) + (U − aV )(XHX(U, V ) + ZHZ(U, V )) .

The first term on the right is a multiple of X − aZ for any U, V ; so is the second
when U = −FZ(X, Z) and V = FX(X, Z), since nF = XFX + ZFZ implies
0 = aFX(a, 1) + FZ(a, 1), so U − aV = −(FZ + aFX) is zero at (a, 1). Hence each

linear factor of F divides G̃, and since F has no repeated factors, G = G̃/(nF ) is
a polynomial.

The proof will now be in two steps. The first step is to show that z(F ) really is
a root of G(X, 1). The second step is to show that G(X, 1), which is a polynomial
of degree (n− 1)(n− 2), has at least n(n− 3) real roots, leaving z(F ), z̄(F ) as the
only possible pair of complex conjugate roots.

For the first step, recall that z(F ) is the point z = t+ iu in the upper half-plane
minimising

F̃ (t, u)

un
=

f(z)f(z̄)

(Im z)n

(with the usual convention f(z) = F (z, 1); this equality is only valid when all
the roots of f are real). Taking z = t + iu and z̄ = t − iu as new variables, the
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necessary conditions for the minimum can be written (after some simplification)
as

(z − z̄)f ′(z) = n f(z) and (z − z̄)f ′(z̄) = −n f(z̄) .

We can solve the first of these two equations for z̄, obtaining

z̄ = z − n
f(z)

f ′(z)
=: λ(z) ;

then we substitute this expression for z̄ in the second equation. We get

(7.1) f(z) f ′
(
z − n

f(z)

f ′(z)

)
+ f ′(z) f

(
z − n

f(z)

f ′(z)

)
= 0 .

Multiplying this by f ′(z)n−1 and re-writing the expression in terms of the homo-
geneous polynomial F (note that f ′(z) 6= 0; otherwise f(z) would have to vanish
also, but f was assumed to be squarefree), we get

0 = F (z, 1) FX(z FX(z, 1)− n F (z, 1), FX(z, 1))

+ F (z FX(z, 1)− n F (z, 1), FX(z, 1))

= F (z, 1) FX(−FZ(z, 1), FX(z, 1))

+ 1
n

(
−FZ(z, 1) FX(−FZ(z, 1), FX(z, 1)) + FX(z, 1) FZ(−FZ(z, 1), FX(z, 1))

)
= 1

n
FX(z, 1)

(
z FX(−FZ(z, 1), FX(z, 1)) + FZ(−FZ(z, 1), FX(z, 1))

)
.

(We have again used the well-known relation XFX +ZFZ = nF .) This shows that
G(z(F ), 1) = 0.

For the second step, we again use that if f(x) 6= 0, then

(7.2)
f ′(λ(x))

f(λ(x))
= −f ′(x)

f(x)

implies that G(x, 1) = 0. We want to show that between any two consecutive
zeroes of f (considered as lying on the circle P1(R)), there are at least n− 3 real
zeroes of G(x, 1). Since G is easily seen to be a covariant of F , we can assume that
the two consecutive roots we are considering are 0 and 1. The rational function
f ′/f has simple poles (with residue 1) at each of the roots of f and is monotonically
decreasing (as can be seen from the partial fraction decomposition). Hence the
right hand side of our equation grows monotonically from −∞ to +∞ in the open
interval (0, 1). On the other hand, the function λ(x) = x−nf(x)/f ′(x) approaches
zero from below when x approaches zero from above, it approaches 1 from above
when x approaches 1 from below, and it has a unique (simple) pole of positive
residue in the open interval (0, 1). This shows that when x goes from 0 to 1, the
value of λ(x) goes from 0 through −∞ = ∞ (on P1(R)) to 1. The function f ′/f
has n− 2 simple poles outside the closed interval [0, 1], hence (f ′/f)(λ(x)) has (at
least) n− 2 simple poles in the open interval (0, 1). Between any two consecutive
of these poles, there must be a value of x satisfying equation (7.2). This shows
that there are at least n−3 zeroes of G(x, 1) between two consecutive zeroes of f .
Hence G(x, 1) has at least n(n− 3) real zeroes, as was to be shown. 2
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When n = 2 one may quickly check that G(X, Z) is identically zero. When
n = 3, G(X, Z) is the Hessian of F . Explicitly, if

F (X, Z) = aX3 + bX2Z + cXZ2 + dZ3 ,

then
G(X,Z) = (3ac− b2)X2 + (9ad− bc)XZ + (3bd− c2)Z2 .

(This is minus the Hessian covariant as given in [4].)

When n = 4, G(X, Z) is (up to a constant factor) the sextic covariant of F
denoted g6 in [4]. In both these cases it was noted in [4] that the unique root of
G(X, Z) in the upper half-plane was the appropriate covariant point with which
to reduce a cubic or quartic with all its roots real.

In the special cases of degrees three and four, we can express θ(F ) explicitly as
a root of a monic polynomial having rational invariants of F as its coefficients.
Let ∆ = disc(F ). Then if F is a binary cubic form splitting over R, we have that
θ(F ) is the largest root of

T3(x) = 33 x2 − 26 ∆

(cf.[9, p.51]; note that Julia’s value of θ is (3/2)3 times our value). If F is a binary
quartic form splitting over R, then θ(F ) is the largest root of

T4(x) = x3 − 2I x2 + I2 x−∆ = x(x− I)2 −∆ ,

where I = 12 a0a4 − 3 a1a3 + a2
2 is the usual invariant. From this, we can easily

deduce that I < θ(F ) < 4
3
I, noting that T4(0) < 0, T4(

1
3
I) > 0, T4(I) < 0 and

T4(
4
3
I) > 0.

It would be interesting to investigate whether similar equations and inequalities
are satisfied by θ in the higher degree cases.
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