GENERALIZED EXPLICIT DESCENT AND ITS APPLICATION TO
CURVES OF GENUS 3

NILS BRUIN, BJORN POONEN, AND MICHAEL STOLL

ABSTRACT. We introduce a common generalization of essentially all known methods for
explicit computation of Selmer groups, which are used to bound the ranks of abelian varieties
over global fields. We also simplify and extend the proofs relating what is computed to the
cohomologically-defined Selmer groups. Selmer group computations have been practical for
many Jacobians of curves over Q of genus up to 2 since the 1990s, but our approach is the
first to be practical for general curves of genus 3. We show that our approach succeeds on
some genus-3 examples defined by polynomials with small coefficients.

1. INTRODUCTION

1.1. Background. The Mordell-Weil theorem [Mor22, Wei29] states that for any abelian
variety J over a number field k, the abelian group J(k) is finitely generated. One of the main
steps of the proof involves showing the finiteness of J(k)/nJ(k) for some n > 2. And there is
essentially only one known proof of this finiteness, based on a vast generalization of Fermat’s
method of infinite descent. In modern terms, the proof embeds J(k)/nJ(k) into a Selmer
group Sel"(J), a finite group that is computable in principle.

But the Selmer group is defined as a subgroup of a Galois cohomology group H*(k, J[n]),
and 1-cocycles for the absolute Galois group G of k are not objects that a computer can deal
with directly. Fortunately, sometimes one can find more concrete representations for elements
of H'(k, J[n]). For example, if J is an elliptic curve with J[2] C J(k), then J[2] is isomorphic
to pg X pg as G-module, and the Kummer sequence yields H'(k, J[2]) ~ k> /k*? x k> /k*2.

In many higher-dimensional situations, however, the number field over which all the points
of J[n] become rational is too large for the required computations. Instead one tries to
find exact sequences relating J[n| to modules induced from Z/nZ or p,, since cohomology
of induced modules can be computed by Shapiro’s lemma [AW67, §4, Proposition 2]. For
example, if J is the Jacobian of a hyperelliptic curve y*> = f(z) with deg f odd, and A is
the G-set of Weierstrass points not including the one at infinity, then elements of J[2] are
represented by degree-0 divisors supported on AU {oo}, and we obtain a split exact sequence
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in which (Z/27Z)" is a direct sum of induced modules: this was exploited in [Sch95]. For
y*> = f(z) with deg f even, there is still a relationship between J[2] and induced modules,
but it is more involved, and it becomes much harder to relate H'(k, J[2]) to concrete objects:
this problem, together with its generalization to y? = f(x) for larger primes p, was addressed
in [PS97]. The situations of the two previous sentences were called true descent and fake
descent, respectively, in [PS97].

1.2. Goal of this article. The main goal of this article is to develop a practical generalization
of true and fake descent that contains essentially all previous instantiations of explicit descent.
Our generalization is broad enough to suggest an explicit approach for Jacobians of arbitrary
curves, using the G-set of odd theta characteristics. We demonstrate its practicality by
computing the rank of J(Q) for the Jacobian of a non-hyperelliptic curve genus-3 curve X
with no special property beyond having small discriminant: see Section 12.9.1. This is the
first time that Selmer group computations for “general” genus-3 Jacobians have been possible.

Remark 1.1. Practical Selmer group calculations rely on the computation of class groups of
number fields, and this is usually the bottleneck, except in situations where the G-action
on certain torsion points is much smaller than expected for a general curve. For a general
genus-3 curve over QQ, our method requires the class group of a number field of degree 28; this
seems to be the smallest possible, given that 28 is the smallest index of a proper subgroup of
Spe(F2). For general genus-4 curves, the corresponding index is 120, which is likely to remain
outside the realm of practical computation for some time.

Setting the computational advantages of our approach aside, the main theoretical advances
in our article are as follows.

e Our approach of taking Cartier duals before taking cohomology (Sections 6.2.2
and 6.3.1) leads quickly to concrete results on groups such as H'(k, J[2]) over any
field of characteristic not 2; this approach has already found outside applications:
see [BGW13, Section 4]. In particular, our approach eliminates the use of generalized
Jacobians and the group scheme 7, in [PS97], a significant simplification even in the
setting of hyperelliptic curves.

e The introduction of the middle rows in (5) and (11) provides short proofs of the
comparison theorems relating the cohomological and explicit definitions of descent
maps.

e Appendix A shows how to augment the explicit descent maps to produce an explicit
description of the Selmer group itself instead of a “fake” approximation to it.

Remark 1.2. For certain Jacobians J, there is also a representation-theoretic approach to
understanding J[2] and its Galois cohomology, based on Vinberg theory, whose relevance
for arithmetic problems was first pointed out by Benedict Gross. Namely, Jack Thorne has
shown very generally how, starting from a simple split algebraic group G of type A, D, or E
over a field k of characteristic 0, one can produce a family of curves for which J[2] can
be identified with the stabilizers for an action of the subgroup G fixed by an involution 6
in a particular canonical G*!(k)-conjugacy class of involutions of G, and from this one
can obtain information about H'(k, J[2]). In particular, when G is of type Es (resp. Er),
Thorne’s construction yields the universal family of non-hyperelliptic genus-3 curves with a

marked hyperflex (resp., a marked flex that is not a hyperflex). See [Thol2]; the families
2



of genus-3 curves appear explicitly in Theorem 4.8 there. In the Ej case, Gal(k(J[2])/k) is
generically W (FEjg), isomorphic to an index-28 subgroup of the group Spg(F2) that arises for a
general genus-3 curve. In the E; case, Gal(k(J[2])/k) is generically W (E;)/{£1}, isomorphic
to the full group Spg(Fs). It is reasonable to hope that it will eventually be possible to use
Thorne’s work to study Se12(J ) for any non-hyperelliptic genus-3 curve with a rational flex.

1.3. Road map to the rest of the article. The first few sections are preliminary. Sec-
tion 2 introduces the notation to be used throughout the rest of the article; much of it is
standard. Section 3 introduces twisted powers, a slight generalization of induced modules
and permutation modules. Section 4 uses Lang reciprocity to relate various definitions of
WEeil pairings. Section 5 reviews and develops the combinatorics of theta characteristics on a
curve.

Section 6 introduces the key notions of the paper. First it axiomatizes the settings to
which our explicit approach applies, formalizing them into the notions of true descent setup
and fake descent setup, which are general enough to handle various isogenies ¢: A — J over
a global field k. Given a true descent setup, we define a homomorphism

J(k) L*
1
. GA(K) L
that acts as a computation-friendly substitute for the connecting homomorphism
J (k) |
2 ——— > H (k,Al¢
&) Sang 'k A6)

appearing in the definition of the actual ¢-Selmer group. In fact, the homomorphism (1)
can be defined in two ways, either by using cohomology (good for comparing it to the
homomorphism (2) used to define the actual ¢-Selmer group) or by evaluating explicit
rational functions on 0-cycles (good for computing the homomorphism). Using our work
on Weil pairings, we prove that the two definitions agree. A more complicated argument
establishes compatibility of analogous definitions for a fake descent setup; here L*/L*" is
replaced by L*/L*"k*.

Section 7 identifies the computation-friendly analogue of the subgroup of classes in H'(k, A[¢])
unramified outside a finite set of places, which is essential for making the computations
finite. Section 9 defines a computation-friendly analogue of the ¢-Selmer group, called the
true or fake Selmer group, and defines an analogue for a variety X whose Albanese variety
is J. Section 10 uses the notion of Shafarevich—-Tate group from Section 8 to prove results
that often enable one to pass from knowledge of the true or fake Selmer group to the actual
¢-Selmer group. A more elaborate method that always succeeds in calculating the ¢-Selmer
group is presented in an appendix, but in some situations it may be impractical.

Section 11 provides details on how to compute true and fake Selmer groups. Section 12
specializes the approach to the case of non-hyperelliptic genus-3 curves, and ends with several
examples.

2. NOTATION

If Sis a set and n € Z>, let (5 ) denote the set of n-element subsets of S. For each field k,
choose a separable closure k; (compatibly, when possible), and let G = G, = Gal(k,/k). In

general, for an object X over k, we denote by X its base extension to k. If £k is a global
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field, let €2, be the set of nontrivial places of k. For v € Q, let k, be the completion of k at v;
if moreover v is non-archimedean, let O, be the valuation ring in k,, let IF, be the residue
field, and let £, , be the maximal unramified extension of £, inside a separable closure £, ;.
All G-sets and G-modules are given the discrete topology, and the G-action is assumed to
be continuous. If M is a G-module, then M9 or M (k) denotes the subgroup of G-invariant
elements, and H"(M) or H"(k, M) or H™(G, M) denotes profinite group cohomology.

If X is an integral k-scheme, then k(X) is its function field. More generally, if X is a
disjoint union of integral k-schemes X;, let k(X)) be the product of the k(X;); equivalently,
k(X) is the ring of global sections of the sheaf of total quotient rings (see [Har77, p.141]).
Let & = Ox be the structure sheaf.

Call a variety nice if it is smooth, projective, and geometrically integral. Curves will be
assumed nice unless otherwise specified. For a nice variety X, let Div X (resp. Div® X) be
the group of divisors (resp. divisors algebraically equivalent to 0) on X over k, let Z(X)
(resp. Z°(X)) be the group of O-cycles (resp. O-cycles of degree 0), and define Pic X as

in [Har77, 11.§6]; if X is a curve, also define Pic’ X := ker(Pic X o Z). Alternatively, if
Princ X is the group of principal divisors, then Pic X = Div X/ Princ X. If f € k(X)* and
z =Y npP € Z(X) is such that no closed point P appearing in z is a zero or pole of f, let
f(2) = T1p(Nipyf(P))"" € k*. Let J := Albx be the Albanese variety of X, so J is an
abelian variety. Then the Picard variety of X (i.e., the reduced subgroup scheme associated
to the connected component of the Picard scheme of X/k) may be identified with the dual
abelian variety J. If X is a curve, then both .J and J are the Jacobian Jac X. Let Y°(X) be
the kernel of the natural map Z°(X) — J(k), and let J(k), be the image of this map. More
generally, if G is a subgroup of J(k), let (J(k)/G), be the image of Z°(X) — J(k)/G.

3. TWISTED POWERS
Fix a field k.

Definition 3.1. Given a G-module M, and a finite G-set A, the twisted power M% is the
G-module of maps from A to M.

Remark 3.2. The G-action on maps is the usual one: if 0 € G and P — mp is an element
m € M®, then “m is the map P — o(mg-1p).

Remark 3.3. Applying the construction to Z with trivial action yields Z”. Then M2 =
Homgz(Z*, M) for any G-module M.

Remark 3.4. If G is a commutative group scheme over k, we also use G to denote the
G-module G(k,), and define G2 (at least as a G-module). Similarly, a finite étale k-scheme A
can be identified with a finite G-set.

Definition 3.5. If M is a G-module and A is a finite G-set, there is a homomorphism
deg: M* — M that sums the coordinates, and we let MdAeg0 be its kernel.

Definition 3.6. Given a finite G-module M of size not divisible by char k, the Cartier dual
of M is the G-module M" := Homyz(M, k}). (This is compatible with the notion for finite
commutative group schemes.)

Remark 3.7. For fixed A, the functor M +— M? is exact.
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Remark 3.8. For a finite G-module M of size not divisible by char k, and a finite G-set A, we
have (M?)Y ~ (M)A,

Each finite étale k-scheme A is Spec L for some étale k-algebra L. Define the étale k-
algebra L, := L ®j k,. Thus G5(k) = L and G2(k,) = L,. Assume chark { n. Then
pa(ks) = pn(Ls). The group HY(G5) = HY(G, L)) is trivial by a generalization of Hilbert’s
theorem 90 [Ser79, p. 152, Exercise 2], so H(u5) = L*/L*™.

4. WEIL PAIRINGS
Let k be a field. Let n be a positive integer with char k { n.

In this section we review Lang’s construction of the Weil pairing between Albanese varieties.
Let V and W be nice k-varieties and let ® € Div(V x W). The divisor © induces partial
maps

D: 2%V,) — Div W, and @': Z°(W,) — Div' V..
Summation of O-cycles in Alby (k) gives rise to the exact sequence

0— Y°(V;) = Z°(V;) — Alby (k) — 0.

By [Lan83, III, Theorem 4, Corollary 2], ©(Y°(V;)) C Princ W,. In particular, if v € Z°(V})
maps to an n-torsion point [v] € Alby[n](k,), then nv € Y°(V}), and D (nv) = div(f,,) for
some fp, € ks(W)*. Define f,, € ks(V)* symmetrically. Define

eon: Alby[n|(ks) x Albw[n](ks) —  pn(ks)
frw(v)
fow(w)
where v € Z°(V,) mapping to [v] and w € Z°(W,) mapping to [w] are chosen so that the

evaluations make sense. See [Lan83, VI, §4] for the proof that eg, is well-defined, bilinear,
and Galois-equivariant.

[] : [w] =

Remark 4.1. Let A be an abelian variety, let A be the dual abelian variety, and continue to
suppose that chark { n. Take V = A and W = 21\, and let ® be a Poincaré divisor. Since
Alby = A and Alb; = A, we obtain a pairing e, : A[n] x Aln] = .. It is nondegenerate (see
[Lan83, VI, VII]), so we obtain an identification of A[n] with A[n].

4.2. The Albanese-Picard definition. Let X be a nice k-variety. Let J := Albx. Let B
be a Poincaré divisor in Div(J X :f) Fix a base point in X, to obtain a map ¢: X, — J,.
The functoriality of taking Albanese varieties yields (()°(X,)) C V°(Js). Define B, :=
(¢ x id7)*P € Div(X, x J,). If y € Y°(X,) and z € Z°(J,), then Po(y) (if defined) is the

~

divisor of some rational function on J;, which can be evaluated on z (if the supports are
disjoint) to obtain a value Po(y, z) € kX. Given D € Div’(X,), we may find z € ZO((Z,)
summing to [D] € Pic®(X,) = J,(k,), which means that D — (z) = div(gp,.) for some
gp.» € ks(X)*, and we obtain a partially-defined pairing

[,]: VUX,) x Div'(X,) — kX

s

y , D = gp.2(¥)Po(y, 2)
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See [PS99, Section 3.2] for a proof that this pairing is independent of the choices made, using
Lang reciprocity and the seesaw principle. If g € ks(X)*, then [y, div(g)] = g(y) since the
choice z = 0 yields gp . = g.

Finally, define

exn: JnlxJn] = pnlks)
an(:IJ)
D
(o)~ £2,
where z € Z°(X,) represents an element of .J[n|(k,), and D € Div’ X, represents an element

~

of Jn|(ks), and f,p € ks(X)* has divisor nD, and all these are chosen so that everything is
defined.

Let us check that ex ,, is well-defined, i.e., independent of the choices of x and D. Changing x
means adding some y € V°(X,) to it, and we have

_ an(y) _ an(y) _ an(y)
exallel D) = [ny, D]~ [y,nD]  fup(y)

Changing D means adding div(f) to it for some f € ks(X)*, and we have
@) fa)r
[na, div(f)]  f(x)
4.3. Functoriality. Let ¢: X — X’ be a morphism of nice varieties. Let x € Y°(X,) and
D € Div?(X!). Tt is straightforward to check that
[JZ, L*D] = [L(l‘), D]

whenever both sides are defined. It follows that for [z] € Albx,[n] and [D] € (Pic X;)[n| we
have

=1.

exn(z,div(f)) =

exa([2], '[D]) = exrn([e(2)], [D])-

4.4. Equality of the pairings. Let J := Albyx. We now have three pairings

€Xny€Jn,y En - J[?’L] X J[n] — Hn,
where the first two are from Section 4.2 and the third is from Remark 4.1.
Proposition 4.2. The pairings ex ,, €., and e, are equal.

Proof. Functoriality with respect to an Albanese embedding X, — Albx, shows that ex, =
€Jn-

Now we prove that e, = e,. Suppose that a € J[n|(k;) and o’ € J[n|(ks) are represented
by appropriate z € Z°(J,) and 2 € Z°(J,). Let D = P'2’ € Div’(J,). By definition,
fnz’ = an and
_ fan(2) _ faz (2) _ foz(2) = en(a,d). ]

[nz7 D] s"BO(TlZv Z/) fnZ(TLZ/)

5. ODD THETA CHARACTERISTICS

esnla,a’)

Assume char k # 2. Let X be a nice curve of genus g over k. Let w be its canonical bundle,

and let J := Jac X.
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5.1. Theta characteristics. A theta characteristic on X is a line bundle ¥ on X such
that 992 ~ w. A theta characteristic ¥ is called odd if the nonnegative integer h°(¢J) :=
dim HY(X,9) is odd. The isomorphism classes of theta characteristics on X form a set 7 of
size 229, and the odd ones form a subset J,qq of size 2971(29 — 1) (cf. [Mum?71]).

5.2. Theta characteristics and quadratic forms. Given a symplectic pairing e on an
Fy-vector space V', a quadratic form associated to e is a map of sets q: V — Fy such that

q(x+y)—qx) — q(y) = e(z,y) for all x,y € V.
Theorem 5.1 (Riemann-Mumford). Suppose that k is separably closed and chark # 2. View
the Weil pairing es as a symplectic pairing on J[2] with values in Fy ~ {+1}.
(a) For each theta characteristic ¥,
qo: J[2] — Fy
L (K0 ® L)+ h° (W) mod 2
1 a quadratic form associated to es.
(b) The map
7 — {quadratic forms on J[2] associated to ey}
U — gy,
s a bijection.
(c) A theta characteristic ¥ is odd if and only if the Arf invariant of qy is 1.
Proof. See [Mum71] and [GHO04, §4]. O

Combining Theorem 5.1 with the following lemma will help us understand the relations

between the odd theta characteristics in the Fy-vector space £ @X [2]: see Corollary 5.3.

Lemma 5.2. Let f be in the space Fao[z1, ..., z,)<2 of polynomials of total degree at most 2.
Let fy be its homogeneous part of degree 2.

(i) If f vanishes on FY, then fy is a square.
(ii) If n is even, and fy is nondegenerate (as a quadratic form), and V- C F% is a coset of a
linear subspace of dimension at least n/2 + 1, then f(v) =0 for some v € V.
(iii) Ifn is even and n >4 and v € FY, and fy is nondegenerate, then there exists v € F}
with f(x) = f(x +v) =0.
(iv) Ifn is even and n > 6 and vy, vy € FY, and fy is nondegenerate, then there exists v € Fj

with f(z) = f(r+v1) = f(x +ve) = 0.
Proof.

(i) If f5 is not a square, it contains a monomial z;x; with i # j, and then restricting to the
span of the z;- and x;-axes lets us reduce to the case n = 2, which is easy.

(ii) Replacing f(x) by f(z+wv) lets us assume that V' is a subspace. Let e be the symmetric
bilinear pairing associated to f. Since e is nondegenerate, e|y has kernel of size at most
n—dimV < dimV, so e|y # 0. Hence fs|y is not a square. Apply (i) to f + 1.

(iii) If v # 0, let V' C % be the codimension-1 coset defined by f(z+wv)— f(z) = 0; if v = 0,
let V =TF5. Apply (ii).

(iv) By (iii), we may assume that vy, vy are distinct and nonzero. Let V' be the codimension-2
coset defined by f(z 4+ v1) — f(x) =0 and f(z + v2) — f(x) = 0. Apply (ii). O
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In the rest of Section 5.2 except in Corollary 5.5, we assume that k is a separably closed
field of characteristic not 2, and that X is a nice curve of genus g > 2 over k.

Corollary 5.3.

(a) If g > 2, then every class in J[2] C P<15J>X [2] has the form Y1 + Vs (modulo w) with
V1,72 € Toad-

(b) If g > 3, and ¥y, ...,96 € Foaa sum to 0 in P<10CJ>X 2], then there exist V12,34, 956 € Toaa
such that

V1 + 03 + Usq + Vs = 0

m

e
Proof. Fix ¥ € J,qq4. By Theorem 5.1, there is an identification {zeros of gy in J[2]} — Foaa
given by x — 9 4 z. Identify J[2] with F3?, and gy with a polynomial f.

(a) Apply Lemma 5.2(iii) with v the class in J[2]. Then z corresponds to the desired ¥, and
T+ v to Js.

(b) Apply Lemma 5.2(iv) with vy = ¥y + ¥ and vy = J3 4+ U4 to get x. Then z corresponds
to the desired 56, x 4+ v, corresponds to the desired 134, and x + vy corresponds to the
desired 115. The first two relations are then satisfied, and the third is the sum of the first
two. O

By an incidence structure, we will mean a pair (A, X)), where A is a set and X is a collection
of subsets of A. An isomorphism (A,Y) — (A’,Y') is a bijection A — A’ under which ¥ and
Y correspond.

Let X be the set of 4-element subsets of Z,4q that sum to 0 in ngJ)X 2].

Proposition 5.4. The following structures have the same automorphism group Sp2g(IF2):

(1) The Fy-vector space P<15J>X 2] equipped with Toqq (viewed as a subset).

(2) The Fy-vector space J[2] with the Weil pairing es.
(3) The incidence structure (Tpqq, X3)-

Proof. The automorphism group of (2) is Spy,(IF2), so it suffices to show how to build each
structure canonically in terms of the others. .
(1)=(2): By Corollary 5.3(a), we can recover J[2] as the subgroup of P<12>X 2] generated

by 91 + ¥y with 91,99 € Foqq. The subset F,qq determines the function h° mod 2 on the
nontrivial coset .7 of J[2] in Fi<X[2]. Choose ¥ € Fqq; from h° mod 2, we can recover ¢ = gy
and hence ey(x,y) = q(x +y) — q(z) — q(y).

(2)—(1): Take the space of functions ¢: J[2] — Fy such that (z,y) — q(x+y) —q(z) —q(y)
is a multiple of e5. Inside this we have the subset of ¢ for which the multiple is es itself and
for which the Arf invariant is 1.

(1)—(3): Clear.

(3)—(1): If g = 2, take the Fy-vector space P with generator set J,qq4 and with one relation
saying that the sum of the generators is 0. If g > 3, take the Fy-vector space P with generator

set Zqq and with relations given by the elements of X.
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To show that the map e: P — Péfjf(

an isomorphism, it suffices to show that its restriction ey: Py — J[2] is an isomorphism, where
P, is the codimension-1 subspace of P spanned by pairs. Corollary 5.3(a) shows that ¢y induces
a bijection (‘%Qdd)/w — J[2] — {0}, where {91,095} ~ {93,904} means >+ ¥, =0 in PEZ>X [2].
In particular, € is surjective. If g = 2, then ¢ is injective too, because dim Py = 4 = dim J[2].
To prove injectivity for g > 3, it suffices to prove that every relation

(V1 + U2) + (V5 + Yy) = (U5 + Vg)
Pic X

in =5+[2] is a consequence of 4-term relations. But that is true, by Corollary 5.3(b). O

[2] sending each basis element to the corresponding ¥ is

Corollary 5.5. Let k be any field of characteristic not 2. The action of G on J|[2], on the set
of theta characteristics of X or on the set of odd theta characteristics of X, factors through
the standard action of Spy,(Fa) on J[2].

Remark 5.6. Tt follows from the connectedness of the moduli space of genus-g curves [DM69]
that the isomorphism type of each structure in Proposition 5.4 depends only on ¢, and not
on k or X.

Proposition 5.7. For g > 2, we have #% = ?(229 —1)(2% 2 —1)(2972 - 1).

Proof. Since Spy,(IF2) acts transitively on J[2] — {0}, all fibers of the summing map (“Z;d) —

J[2] — {0} C P<15J>X 2] have the same size, namely (2%1(229_1))/(229 — 1) =2%73 — 2972 Hence

the number of pairs of pairs such that the two pairs have the same image in J[2] — {0} is

(2% — 1) (229_32_29_2). Each such pair of pairs consists of disjoint pairs, since  +y = x + 2
would imply y = z. Thus each pair of pairs corresponds to a 4-element subset of J qq
summing to 0 with a partition into two pairs. Each 4-element subset can be partitioned in

3 ways, so

. 223 _0-2\ 03 22 -
#8 =2 (2¥ - 1) ) = @Y -nE - - 1), O

5.3. Representing odd theta characteristics by divisors over the ground field.

Proposition 5.8. An odd theta characteristic ¥ on X, whose class lies in (Pic X,)9 is
represented by an element of Div X.

Proof. The k-scheme parametrizing effective divisors whose class equals ¥ is a Brauer-Severi
variety, a twisted form of ]P’ho(ﬁ)_l, corresponding to a central simple algebra of dimension
h9(19)? and hence of index dividing h°(¥) [GS06, Theorems 5.2.1 and 2.4.3], so the associated
Brauer class 7 € Brk is killed by the odd integer h°(9) [GS06, Proposition 4.5.13(1)]. On
the other hand, the Hochschild-Serre spectral sequence yields an exact sequence

Pic X — (Pic X,)¢ — Brk

under which the second map sends ¥ to 7 and w to 0, so 27 = 0. Thus 7 = 0. So ¥} comes
from an element of Pic X, or, equivalently, from an element of Div X. O
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6. GENERALIZED EXPLICIT DESCENT

6.1. The setting. Suppose that X is a nice variety over k. Let J := Alby.

6.2. True descent. To motivate the definition of a true descent setup, we recall the follow-
ing:

Example 6.1. Assume char k # 2. Let F'(z) € k[x] be a non-constant separable polynomial
of odd degree 2g + 1. Let X be the smooth projective model of the curve y? = F(x), so X is
a hyperelliptic curve of genus g. Let oo be the unique point at infinity on X, and let A C X
be the 0-dimensional k-scheme such that A(ks) consists of the 2g + 1 Weierstrass points not
equal to co. Then there is a surjection (Z/2Z)> — J| [2] sending each basis element P € A(k;)
to the divisor class [P — ool (see [Mum84, Lemma 2.4 and Corollary 2.11]). The family of
divisors P — oo indexed by P € A(ks) may be viewed as a single divisor 5 on X x A.

Definition 6.2. A true descent setup for X consists of a triple (n,A,.Z), where n is a
positive integer not divisible by chark, A = SpecL is a finite étale k-scheme, and &
is a line bundle on X x A such that £®" ~ ¢. In more concrete terms, if we choose
B € Div(X x A) representing .Z, the condition on £ is that nf is principal; i.e., there is a
function f € k(X x A)* such that div(f) = np.

Remark 6.3. Given [, for each P € A(k,), we have the fiber 5p € Div X,. In fact, we may
think of 3 as the family of divisors Sp depending G-equivariantly on P. Similarly, f may be
thought of as a family of functions fp € k(Xj)*.

Given (n, A, %), we will define a homomorphism

LX

L><n

using cohomology, and relate it to a more explicit homomorphism.

C: Jk)—

6.2.1. Cohomological definition. Take cohomology of
0—=Jn—=J5J—=0
to obtain J(k) — H'(J[n]). The condition on .Z (or 3) implies that it induces a map

~

A — J[n], and hence a homomorphism (Z/nZ)> — J[n]. Taking the Cartier dual and
applying Remark 3.8 yields a: J[n] — p2. Composition yields a homomorphism

(3) C: T(k) — H'(J[n]) = H' (1) ~ fn

6.2.2. Explicit definition. Choose B and f as in Definition 6.2. Let X8°°9 be the largest open
subscheme of X such that f is an invertible regular function on X&°4 x A. Then f defines
a morphism X&°4 x A — G,,, and hence a morphism X&°¢ — G2 . Evaluating on closed
points and taking norms (this is necessary if the closed point is of degree greater than 1),
we obtain a homomorphism Z(X#&%°d) — L*. This induces Z°(X8&°°d) — LX/L*". If we
change (3, f) to (8, f'), then §' — (3 is the divisor of some g € k(X)*, and f' = cg"f for
some ¢ € k*. If we evaluate on any z € Z°(X) that is good for both f and f’, then the value

of the homomorphism in L*/L*" is unchanged (the value of g gives an n'® power, and the
10



value of ¢ is ¢?®8* = 1). Given any z € Z°(X), we can move f3 to avoid z, so the compatible
homomorphisms glue to give a homomorphism

X

Lxn :

(4) C: Z2°X) —
6.2.3. Compatibility of the two definitions.

Proposition 6.4. The maps C' and C are compatible in the sense that the following diagram
commutes:

Z%X) c

| .

J(k) —— HY(J[n]) —=— HY (u2) +—— T
Proof. We may fix (3, f) and consider Z°(X&°°9) instead of Z°(X). Let Z° = Z0(X8od)
and let Y° be the Albanese kernel in the exact sequence of G-modules
0—"— 2= J(k,) — 0.

We will construct the following commutative diagram of G-modules with exact rows (we write
J for J(ks), and so on):

0—— J[n| J—" 0

(5) of 0 J[n] 20 x Yo Y z0 0
| ¢

0 ps G2 ——GA 0

The top and bottom rows are familiar. Surjectivity of the map Z° x ) — Z° given by

(2,y) = nz + y follows from surjectivity of multiplication by n on J(k,) = Z°/V°; let J[n]
be the kernel of the nz + y map. We have

Jln) = {(z, —nz) € 2° x Y°: [2] € J[n](k,)}.

All the upward maps are induced by Z° — J(k,), so commutativity of the top part of the
diagram is straightforward.
The middle and rightmost downward maps in (5) are given by

Z0 x Y — G4
z ; y — f(2)y, B = (fP<Z)'[y7BP])PeA(kS)

c: 20 — G4
2 o— f(2)
The bottom right square commutes since

(f(2) - [y, B])" = f(nz) - [y,nB] = f(nz)f(y) = C(nz +y).

The leftmost downward vertical map is obtained by restricting the middle one.
11



Finally, we check that o and the vertical maps in the first column form a commutative
triangle. Since " sends P to [Sp], Remark 4.1 and the Albanese-Picard definition of e,, show
that for any [z] € J[n],

ol[2]) = en((2), 18]) = 22

[nz, 5]

so the images of an element (2, —nz) € J[n] under the two paths to p4 are equal. This
completes the construction of (5).
Taking cohomology of (5) yields

J(k) —"— J(k) ——— H*(J[n])

T T

—_—

20(x#eed) — H'(J[n]) o
P
R ) HY ().
Equality of the compositions from Z°(X#°°d) to H'(15) is the desired result. O

Remark 6.5. If U is a dense open subscheme of X, then by a moving lemma, Z°(U) and
Z%(X) have the same image in J(k). (Proof: It suffices to prove that any closed point x
of X is rationally equivalent to a 0-cycle supported on U. Pick a closed point u € U. By
a classical Bertini theorem, or [Poo04, Corollary 3.4] if k is finite, we can find a nice curve
C C X through = and u, and hence reduce to the case in which X is a curve. In this case,
it suffices to apply weak approximation to find a rational function on X with prescribed
valuations at the points of X —U.)

Corollary 6.6. The explicit homomorphism C in (4) induces a homomorphism

X
& ( J(k) ) L&

nJ(k)), ~ Lx»
6.3. Fake descent. For computations using true descent setups to be practical, the degrees
of the components of A (i.e., the degrees of the field extensions L; whose product is L) should
be not too large. A fake descent setup will be a variant of the true descent setup, a variant
that may allow a simpler A to be used, at the expense of giving less direct information about

Selmer groups. In Section 6.5 we show that the true descent setup can be viewed as a special
case of the fake descent setup.

Definition 6.7. A fake descent setup for X consists of a triple (n, A, %), where n is a positive
integer not divisible by char k, A = Spec L is a nonempty finite étale k-scheme, and .Z is a
line bundle on X x A such that #®" is the pullback of a line bundle on X. Equivalently,
in terms of a divisor 8 € Div(X x A) representing £, the condition is that there exists
D € Div X is such that n — (D x A) is principal; i.e., there is a function f € k(X x A)*
such that div(f) =np — (D x A).

Remark 6.8. On the fibers, the last condition says that div(fp) = nfp — D for all P € A(k).

~

Subtracting shows that [Bp — Bg] € J[n| for all P,Q € A(ks).
12



Examples 6.9. Definition 6.7 is motivated by the following examples of fake descent setups
for curves.

(i) Assume chark # 2. Let m: X — P} be a (ramified) degree-2 cover, so X is a hyperelliptic
curve. Let n = 2, let A C X be the ramification locus of 7, and let 5 be the diagonal
copy of A in X x A. Then we can take D = 7*(y) for some y € P!(k) (cf. [FPS97]).
See Example 10.19 for more about this case.

(ii) The previous example generalizes to other geometrically generically cyclic covers m: X —
P} (cf. [PS97]). Let n > 2. Let k be a field with char k { n. Suppose that F(z) € k[z]
factors completely in k,[z] and is not a p'® power in k[z] for any p | n. Let X be the
smooth projective model of y* = F(z). Let m: X — P! be the z-coordinate map. Let
A be the ramification locus of . Let § be the diagonal copy of A in X x A. Then we
can take D = 7*(t) for some t € P(k).

(iii) Assume char k ¢ {2,3,7}. Let X be a twist of the Klein quartic curve 23y +1y*z+ 2%z = 0
in P2. Let n = 2, let A correspond to the G-set of 8 triangles, as defined in [PSS07, §11.1],
and let 8 € Div(X x A) be the divisor of relative degree 3 over A such that each [p is
the sum of the 3 points in the corresponding triangle. This gives a fake descent setup,
provided that D can be found (as turned out to be the case for the curves of interest in
[PSS07]).

(iv) Assume chark # 2. Let X be any curve of genus g > 2 over k. Let n = 2. Let A
correspond to the G-set of odd theta characteristics on X,. Proposition 5.8 applied over
the residue fields of each point of A shows that one can find f € Div(X x A) such
that each [p is the corresponding odd theta characteristic. Then one can take D to
be a canonical divisor. This gives a fake descent setup that in principle can be used to
perform a 2-descent on the Jacobian of X. When g = 2, this specializes to Example (i).

A fake descent setup (n, A,.Z) will give rise to a cohomologically defined homomorphism

A
(6) CJM%»F(&>
fin
that we will relate to an explicit homomorphism
- Lx
(7) C: Z2%X) — Tk

6.3.1. Cohomological definition. By the final statement in Remark 6.8, . (or () induces a
homomorphism
a1 (Z/nZ)50 — Tln).
Dualizing
0 = (Z/nZ)sg0 — (Z/nZ)> — Z/nZ — 0
yields ((Z/nZ)(ﬁegO)v ~ 115/ i, so the dual of o is a homomorphism

A
a: J[n] — Pn
Hn
The composition

A
ﬂ@—AEUM%%H(@)
fin
is the desired homomorphism C'.
13



6.3.2. Eaxplicit definition. As in Section 6.2.2, f gives rise to a homomorphism Z(X&°4) — L*.
If we change (53, D, f) to (5, D', f'), then 3’ — 3 is the divisor of some g € k(X x A)*, D'— D
is the divisor of some h € k(X)*, and f' = (cg"/h)f for some ¢ € k(A)* = L*. If we evaluate
on any z € Z°(X) that is good for both f and f’, then the value of the homomorphism in
L*/L*"k* is unchanged (the value of g™ /h gives an element of L*"k*, and the value of ¢ is
cdez = &0 = 1). Thus we obtain (7).

6.3.3. Compatibility of the two definitions. Taking cohomology of

A
0 = fin, — s — TR
yields
o % MA)
8 — — H! <—” — Brk,
( ) kxn Lxn Lhn,

so we may identify L*/L*"k* with a subgroup of H(u2/u,).

Proposition 6.10. The two maps C' and C are compatible in the sense that the following
diagram commutes:

2°(X) 5

J

A X

. L
J(k) —— H'(J[n]) —2 H (—“’" ) e
/Ln n X

Proof. We replace the pairing [y, 8] used in the true case with

0 G?rz(ks)
©) Y k)
v o = L

where H € Div(X,) and h € k,(X)* are chosen so that div(h) = D —nH, and h(y)'/" is
a chosen n'™® root of h(y) (and then H and h(y)"/" are pulled back to (X x A),); such H
and h exist because one possibility is to take H = (p for some P € A(ks). If we change
H to another choice H’, then h is changed to hj where div(j) = nH — nH’, so the value
of (9) is multiplied by [y, H — H']/j(y)*/™, which lies in p, (k) since its n'® power equals
ly,div(j)]/7(y) = 1. Thus (9) is well-defined and Galois-equivariant. Also,

14




As in the proof of Proposition 6.4, we construct a commutative diagram with exact rows:

0 Jn] J—"—J 0
T 0 0 MY 5o
a1 [ 0 Jln] Z0x Y z 0
| ;
A GA
0 =0 Tm L GA 0
Ji fn

The first two rows and the vertical maps between them are the same as in (5). The bottom
row is a pushout of the bottom row of (5).
The middle downward map is

Z0 x Yy — %
Ln

=z, y — f@)Ab
The rightmost downward map is

C: Z9(Xgedy — Go
z — f(2)
The bottom right square commutes since (10) implies

(f()My, Blp)" = f(2)"f(y) = f(nz +y).

The leftmost downward vertical map is obtained by restricting the middle one.
Finally, we check that o and the vertical maps in the first column form a commutative

triangle. Any (z, —nz) € J[n] maps up to [z] € J[n], and maps right and down to f(z) -
[—nz,B|p € i—’?. Remark 4.1 and the Albanese-Picard definition of e,, show that

f(2)h(z) G
= €n ) — HJ) = = ) —.
o) = eal2118 — H) = LI — £ [onsflp € 2
So the triangle commutes. This completes the construction of (11).
Taking cohomology of (11) yields
J(k) —— J (k) H(J[n])
Zo(xEt) —— I ),
a J
o
)
fin
Equality of the compositions from Z°(X&°4) to H(u2 /u,) is the desired result. O
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Corollary 6.11. The explicit homomorphism C in (7) induces a homomorphism
~ J(k) L*
C: )
(n](k:))o T Dk

Corollary 6.12. The homomorphism 6’, which a priori depends on B and D, in fact is
independent of D and depends only on the linear equivalence class of 3.

Proof. The linear equivalence class of g is all that is needed to define C. 0

Remark 6.13. By Corollary 6.12, we may move 3 and D within their linear equivalence classes
and change f accordingly in order to make div(f) avoid any particular O-cycle. Hence we

may view C as being defined on all of Z°(X).

6.4. Isogenies associated to descent setups. Given a true or fake descent setup, we
obtain a homomorphism «": E — J[n], where E := (Z/nZ)* for a true descent setup and
E = (Z/nZ)5, for a fake descent setup.

In either case we obtain an isogeny ¢: J — A 1= J/aV(E), and j[qz/ﬁ\] = a"(F). Let A be
the dual abelian variety of A, and let ¢: A — J be the dual of ¢. (For an early instance of

relating the functions in a true descent setup to an isogeny between different abelian varieties,
for the purpose of computing Selmer groups, see [Sch98].)

Proposition 6.14. The homomorphism C: J(k) — H'(EV) factors through the quotient
J(k)/A(K).

Proof. By [Mum?70, §I11.15, Theorem 1|, A[¢]" ~ J[¢]. Now o": E — J[n] factors through
aV(E) = J[¢], and dualizing shows that a: J[n| — EV factors through A[¢]. This explains
the right triangle in the commutative diagram

J(k) 1 1/ v

nj(k)—ﬂ (J[n]) —— HY(EY)
(12) J l /

J(k) )

SAG) — H'(A[g)]),

while the square comes from functoriality of connecting homomorphisms. Since the top row
gives C, the result follows. O

Corollary 6.15. The explicit homomorphism C defined on Z°(X) factors through not only
J(k)o or (J(k)/nJ(k))o, but also (J(k)/PA(k))o.

Proof. Combine Proposition 6.14 with Proposition 6.4 or Proposition 6.10. U

Let R :=ker ", so we have an exact sequence

A~ A

(13) 0— R— E 5 Jjg] — 0.
Dualizing yields an exact sequence

(14) 0— Al¢] % EY 4 RV — 0.
16



Take cohomology: for a true descent setup we obtain

(J(k)) ¢ LX
" . ~ |

0 —— A[g](k) =2 EY (k) —— R (k) —— H'(A[¢]) —>— H'(EY) — HY(RY)

(J(k)) G LXL”XkX

v LS

0 —— A[¢](k) =2 EY (k) —— RV (k) —— H*(A[¢]) —>— HY(EY) —— H(RY)

and for a fake descent setup we obtain

The commutativity follows from Proposition 6.4 or Proposition 6.10.

6.5. Comparison of true and fake descent setups. A fake descent setup (n,A,.%Z)
in which there exists P € A(k) gives rise to a true descent setup (n,A’; Z’) as follows:
Let A" = A — {P} and define f; = g — Bp for each @ € A’. The étale algebras L, L'
corresponding to A, A" satisfy L ~ L’ x k. One can check that the fake diagram (11) maps
to the true diagram (5) as follows: the first two rows map via the identity, and the third row
maps via the homomorphisms induced by (cg)gea +— (cg/cp)geas. Finally, the explicit true
and fake homomorphisms are compatible in the sense that

(J(k)> Corue, (L)

PA(k) ), (L7)xn
ék

LX
ankx

commutes.

Moreover, every true descent setup can be obtained from some fake descent setup in this
way, at least if k is infinite. Thus fake descent is a generalization of true descent.

6.6. Notation. For our intended application, we are primarily interested in fake descent.

To avoid having to state things twice, we let L*/L>*"k* denote L*/L*™ in the context of
a true descent setup, or L*/L*"k* in the context of a fake descent setup. If v € Qy, let

L, = L ®k, and define L)X /LX"k) similarly. Decompose L as [[ L; where each L; is a field.

6.7. Restrictions on the image of C. Recall that R C E C (Z/nZ)>.

Lemma 6.16. Suppose that the zmage of the diagonal Z/nZ — (Z/nZ)" is contained in R.
Then the zmage ofC’ Z9X) — LX/LX”kX is contained in the kernel of the homomorphism

N: LX/LX"ICX — kX /"™ induced by the norm map L* — k*.
17



Proof. Dualizing the complex

A~ A~

ZInZ — E — J[¢]
and applying H! yields a complex

H'(A[¢)) —» HY(EY) %% :n

—_—

The restriction of N to the subgroup L*/L*"k* equals N, because it is induced by dualizing
Z/nZ — (Z/nZ)* and taking cohomology. The result now follows from the commutative
squares in (15) and (16). O

7. UNRAMIFIED CLASSES

7.1. Local and global unramified classes. Let k, be a non-archimedean local field. If M
is any G, -module, define the subgroup of unramified classes

H(ky, M)y = ker (Hl(kv, M) — H'(k, ., M)) ~ H'(Gal(ky./ky), M (kyu)),

where the isomorphism follows from the inflation-restriction sequence.

Now let k be a global field, and let S be a subset of € containing the archimedean places.
If M is any Gp-module, define the subgroup of classes unramified outside S, H'(k, M)s, as the
set of & € H'(k, M) whose restriction in H'(k,, M) lies in H(k,, M)y, for all v ¢ S.

7.2. A Tamagawa number criterion. Let k, be a non-archimedean local field. Let
¢: A — J be a separable isogeny of abelian varieties over k,. The short exact sequence

O—>A[¢]—>AE>J%O

gives rise to a connecting homomorphism 7, : J(k,) — H'(k,, A[¢]). Let J be the Néron
model of J over O,. Let J° be the connected component of the identity in 7. Let ® be the
group of connected components of the special fiber J x ., so ® is a finite étale commutative
F,-group scheme. The number ¢,(J) := #®(F,) is called the Tamagawa number of J at v.
We use analogous notation for objects related to A.

Lemma 7.1. Let ¢: A — J be as above. Let n be a positive integer such that nAlp] = 0

(one possibility is n = deg ¢ ). If the residue characteristic charF, does not divide n, and if
co(J) and c,(A) are coprime to n, then v,(J(k,)) = H' (ky, A[®])unr-

Proof. This is a straightforward generalization of the proof of [SS04, Lemma 3.1 and Proposi-
tion 3.2], which uses results from [Sch96, §3]. O

7.3. Unramified elements in the target of the descent map. Now suppose that k is
a global field and that we have a true or fake descent setup. From (15) or (16) applied to k,
we obtain LX/Lx"kx — H'(k,, EV). Call an element of LX/LX"k* unramified if its image
in H'(k,, EV) is unramified.

Let & be a subset of {); containing the archimedean places. Say that an element of
L*/L*"k>* is unramified outside S if its image in L} /Lx"kX is unramified for each v ¢ S.
Let (L*/L*"k*)4 be the subgroup of such elements. Proposition 7.2 will provide an explicit

description of (L*/L*"k*)q.

18



Given ¢ € L =[] Ly, let ¢; be its image in L;. Let L(n,S) be the subgroup of L*/L*"
consisting of elements represented by ¢ € L* such that the prime-to-S part of the fractional

ideal (¢;) of L; is an n'" power for all i. In the true case, let L(n,S) = L(n,S); in the fake

case, let L(n,S) be the subgroup of L*/L*k* consisting of elements represented by ¢ € L*
for which there exists a fractional ideal a of k such that the prime-to-S part of a - (¢;) is an
n'™® power for all i.

Proposition 7.2. Suppose that S C Q. contains all archimedean places and all places of

—_—

residue characteristic dividing n. Then (L*/L*"k*)s = L(n,S).

Proof. The statement and proof are the same as for [PS97, Proposition 12.5]. O

Proposition 7.3. The group L(n,S) is finite and computable.

Proof. Let Os and Op, s be the rings of S-integers in k and L, respectively; then there are
exact sequences

Ofs
(17) 0= —>—Ln,S) = Cl(OLs)n] =0
OLs

and (in the fake case)

(18) k(n,S) — L(n,S) = L(n,S) — %

as in [PS97, Propositions 12.6 and 12.8], where these are constructed for prime n. So the
finiteness follows from the Dirichlet S-unit theorem and finiteness of the class groups, and
the computability follows too since these are effective. 0

Remark 7.4. The computation of the unit groups and class groups typically dominates the
running time in performing explicit descent.

Proposition 7.5. Let M be a finite G-module with chark 1 #M. Let S be a finite set of
places of k containing the archimedean places. Then H(k, M)s is finite.

Proof. Using the inflation-restriction sequence lets us enlarge k to assume that G acts trivially
on M and on the roots of unity of order dividing #M. Decomposing M as a product of cyclic
groups lets us reduce to the case M = p,, where chark { n. Now H'(k, u,)s ~ (K*/k*™)s,
which, as in Proposition 7.3, is finite. 0

8. FINITE GALOIS MODULES AND IIT!

Let k& be a global field, and let M be a finite Gi-module. If v is a place of k, write
HY(k,M) — H'(k,, M) for the restriction to a decomposition group associated to v; if
¢ e H' (k, M), let & € H'(k,, M) be its restriction. As usual, define

I (k, M) := ker (Hl(k, M) = ] Hl(kv,M)> .

vEQ

Lemma 8.1 (cf. [Mil06, Example 1.4.11(i)]). If Gy acts trivially on M, then 1T (k, M) = 0.
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Proof. The hypothesis implies that H(k, M) = Hom(Gy, M), where Hom denotes the group
of continuous homomorphisms. Chebotarev’s density theorem implies that the union of the
decomposition groups Gy, is dense in Gy, so the map

Hom(Gy, M) — H Hom(Gy,, M)

is injective. This implies the result. U
Lemma 8.2. If p is a prime not equal to chark, and A is any G-set, then IHl(k,uﬁ) = 0.

Proof. By Shapiro’s lemma, one reduces to proving that IIT'(k, u,) = 0. The latter is the
well-known fact that an element of k* that is a p'™® power in every k, is a p'™® power in k. [

The following result allows us to compute III' (k, M) using finite group cohomology.

Proposition 8.3. Let k be a global field, let M be a finite Gx-module, and let K be a Galois
splitting field of M. Let G = Gal(K/k). For v € Qy, let D, C G denote a decomposition
group. Then

T (k, M) ~ ker (Hl(G, M) = [[H'(D.. M)).

In particular,
' (k,M)C (]  ker(H'(G,M)— H'(H,M)).

cyclic H < G

Proof. For each nontrivial place v of kg, let k, and K, denote the corresponding completions
of k and K, and let D, be the corresponding decomposition group inside G. The products in
the diagram below will be taken over all such v, instead of just the underlying places of k,
but this does not affect the definitions of the Shafarevich-Tate groups, since in general, the
kernel of a restriction map H'(G, M) — H'(H, M) is unchanged if H < G is replaced by a
conjugate subgroup. Inflation-restriction with respect to

126G — G, —G—1

and its local analogues yield the exactness of the last two rows in the commutative diagram

0 —— I1'(G, M) —— OI'(k, M) —— I (K, M)

l l |

00— HYG, M) —— H'(k, M) —— H'(K, M)

| |

0_>H’UH1(D'U’M)—>Hle(ij7M)_)H’UH1(K’U?M)7

and the groups in the top row are defined as the kernels of the vertical maps connecting

the second and third rows. Lemma 8.1 yields III' (K, M) = 0, so IIT*(k, M) ~ IIT* (G, M),

which is the first statement of the lemma. By the Chebotarev density theorem, every cyclic

subgroup of G occurs as a D,; this implies the second statement. [l
20



9. DEFINITION OF SELMER GROUPS AND SETS

9.1. Selmer groups associated to isogenies.

Definition 9.1. Let ¢: A — J be an isogeny of abelian varieties over a global field £ such that
char k { deg ¢. For each v, we obtain a connecting homomorphism =, : J(k,) — H'(k,, A[¢)]).
Define

Sel®(J) := {6 € H'(k, A[¢]) : 0, € im, for all v} .

Proposition 9.2. Let S be a finite set of places of k containing

e all archimedean places,

e all places where the residue characteristic divides n, and

e all places where the Tamagawa number of J or A is not coprime to n (these form a
subset of the places of bad reduction).

Then

(a) Sel®(J) = {6 € H'(k, A[@])s : 6, € im~, for all v € S}.
(b) The group H'(k, A[¢])s is finite.
(¢) The group Sel®(.J) is finite.

Proof.

(a) Apply Lemma 7.1 to k, for each v ¢ S.
(b) Finiteness of H'(k, Al¢])s is a special case of Proposition 7.5.
(c) This follows from (a) and (b). O

The image of J(k)/pA(k) < H'(k, A[¢]) is contained in Sel?(.J), by definition of the latter.

9.2. Selmer groups associated to descent setups. We define true and fake Selmer groups

by replacing H!(k, A[¢]) by its explicit analogue L*/L*"k*, and by replacing ~,: J(k,) —
H(k,, A[¢]) by C, = C.,, which is a homomorphism J(k,)° — LX/Lx"kX.

Definition 9.3. Given a true descent setup (n, A, 3), define the true Selmer group

X

T dy € im(C,) for all places v of k‘} :

L
Sel® (J) = {5 €

Given a fake descent setup (n, A, 3), define the fake Selmer group

LX
ankx

Selfe(J) = {(5 € : 0y € im(C,) for all places v of k;} :
To avoid having to state results twice, we use Selfy,q/fke(J) to denote either Self, . (J)
or Selg,.(J), depending on whether we are considering a true or a fake descent setup.
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9.3. True and fake Selmer sets for X. Suppose that we have a true or fake descent
setup for X, and that we fix f € k(X x A)* as in Definition 6.2 or 6.7, and define X8&°°d
accordingly. Evaluatigl\oll closed points as in Section 6.2.2 or 6.3.2 defines a homomorphism
Cp: Z(Xeod) — [x/L*nkx. Since C; and C agree on Z°(X#°4)  they have a common
extension to the sum of their domains, Z(X#°d) + Z%(X) = Z(X). Then we may restrict
to X (k) to obtain a map of sets

P

Cp: X(k) — L*/Lmk>.

Similarly, for each v € Q;, we obtain

Cro: X(ky) = LY /LY.
As the notation suggests, these maps depend on the choice of f.

Definition 9.4. Given a true or fake descent setup for X and f, define

—_—~—
X

L
Sel{rue/fake(X) = {5 € Tongr 0, € im(CY,) for all places v of k} :

Lemma 9.5. Suppose that the image of the diagonal Z/nZ — (Z/nZ)* is contained in R.
Then there exists ¢ € k* such that N(Cy(z)) = ci°8% in kX /k*™ for all z € Z(X).

Proof. In the true case, the hypothesis on R implies that ) .., Bp = div(r) for some
r € k(X)*. Then div(Npu(f)) = nd peaBp = div(r™), so Npu(f) = cr™ for some
c € k*. Evaluating on any 2z € Z(X#&°4) yields the result for such z. On the other hand,
Lemma 6.16 yields the result for z € Z°(X). Together, these prove the result for any
z € Z(X#°d) + Z20(X) = Z(X).

In the fake case, the hypothesis on R implies that #A = nm for some m € Z-, and

that (3 pea Bp) — mD = div(r) for some r € k(X)*. Then div(Nzx(f)) = n (X pea Br) —
nmD = div(r"), so Ny (f) = er™ for some ¢ € k*. The rest of the proof is as in the true
case. O

10. RELATIONS BETWEEN VARIOUS SELMER GROUPS

In Sections 10.1-10.3, we will assume the following;:

Hypothesis 10.1. The maps J(k), — J(k)/pA(k) and J(ky)o — J(ky)/PA(k,) are surjec-
tive for all places v of k.

There are some common situations in which Hypothesis 10.1 is justified:

Lemma 10.2. Suppose that X is a nice curve such that
(i) X has a k-point (or more generally H°(k, Pic X,) 87 is surjective), or
(ii) k is a global field and X has a k,-point (or more generally H®(k,,Pic Xy, ) X8 7 is
surjective) for every v € Qy, or
(iii) k is a global field of characteristic not 2 and X is the smooth projective model of a
hyperelliptic curve y* = f(x) of even genus.
Then J(k)o = J(k). If moreover k is a global field, then J(k,)o = J(k,) for every v, so
Hypothesis 10.1 holds.
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Proof. For (i) and (ii), see [PS97, Propositions 3.2 and 3.3]. For (iii) (generalized to superel-
liptic curves), see [PS97, end of §4]. O

Hypothesis 10.1 will let us define a map from the usual ¢-Selmer group into the Selmer group
associated to our descent setup; without this map, not much could be said about how the
groups relate. In Section 10.1 we study a local group W, that in a sense measures the difference
between the local descent map +, and our approximation C,. In Section 10.3 we define a
global group K with a homomorphism x: K — [], W, whose kernel and cokernel control the
difference between the actual ¢-Selmer group and our explicit Selmer group Selfy . ke (J)-

10.1. Local considerations. We fix a place v of k. Diagram (15) or (16) applied to k,
yields

J(h)

PA(ky)

(19 N

EY(k,) — R (k,) — H"(ky, Al¢]) = H" (ky, EY) — H*(ky, RY)

in which the main row is exact. The group ker «, is hence isomorphic to RY(k,)/qE" (k,),
which is finite, and computable in terms of the actions of the decomposition group of v on
EY and RY.

Since C, = a7, in (19), we have an exact sequence

(20) ker C, — ker a, — coker~y, — coker C,,.

Definition 10.3. Let W, be either of the following naturally isomorphic groups obtained
from (20):

(i) the cokernel of the first map ker C, — ker «,

(ii) the image of the second map ker o, — coker 7,, or
(iii) the kernel of the third map coker v, — coker C,,.

# coker q - #im C),
#im 7, '

Proof. The group ker a, ~ coker ¢ is finite. Separability of ¢ implies that ¢ A(k,) is an open
subgroup of the compact group J(k,), so the group im~, ~ J(k,)/¢A(k,) is finite too. By
(19) and Definition 10.3(ii), we have exact sequences

Lemma 10.4. For any v € Q, the group W, is finite, and #W, =

0 — im~, Nker oo, — kera, — W, — 0
0 — im~, Nker o, — im~, — im C,, — 0,
which let us compute #W,,. O

The following lemma will let us understand W, for most v.

Lemma 10.5. Let v be a non-archimedean place of k such that
(i) the residue characteristic of v does not divide n, and
(ii) the Tamagawa numbers c,(J) and c,(A) are coprime to n.
Then

(a) im(C,) € H'(ky, EY )unr, and
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. RY(ky) RY (kyu)
(b) W, =im (qEV(kv) — qEV(kw))

Proof. The commutative diagram

RY (k) \

qEY (k) H' (ky, Alg]) —— H'(kv, EY)

i \
RY(ky)

qE\/(kv’u) Hl(kv,u, A[¢]) N Hl(’%,u, Ev>

has exact rows (cf. (19)). The central column is exact too, by (i), (i), and Lemma 7.1.

(a) In (21), J(k,)/dA(k,) maps to 0 in H(k,,, EY), so im(C,) C H' (k,, EY)un:-
(b) By Definition 10.3(ii),

W, = im (ker v, — coker ,)

(R
= im (g = 7 e A1)

(R RV
- (qvavﬁqE%kv,u))‘ -

Corollary 10.6. For all but finitely many v, we have W, = 0.

Proof. For all but finitely many v, the residue characteristic of v does not divide n, and J
and A have good reduction at v, so ¢,(J) = ¢,(A) = 1. If we also discard the finitely many v
at which EV is ramified, then for the remaining v the surjection EY — RY of finite étale group
schemes induces a surjection EY(k,,) = EY(kys) — RY(kys) = RY(kyu), so Lemma 10.5(b)
implies that W, = 0. U

Corollary 10.7. The product Hver W, s a finite group.

Proof. Combine Lemma 10.4 and Corollary 10.6. OJ
Lemma 10.8. If v is complex, or if v is real and n is odd, then W, = 0.

Proof. If v is complex, then Gal(k, s/k,) = Gal(C/C) = {1}. If v is real then Gal(k, s/k,) =
Gal(C/R) = Z/2Z. Our assumptions assure that in either case, Gal(k, s/k,) is annihilated

by a unit modulo n, so H'(k,, A[¢]) = H(k,, EY) = 0. It follows that W, = 0. O
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10.2. Finite description of true and fake Selmer groups. Let S be as in Proposition 9.2.
Given another finite set of places 7T, define

St = {(5 € L(n,S):0 €im(C,) for all v € T} :

Theorem 10.9. Let S and T be as above.
(a) We have Selg e /tare(J) € ST

—_—

(b) For each 6 € L(n,S), fir a finite Galois extension ks/k splitting RY such that 6 maps to 0
in H'(ks, RV). If T contains all places in S, all places at which EV ramifies, and enough

places so that for each 6 € L(n,S) the Frobenius elements Frob, for v € T unramified
in ks/k cover all conjugacy classes in Gal(ks/k), then Selfl, o re(J) = ST

Proof.

(a) For v ¢ S, Lemma 10.5(a) proves that Self . (/) consists of elements unramified at v.

Proposition 7.2 now shows that Self, . /e (/) € L(n,S). The condition § € im C,, in the
definition of St is also in the definition of Selfy o /faxe(-/)-

(b) Suppose that 6 € Sy. Given v ¢ T, we must show that 6 € imC,. Choose w € T
unramified in ks/k such that the conjugacy classes Frob,, and Frob, in Gal(ks/k) match.
By definition of S7, we have §,, € imC,,. Then (19) for k, shows that 6 maps to 0
in H'(k,, RY). In other words, § € H'(Gal(ks/k), RY) restricts to 0 at w. But the
decomposition groups of v and w in Gal(ks/k) are conjugate, so & maps to 0 in H'(k,, RY)
too. Thus the element 6, € H'(k,, EV) is the image of some &, € H'(k,, A[#]). Since
v ¢ S, the element ¢, is unramified; in particular, &, maps to 0 in H'(k,,, EY). By
hypothesis, EY is unramified at v, so EV(ky.) — R (ky.) is surjective, so the bottom
row of (21) shows that H'(k,., A[¢]) — H'(kyu, EY) is injective. Thus &, maps to 0
already in H'(k,., A[¢]); ie., & € H'(ky, A[¢])unr- By Lemma 7.1, &, is in the image
of J(k,) under ~,. Thus ¢, is in the image of J(k,) under C,. O

Remark 10.10. The idea to use an enlarged set 7 including places whose Frobenius elements
cover the conjugacy classes was first used in [DSS00, Corollary 12].

Remark 10.11. Here we show how to compute a finite set 7 as in Theorem 10.9(b). A finite
splitting field ka of A will split RY. Given 0, represented by ¢ = (¢;) € L*, say, adjoining
all n'" roots of the ¢; to ka yields a candidate for k;. The Chebotarev density theorem
guarantees that we can find enough v unramified in ks/k to cover the conjugacy classes.

Remark 10.12. In practice, we may choose a smaller 7, one that does not satisfy the
hypotheses in Theorem 10.9(b). Then we have only inclusions

C(J<k)) C Seltarue/fake<J) C ST-

But if we find enough points in J (k) to show that C(J(k)) = S7, then we obtain Self ¢ /() =
St nevertheless. Often 7 = S suffices.
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10.3. Comparison of the Selmer group associated to an isogeny with the Selmer
group associated to a descent setup. In the following, we will study the relation between
the Selmer group associated to a true or fake descent setup (which is an object we can hope to
compute) and the Selmer group associated to the isogeny ¢ determined by the descent setup
(which is the object we would like to compute). Theorem 10.14 will show that « induces a
homomorphism from the latter to the former.

Lemma 10.13. We have an exact sequence
H(k,, EY)

im C,

0— Selto;ue/fake(‘]) - Hl(kv EV) - H

Proof. In the true case, L*/L*™ = H'(k, EV), so this is just the definition of Sel .(J). In
the fake case, (8) for k and its completions yields a commutative diagram

LX
0 T Hl(k[ EY) ——— Br
Ly 1 \Y,
0 HLX%X 17"k, EY) — [ Brk

with exact rows. An element 6 € H'(k, EV) mapping into im C,, C LX/L*"k} for all v maps
to 0 in Brk, for all v, so by the local-global property of the Brauer group, it also maps to 0
in Brk, sod € L*/L*"k*. Thus

H'(k,, EY L HY(k,, EY
ker <H1(k‘,EV) — H %) = ker (LX”kX — H %) = Self, (/). O

Let K be the kernel of the global map a: H'(k, A[¢]) — H'(k, EV), which by (16) equals
the (computable) cokernel of ¢: EV(k) — RY(k). Let k be the composition

(22) K =kera — err Qy —> Him(ker a, — coker,) = H W
The following proposition gives a homomorphism Sel?(.J) — Sel?, . Jtake(/) and provides
information on its failure to be an isomorphism.
Theorem 10.14. We have an exact sequence
0 — ker k — Sel?(J) - Selfue fake () N o(H"(k, A[¢])) —> coker k.
Proof. By definition of x, the diagram
0 K H'(k,Al¢]) —>— a(H'(k, Al¢])) —— 0

(23) l l |

0— [ HHl(kv>A[¢]) HHI(I%,EV).

im y, im C,
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commutes. By definition of I and Definition 10.3(iii) of W,,, the rows are exact. Apply the
snake lemma and take the first four terms of the snake; Lemma 10.13 identifies the kernel of

the third vertical map. O
Corollary 10.15. We have # ker (Sel®(J) — Selfue/mre(J)) < #RY(K)/qEY ().
Proof. By Theorem 10.14, the kernel is isomorphic to ker k C IC ~ RY(k)/qE" (k). O

The following summarizes the best possible situation.

Corollary 10.16. Assume that Selfy o pxe(J) C a(H'(k, Al¢])) and that W, =0 for all

places v of k. Then we have an exact sequence

0 — K — Sel®(J) — Selfe tae(J) — 0.
In particular, # Sel®(J) = #K - # Selfrue/take (/)
Proof. In Theorem 10.14, the homomorphism x: K — [[, W, is 0. 0

We need a criterion that tells us when Sel,,,, (/) is already contained in o(H'(k, A[¢])).
Recall the discussion of III' in Section 8 and the exact sequence

0 — Alp] — EV - RV — 0.
Lemma 10.17.
(a) There is an ezact sequence
0 — Selfi e rare (J) N (H' (k, A[9])) — Selfye/pue(J) — L' (k, RY).
(b) In particular, if ' (k, RY) = 0, then Self,,. mye(J) € o(H (k, A[¢])).

Proof. The last three terms in (15) or (16) for & and the k, give rise to a commutative
diagram with exact rows:

0 — a(H'(k, Al¢])) ——— HY(k, EY) —~—— H'(k, R)

| | |

0 e AlOD)  p R D pp g e

im OU m Cv

Take the kernels of the three vertical maps and apply Lemma 10.13. 0

Remark 10.18. Results of Section 8 allow us to bound III'(k, RY) and to prove that it is 0 in
many cases.

Example 10.19. We revisit the fake descent setup in Example 6.9(i) used for 2-descent on
the Jacobian J of a hyperelliptic curve X with an even degree model y* = f(z). Assume
that X has even genus or that X (k,) # 0 for all v; then Hypothesis 10.1 is satisfied, by
Lemma 10.2. The Gi-set A is the set of Weierstrass points. The group Z/2Z injects into

E = (Z/2Z)50, and EY = 3/ 1. Since J ~ J, exact sequence (13) is

Z
O—>ﬁ—>E—>J[2]—>O,
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and its dual (14) is
0— J2l -5 EY X —0
where N is the norm. Cohomology (see (16)) gives
0 — K — H'(k,J]2]) = H'(k, EY),
where I ~ pus(k)/N(EY(k)). One can show (see [PS97, Theorem 11.3]) that the element
of IC represented by —1 € ps(k) corresponds to the class & of the 2-covering Picﬁ(/k —J
in H'(k, J[2]), where Pic s 1 the Picard scheme component parametrizing line bundles of
degree 1 on X. For each v, our assumption implies that Pick /i has a k,-point, so §, maps to 0
in H'(k,,J), so & € im(C,: J(k,)/2J(k,) — H'(k,, J[2])). Since &, generates ker o, we
have W, = 0 by Definition 10.3(ii). Also, III*(k, y13) = 0 by Lemma 8.1, so Lemma 10.17(b)
applies, and Corollary 10.16 yields an exact sequence
0 — K — Sel*(J) — Self e tare(J) — 0.

Finally, since KL =~ us(k)/N(EY(k)), we have that K = 0 if A has a Galois-stable unordered
partition into two sets of odd cardinality (a computable condition), and I ~ us(k) otherwise
(cf. [PS97, Theorem 13.2]).

11. COMPUTING TRUE AND FAKE SELMER GROUPS

Choose § and T as in Section 10.2, and compute L(n,S) as in Section 7.3. Because of

Theorem 10.9, it remains to find an algorithm to test whether a given element of L(n,S) is
in the local image im C,, for a given v. It is clear that this can be done in principle, but our
goal here will be to describe a practical method, under an additional hypothesis:

Hypothesis 11.1. The variety X is a genus-g curve with a k,-point xy (or more generally,
a degree 1 divisor xg over k,), and either char k, = 0 or char k, > g.

We consider the non-archimedean and archimedean cases separately.

11.1. Computing the local image at a non-archimedean place. Fix a non-archimedean
place v of k. Let K be a finite extension of k,, say of degree d, with valuation ring O,
uniformizer 7, and maximal ideal m. Let Ly := L ®; K. We have a map X (K) — Z°(Xg)
sending x to the class of the 0-cycle x — z(, and following this with Cx defines a continuous
map

L><
ot X(K) —» —L—.
To define ¢k on all of X (K) requires using several functions fi, ..., f,. with disjoint support,

as in Remark 6.13. By perturbing xg in the smooth space X (k,) (if z¢ is a point) or perturbing
each component of zy in the space of points over its field of definition (if x¢ is a divisor), we
may assume that the f; can be evaluated at x.

We now explain how to compute a finite description of ¢x. Choose a proper O-scheme X
with Xx ~ Xk. By the valuative criterion for properness, X (K) ~ X(0O) ~ Wm X(O/n™).

By Hensel’s lemma, L™ has finite index in Ly, so Ly /LE"K* is a finite discrete set, so cx

is locally constant. Proceed as follows:
28



e Start with m = 1.
e On each remaining residue disk modulo 7™ in X (K), check whether any f; is such

X

that f;(z)/fi(zo) is constant in LXL,f;(X ; if not, break the residue disk into residue disks
K

, and apply recursion.

modulo 7!

Because the divisors of the f; are disjoint, eventually this algorithm will terminate, with a
partition of X (K) into residue disks on which ¢k takes a known constant value.

Next, the diagram

Li
LK~

T —x0
E—

X(K) Z2%(Xk)

trK oy lNK/kv
X
LU
Xn [» X
L’U k’U

T /1, T—dTo

2%(Xg,)

commutes, so we can compute C' on elements of Z°(k,) of the form trx /K, © — dxg.

Lemma 11.2.

(a) There are only finitely many extensions K /k, with [K : k,] < g up to isomorphism, and
we can list them all.

(b) As K ranges through these field extensions, and x ranges over X (K), the images of
tr K, © — dxo generate J(k,).

Proof.

(a) If char k, = 0, see [PRO1]. If char k, > 0, the characteristic assumption in Hypothesis 11.1
guarantees that each K is tamely ramified over k,, so K is obtained by adjoining a
single m' root of a uniformizer to a finite unramified extension of k,. We can compute
representatives for the set of possible uniformizers up to m'" powers.

(b) The Riemann-Roch theorem shows that every degree-0 divisor on X is linearly equivalent
to E — gxo for some effective E € Div? X. Writing F as a sum of closed points lets one
express I — gxg as a sum of O-cycles of the form trg/,, * — dxg for various K of degree
at most g. 0

We can now compute im C', as follows:

(i) Compute all extensions K as in Lemma 11.2(a).
(ii) For each, compute the image of ¢k, and apply Nk, to find the image of C, on O-cycles
of the form trg i,  — dxo.
(iii) Compute the subgroup generated by all such images.

By Lemma 11.2, the result equals im C,,.
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11.2. Computing the local image at an archimedean place. For archimedean v a
similar method works, but instead of partitioning X (K) into residue classes, we partition

it into connected components, because a continuous map to the discrete set L)X /LX"kX is
constant on connected components. If K = C, then every point in X (K') has the same image
under x — trg , © — dxg as xo, which is 0. If K = R, then we compute f(x)/f(xzo) for one
point z in each connected component of X (K), perturbing x as necessary to ensure that f is
regular and nonvanishing at x.

11.3. Further comments on the computation of local images.

Remark 11.3. To find different f’s that can be used to compute cx, we need to move 3
(and/or D in the fake case) within their linear equivalence classes. In the fake case, it is often
more convenient to move D in practice, since in many applications (3 is the only effective
divisor in its class.

Remark 11.4. Sometimes we can compute ¢x without moving 3, as we now explain. Suppose
that

e we have a true or fake descent setup, with a choice of 8, D, and f;

e f can be evaluated at xq; where xy € X (K) or xg is a degree 1 divisor on X over K,
for some local field K

e the supports of Sp for P € A are pairwise disjoint; and

e the image of the diagonal Z/nZ — (Z/nZ)* is contained in R.

Given = € X (K), the hypothesis on the Sp implies that there is at most one P such that fp
has a zero or pole at . We can evaluate fo(z— o) for all Q # P, and the missing component
of ¢x(x) can be recovered from the fact (Lemma 6.16) that ¢k (z) lies in the kernel of N.

Remark 11.5. Under the same hypotheses on 3, D, f, R as in Remark 11.4, we can evaluate
Cy at arbitrary x € X(k), using Lemma 9.5 instead of Lemma 6.16. Similarly, we can
evaluate C,,.

Remark 11.6. Here we describe an alternative method that, when it succeeds, computes im C,
much more quickly in practice. The method consists of two parts: computing an upper bound
on #im C, (or its exact value), and computing lower bounds on the group im C),, and hoping
that the sizes match. Suppose that A = J and ¢ is multiplication-by-n on J. To compute an
upper bound on #im C,:

e First calculate the action of the decomposition group Gal(k, s/k,) on A.
e Using this, compute the exact sequence

(24) 0 — Jn](k,) = EY(k,) & RY(k,)
of finite groups.
e From this, compute #J[n](k,).
e Substitute this into the formula

(25) #n‘]}("”’;j)

where || ||, is the v-adic absolute value normalized so that ||al|, = (O, : aO,)~" for

a € O, (this is a variant of [PS97, Proposition 12.10]).

e We obtain the bound # im C, < #J(k,)/nJ(k,), since C, factors through J(k,)/nJ(k,).
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o If ¢: EV(k,) — RY(k,) is surjective, a condition that can be checked using (24), then
(19) shows that «, is injective and #im C, = #J(k,)/nJ (k,).

To compute lower bounds on im C,;:

e Randomly select x € X (k,) — J(k,) and compute their images under C, hoping that
they generate a group of the right size. (Calculate Nk i, (¢x(x)) for z € X (K) also
for finite extensions K of k, if it seems that the k,-points are insufficient.)

12. GENUS-3 CURVES

In this section we specialize to the case of a fake descent setup given by the bitangents of
a smooth plane quartic. This is the non-hyperelliptic ¢ = 3 case of Example 6.9(iv). Many of
the results about smooth plane quartics we require were established already before 1900. See
[Sal1879, p. 223 onwards] for a survey.

12.1. Bitangents of smooth plane quartics. Let k be a field of characteristic not 2. Let
X be a non-hyperelliptic genus-3 curve over k. The canonical map embeds X as a smooth
quartic curve g(z,y, z) = 0 in P2. Conversely, every smooth quartic curve in P? arises in this
way. Let P2 be the dual projective space, with homogeneous coordinates wu, v, w; its points
correspond to lines in P2,

Definition 12.1. A bitangent to X, is a line [ C P}_ such that the intersection [.X is 25 for
some [3; € Div Xj_.

Given a bitangent [, the line bundle %} associated to (; is an odd theta characteristic
on X,. The bitangents to X, form a 28-element G-set A in bijection with the G-set %ddAof
Section 5.1 [GHO04, p. 289]. Alternatively, we may view A as a finite étale subscheme of P?,
and the collection (%)) as a line bundle .Z on X x A. Then (2,A,.Z) is isomorphic to the
fake descent setup in Example 6.9(iv) with g = 3. The isogeny ¢: A — J of Section 6.4 is
2]: J — J.

12.2. Syzygetic quadruples.

Lemma 12.2. Let Iy, ..., 1y be bitangents. Then the following are equivalent:

(i) The corresponding four odd theta characteristics sum to 0 in Pi<‘;)>(s 2]

(ii) The divisor By, + - -+ + By, is linearly equivalent to 2 times a canonical divisor.
(iii) The divisor By, + -+ -+ By, is an intersection Q.X for some (not necessarily irreducible)

conic Q) C P2,
Proof.
(i) <= (ii): Considering degrees shows that the odd theta characteristics sum to 0 in
Pic X,

WP] if and only if they sum to w®? in Pic Xj.

(iii) = (ii): Let [ be any line in P2. Then Q ~ 2] on P? s0 Q.X ~ 2[.X on X, and [.X is
a canonical divisor.
(ii) = (iii): Equivalently, we must show that ['(P? &(2)) — T'(X, Ox(2)) is surjective.
This is true, since the cokernel is contained in H!(P? &(—4 + 2)) = 0. O
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A 4-element set {ly,...,1;} satisfying the conditions of Lemma 12.2 is called a syzygetic
quadruple. Let ¥ C (ﬁ) be the set of syzygetic quadruples. This incidence structure (A, )
constructed above from bitangents is the same as that in Section 5.2 for g = 3. In particular,
its isomorphism type is independent of X (see Remark 5.6). By Proposition 5.7, #3 = 315.

12.3. Spg(F2)-modules. If we chose a bijection between A and {1, ..., 28}, then the image G
of G — Aut A would be identified with a subgroup of the symmetric group Ssg, and changing
the bijection would change the subgroup up to Sss-conjugacy.

Instead we will choose an isomorphism between (A,¥) and a fixed incidence structure
(A, 3), so that G is identified with a subgroup of Aut(A,X), which by Proposition 5.4 is a
specific copy of Spg(F2) in Sss. Changing this isomorphism changes G only up to Spg(Fs)-
conjugacy. This more refined information will be needed to deduce the action of G on J[2],
EY, and RY.

The following lemma constructs our fixed (A, X) directly from the group Spg(F2):

Lemma 12.3.

(a) The group Spg(Fs) has a unique index-28 subgroup H, up to conjugacy. Let A be the
G-set G/H. Identify A with {1,...,28}.
(b) There is a unique Spg(Fo)-invariant subset of (ﬁ) of size 315; call it X.

Proof. Direct computation using Magma [Magma). O

Let T' be the image of the map

(2)- ()
m— | Jfoes:rco}

In F2, let 1, J, R, E be the Fo-spans of {} ;.o [}, T, X, (g), respectively, where we identify
subsets of A with the sums of their elements in F5*.

Lemma 12.4. The Spg(Fy)-submodules of F5* are

0clcJCRCECF2,

which have dimensions 0,1,7,21,27, 28, respectively.

Proof. The given modules obviously are submodules. Direct computation using Magma
establishes that there are no others and that the dimensions are as stated. ([l

Corollary 12.5. Let X be a smooth plane quartic. Let A be its set of bitangents. Let X
be its set of syzygetic quadruples. Construct E and R from the fake descent setup as in
Section 6.3. Then there is an isomorphism (A, X) ~ (A, X) of incidence structures, and any
such isomorphism induces a homomorphism p: G — Sps(F2) and G-equivariant isomorphisms
E~E, R~R, and J[2] = ker(E¥ — RY), where G acts on the Spg(Fs)-modules via p.
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Proof. The isomorphism (A, Y) ~ (A, X) exists because of the uniqueness in Lemma 12.3.
The G-action on A must respect X, so we get

G — Aut(A,Y) ~ Aut(A, ) = Spg(Fy).

The induced isomorphism F2 — F£ sends F to E and R to R because by Lemma 12.4 there
is at most one submodule of each dimension. By (14), we have

J[2] ~ ker (E¥ — RY) ~ ker(EY — RY). O
12.4. Computing bitangents and syzygetic quadruples.

Lemma 12.6. Let k be a field for which arithmetic operations can be computed. Suppose
that g(x,y, z) € klz,vy, 2] is a degree-4 homogeneous polynomial defining a smooth curve X
in P2,

(a) We can compute A as a subscheme in I/F\’%

(b) In the remaining parts, suppose that F is an explicit finite Galois extension of k over which
A splits completely, and write A for A(F). If we choose a bijection A = {1,...,28},
then ¥ can be determined as an explicit subset of ({1"'4’28}).

(c¢) With notation as in (b), we can compute an isomorphism (A,¥) — (A, X).

(d) If we have an explicit description of Gal(F/k) acting on F, then the image of the
homomorphism p: Gp, — Spg(F2) of Corollary 12.5 can be computed.

Proof.

(a) We describe A as a subscheme of P? by describing its intersection with each standard
affine patch of P2, For example, to compute the part of A in the patch whose points
correspond to lines [: ux + vy + wz = 0 with w = 1, substitute the parametrization (s :
t) — (s :t: —us—uot) of the line into g(z, y, 2), set the result equal to (ags®+ ast + ast?)?
for indeterminate ag, a1, as, and eliminate ag, ai, as to find the conditions on w, v, w for [
to be a bitangent.

(b) We use criterion (iii) in Lemma 12.2. Enumerate the 3-element subsets {l1,l2,l3} of A.
For each, use linear algebra over I to determine if there is a conic @ in P? such that
Q.X > By, + B, + Bi; if so, compute Q.X to check whether it equals £y, + 8, + 81, + B,
for some I, € A. Record all such {ly,...,14}.

(c) Given (b), this is a matter of matching combinatorial data. A bijection A — A’ can
be built one value at a time; we try all possibilities, checking as we go along that the
distinguished 4-element subsets match so far.

(d) We compute equations for the bitangents, and hence compute the action of Gal(F/k)
on A. Using (c), we translate this into an action of Gal(F/k) on A. The image of
Gal(F/k) — Aut A is im p. O

12.5. Computing the discriminant of a ternary quartic form. The following is well-
known.

Lemma 12.7. Fiz positive integers n and d. Let g(xo, ..., x,) € Z[xo,...,x,] be a degree-d
homogeneous polynomial with indeterminate coefficients ¢y, ...,cn, so N = ("zd). Then there
is a polynomial D(cy,...,cn) € Zlcy, ..., cn], called the discriminant, such that whenever
c1,...,cy are specialized to elements of a field k, the polynomial D vanishes if and only if
the hypersurface g = 0 in P} fails to be smooth of dimension n — 1. Moreover, D 1is unique
up to a sign.
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Sketch of proof. Let B =AY, and let X C P" x B be the closed subscheme defined by g = 0,
so X — B is the universal family of degree-d hypersurfaces in P". Let S be the locus where
X — B fails to be smooth of dimension n — 1. Then S — B is proper, so its image is a closed
subscheme V' C A%. On the other hand, analyzing the fibers of the other projection S — P
lets us show that S and V are integral (or empty) and lets us compute their dimensions.
This eventually shows that V' is a hypersurface (possibly empty), so V' is cut out by a single
equation, defined up to a unit of Z. O

We now restrict to the case n = 2 and d = 4, in which case D is a polynomial of
degree 27, denoted I57(g) in the notation of [Dix87]. We fix the sign by decreeing that
127(374 + y4 + 2«'4) > 0.

Over a ring in which deg g is invertible, the discriminant of g agrees, up to a unit, with the
resultant R(g) of g—g, g—g, % (cf. [GKZ08, Chapter 13, §1]), for which an algorithm is given
in [Sal1876, §91]. Thus I»;(g) = cR(g) for some ¢ € Z[1/2]* independent of g.

To determine the power of 2 in ¢, we compute R(g) for a single g € Zs[z,y, 2] for which
g = 0 is smooth over Z, (e.g., take g = 2* + 3>z + 23y); for this g we must have cR(g) € Z5 .
The sign of ¢ can be determined as the sign of R(xz* + y* + z%). It turns out that ¢ = 271
(cf. [GKZ08, Chapter 13, Proposition 1.7] and [Dem12, §5, Définition 4 and Exemple 3]).

This algorithm was implemented by Christophe Ritzenthaler, and included by David Kohel
in his Magma package Echidna [Koh|. We used this implementation (but negated the output
to make the sign agree with our convention).

Remark 12.8. Given a smooth plane quartic curve X over Q defined by g = 0, we can choose
g € Z|x,y, z] to minimize |Iy7(g)|. But lo7(—g) = —I7(g), so the sign of I57(g) for such a
minimizer g is not uniquely determined by the curve X in I%.

12.6. Computing fake Selmer groups of smooth plane quartics. We apply the pro-
cedure outlined in Section 11 to compute Selg,,.(J) for the fake descent setup given in
Section 12.1, under the assumption that X}, has a divisor of degree 1 for all v € ;. For
simplicity and practicality, we assume that £ = Q. By multiplying the polynomial g(z,y, z)
defining X in P? by a positive integer, we may assume that g has coefficients in Z. We
proceed with the following steps:

(1) Determine L.

(2) Determine the ring of integers Oy, of L.

(3) Determine a finite set S C j containing the archimedean places, the places of residue
characteristic 2, and the places v where the Tamagawa number ¢,(J) is even.

(4) Determine L(2,S).

(5) Determine the image G of G — Aut A as a subgroup of Spg(Fy) up to Spg(Fs)-
conjugacy.

(6) Choose a finite set 7 C €. For each v € T,
(a) Determine the decomposition group D, as a subgroup of G up to G-conjugacy.
(b) Determine im C,,.

(7) Compute S% = {6 € L(2,S) : Npi(6) =1 € £ and Res,d € imC, for all v € T}.
Sections 12.6.1-12.6.7 elaborate on the implementation of the corresponding steps.
Lemma 6.16 and Theorem 10.9(a) imply Selg,.(J) € S%. So the result of the calculation

is an upper bound S’ for Selg, (J), which by Theorem 10.9(b) can be guaranteed to
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equal Sel, (J) by choosing T appropriately large. (But as explained in Remark 10.12, in
practice we will often not choose T so large.)

12.6.1. Determine L. Our goal is to find a squarefree h(t) € k[t] of degree 28 such that
A =~ Spec L with L := k[t]/h(t). First compute A as a subscheme of P? as in Lemma 12.6(a).

Next, repeatedly choose a projection P? — P! (i.e., perform a change of variables, and then
eliminate a variable) until one is found that maps A to an étale scheme A’ of degree 28 with
oo ¢ A'. Then A’ is the zero locus in Al of the desired h(t) € kt].

Let 8 be the image of ¢ in L.

12.6.2. Determine the ring of integers of L. Here our task is to find a Z-basis of Op, with
each basis element expressed as a polynomial in 6 of degree less than 28. This is a standard
operation in algebraic number theory packages if L is a field. If L splits nontrivially as a
product of fields, we just compute the integer rings of each constituent separately and piece
the results together using the Chinese remainder theorem.

From the denominators of the coefficients of h(z) we find m € Z such that m# is an
algebraic integer. The standard approach for determining Oy would then be to compute the
integral closure of O := Z[m#] in L. But since 6 was obtained by projecting a degree 28
subscheme of P? onto P!, there are probably primes introduced into Disc O that do not divide
Disc Oy,. In practice these primes can easily be of size 10'%°, so even finding them in Disc O
may involve a challenging factorization.

Here are two ways to circumvent this problem:

(1) Compute the discriminant Io7(g) of the quartic form as in Section 12.5, and factor it. If
p is a prime not dividing the integer I57(g), then the 28 bitangents of X reduce to the
28 distinct bitangents of the smooth plane quartic curve defined by g(z,y, z) mod p, so
p 1 Disc Op. In other words, the set of prime factors of I7(g) is an upper bound for the
set of primes dividing Disc Op. Magma’s routine MaximalOrder accepts this upper bound
as part of the input to help it remove extraneous factors via a lazy factorization.

(2) Use a different projection to find a second order (. Then the order generated by O
and @' is likely of small index in Oy, in which case computing its integral closure in L is
much easier.

Remark 12.9. It is advisable to compute an LLL-reduced basis for O and use that to
represent elements of O, and L.

12.6.3. Determine the set S C Q. Compute the integer I57(g) and factor it. If p is a prime
such that p 1 Is7(g), then X has good reduction at p, from which it follows that J has good
reduction at p and ¢,(J) = 1. Therefore we may take the set S of Proposition 9.2 to be the
set of prime divisors of I57(g), together with 2 and oo.

Remark 12.10. Often we can use a smaller § by computing a proper regular model of X
over Z, and using [BLR90, §9.6, Theorem 1] to compute ¢,(J). Magma has an implementation
by Steve Donnelly that can compute regular models of plane curves in many cases; there
is also a function that extracts the component group @; then ¢,(J) = #®(F,) is a divisor
of #®, so this may let us prove that ¢,(.J) is odd, in which case p can be excluded from S.

Here is a common special case in which no extra computation is required to exclude a
prime:
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Remark 12.11. Suppose that an odd prime p appears with exponent 1 in the factorization
of I»z(g). Then ProjZ,[z,y, z]/(g) is regular and its special fiber is an irreducible curve with
multiplicity 1, with a single node. We deduce ¢,(J) = 1, so we may exclude p from S.

—~—

12.6.4. Determine L(2,S). Our goal here is to compute elements of L* whose images
in L*/L*%k* form a basis for L(2,S).

We first compute L(2,S). If we compute L(2,8’) for some &' O S, we can recover its
subgroup L(2,S8) by performing linear algebra with the valuations in &’ — S; thus we are
free to enlarge S. If S is enlarged enough that we can verify that Cl(Op s)[2] = 0, then (17)
implies that L(2,S) = Of s/OF%.

Next, since k = Q, we have C1(Os) = 0, so (18) implies L(2,S) = coker (O§/0§2 — OES/OZ?S)
Thus we need only solve the following standard problems of algebraic number theory:

(A) find S such that Cl(Ops)[2] =0, and
(B) compute bases for OF /OF? and OFf 5/Of%.

Current methods for solving problem (A) involve computing the whole class group Cl(Op s).
Doing this unconditionally requires computation up to the Minkowski constants of the fields L;
with product L, which requires running time polynomial in Disc Oy,; in the case where L is
a degree 28 field, it is rare that Disc Op is small enough to make this practical. On the other
hand, if we are willing to assume the Generalized Riemann Hypothesis for the L; of large
degree, we can handle many more instances.

Problem (B) is less serious, once problem (A) has been solved. One can check whether
an element of (935 is a square, by constructing the square root numerically to prove a
positive answer and by reducing modulo primes to prove a negative answer. The Dirichlet
S-unit theorem yields dimp, (’)E s/ OZ% = #§ in advance, so if generators are constructed
conditionally, they can be verified without difficulty.

Remark 12.12. Magma has a command to compute L(2,S) when k = Q.

12.6.5. Choice of T. Choose a finite set of places T, while keeping Remark 10.12 in mind. If
it is necessary to get a better upper bound S7- on Selfie /fue(-/), We can enlarge T later.

12.6.6. Determine the global and local Galois actions on A. We have two goals:

(A) Describe the image G of the homomorphism p: G — Spg(F2) in Corollary 12.5 as a
subgroup of Spg(F2) up to Spg(Fa)-conjugacy. Since in Lemma 12.3(a) we fixed an
embedding Spg(Fs) < Sog, the answer can be specified by giving explicit elements of Sog
that generate one such representative G of its conjugacy class.

(B) For each v € T, describe the decomposition group D, as a subgroup of the GG in (A)
up to G-conjugacy. Each D, is to be specified by a list of elements of G C S,g that
generate D,,.

If (A) and (B) are done, then E, R, J[2] with the actions of G and G, can be computed as
submodules and subquotients of F2, as in Section 12.3.

Magma shows that there are 1397 conjugacy classes of subgroups in Spy(Fs) to distin-
guish. Here are some methods that can be applied (with varying degree of success) towards

determining the image Gk of Gx — Spg(IF2) (up to Spg(F2)-conjugacy) for a field K:
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o Splitting field. If a splitting field of A over K is of small enough degree, then
Lemma 12.6(d) is practical. But in the worst case, the splitting degree is # Spg(Fa) =
1451 520.

o Orbit sizes. Factoring h(x) over K determines the orbit sizes of G; this already cuts
the number of possibilities from 1397 down to at most 107 (there are 107 conjugacy
classes with orbit size multiset {4, 8,16}). Factoring h(z) over the fields obtained by
adjoining one root of (one factor of) h(z) determines the orbit size multisets for the
one-point stabilizers; these constrain Gi further.

e Decomposition subgroups. If K is a global field k, and we have computed decomposition
subgroups D, in Spg(F2) up to Spg(F2)-conjugacy for several v, then these constrain
the possibilities for G .

Next we discuss the practicality of these methods for special types of fields K:

1. Finite fields. Here G is cyclic. Magma shows that for each cyclic subgroup of Spy(Fs),
either the orbit size multiset determines the conjugacy class uniquely, or the subgroup has
size at most 6, in which case the splitting field method is practical. So G is determined
easily.

2. Archimedean local fields. The splitting field has degree at most 2, so use the splitting field
method.

3. Non-archimedean local fields. If X has good reduction, then we reduce to the case of
a finite field. Otherwise, let ¢ = p® be the size of the residue field (for £ = Q, e = 1);
then we have normal subgroups P < [ of Gk (wild inertia and inertia) such that G /I is
cyclic of some order f, and I/P is cyclic of order dividing ¢/ — 1 and P is a p-group. If
p > 7, then p{ # Sps(F2), so P = {1}, and G is metacyclic; there are only 214 conjugacy
classes of metacyclic subgroups of Spg(F2), and the largest such subgroup has order 60,
which is about the largest degree for which the splitting field method is easily practical.
For K = Q9,Q3, Qs5, Q7, the maximal size of G is 2304, 432, 120, 60, respectively; if the
splitting field method is impractical, we can eliminate possibilities by using the orbit size
methods, and by using that the local Galois group must be contained in the global Galois
group if the latter has been computed already.

4. The global field Q. Determining the Galois group of a polynomial h(t) € QJt] is a
standard problem in computational number theory: see [Sta73, GK00, Gei03]. A recent
implementation by Claus Fieker and Jiirgen Kliiners in Magma chooses a prime p, labels the
roots of h in a splitting field K,/Q, by giving approximations to them, and computes the
Galois group over Q as a subgroup of the permutations of the labels; in fact, by choosing
an unramified prime p, the computations can be done in finite extensions of [F,, instead
of @,. Once this is done for our h of degree 28, the splitting field method can then compute
G in Spg(F2) up to Spg(F2)-conjugacy.

An alternative to using the general-purpose implementation above is to use orbit sizes
and decomposition subgroups to try to eliminate all possibilities except one. When this
succeeds, which in practice seems to be almost always the case, it is often faster.

Summary: In practice we can always achieve goal (A). Goal (B) may be more difficult to
reach, but the methods presented above often succeed. From now on, we assume that both

goals have been reached.
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12.6.7. Determining the local images. Given v € T, our goal is to compute elements of L
whose images in LY /LX?k* form a basis of im C,. We follow the approach in Section 11.

First let us explain how to compute the map cx in Section 11.1, for any finite extension K
of k,. Let (ug : vy : wy) € A(L) be the generic point of A over k; we perturb xy so that
upx + Vpy + wyz does not vanish at (points in the support of) zy. Given P € X (K), choose a
linear form uox + voy + woz € K|x,y, z] not vanishing at P or (points in the support of) z.
If P € X(K) does not lie on any bitangent, then evaluating the rational function

UL + VoY + WpZz
U + VoY + WoZ

at P and z¢ give elements of L}; their ratio mapped to Ly/LX2K* is ci(P). If P does lie
on a bitangent, then use Remark 11.4, which applies since the (; are disjoint.
Now, to compute im C,,, attempt to use Remark 11.6, in which for k, = Q,, (25) becomes

J(ko) _ ) #I2I(ko), i v #2
(26) # B {8#J[2](kv), if v=2.

27(k.)
If the approach of Remark 11.6 fails, use the general approach of Section 11.1 or 11.2.

12.7. Comparing Self, (J) with Sel’(J). Let notation be as in Section 12.6, where we
computed a group S containing Self,.(J), which Section 10.3 relates to Sel*(.J).
We review here the ways in which S%, Selg, (J), and Sel*(J) can differ:

(i) S% may be larger than Selg, (/)
(ii) Selg,.(J) may fail to be contained in a(H'(k, J[2])) (both are subgroups of H!(k, EV)).
(i) If Sel?,.(J) € a(H'(k,J[2])), then a induces a map Sel?(J) — Sel%,.(J) (see Theo-
rem 10.14), but it may fail to be injective and/or surjective.
And here are ways to detect or avoid these differences:

(i) Theorem 10.9(b) shows how to choose 7T to ensure that Selg, (J) = S7, in which case
both equal the group 5% sandwiched between them. But the amount of computation
involved in implementing that strategy is probably prohibitive, so we may prefer to use
the observation of Remark 10.12.

(i) Lemma 10.17(b) shows that the containment Sely, (J) C a(H'(k,J[2])) follows if
II'(k, RY) = 0, and Proposition 8.3 gives an upper bound on IIT*(k, R¥) that is often 0.
More precisely, this upper bound is 0 for 1103 of the subgroup classes of Spg(F3). Even
if we are unlucky enough to have G in the remaining 266 subgroup classes, there is hope
since we find that there is a G-orbit in X of size at most 7, so the ideas of Appendix A
are probably practical; and J[2] is reducible, so there are nontrivial isogenies available
for descent computations.

(iii) In order to estimate the kernels and cokernels of Sel*(J) — Sel%, (J), we use Theo-
rem 10.14. Assuming that we succeeded in computing global and local Galois groups as
in Section 12.6.6, we have for each v € T an explicit description of

0 —— J[2](k) — EY (k) —— RY (k)

(
0 —— J[2](ky) — EY(ky) —— RY(ky).
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Let ! be the map K = ker o — ker «,, implicit in (22), which can be identified with
R'(K) _ RY(k)
qEV (k) qEY (ky)’

and hence computed. The map in (22) we are really interested in is the map

Ky: K =kerao — W, := L%.
ker o, N'im 7y,

We computed #.J(k,)/2J(k,) and # im C,; dividing gives the size of ker C, ~ ,(ker C,,) =

ker o, Nimy,, so in some cases we may have sufficient information to deduce k, and

piece together x = [], k, and its kernel and cokernel. Even if we can determine

# coker k, however, it is only an upper bound on # coker(Sel*(J) — Sel%,.(J)) (see

Theorem 10.14).

12.8. Descent on the curve. Let X be a smooth plane quartic over a global field £ of
characteristic not 2. The fake descent setup described in Section 12.1 can be used also to
perform a descent on the curve as described in Section 9.3. Let ug,vg,wy € L be as in
Section 12.6.7, and choose f to be (upz + vy + wyz) /¢ for some linear form ¢ € klz,y, z|.

To apply Remark 11.5, we need to find the ¢ and r of Lemma 9.5. By interpolation, find a
degree 14 form ry4 € k[x,y, 2] whose zero divisor on X is )., Bp; such a form is unique
modulo g and up to scalar multiple. Thus there exists ¢ € k™ such that

(27) NL[x,y,z]/k[x,y,z] (UQ,T + VoY + ’LU@Z) = C7,'14(377 Y, Z)2 (HlOd g(x7 Y, Z))

Comparing coefficients lets us compute c¢. Then ¢ and r := r14/¢' are as in Lemma 9.5.

We can now evaluate Cy,(Q) for any ) € X (k,), by using f; in fact, it suffices to evaluate
upx + vgy + wyz at any triple of homogeneous coordinates representing (), since the value of
¢ on this triple will be in k..

Lemma 12.13. Assume that the ug, vy, wy above are in Op. Let S C Q4 be a finite set of
places containing the archimedean places, the places of residue characteristic 2, the places of
bad reduction of the model g(x,y,z) =0 of X, and places lying under Or-primes diwviding the

Op-ideal (ug,vg, wg). Then imCy C L(2,S).

Proof. Let v € Q \ S. Then L, is a product of local fields, and we let Of,,, be the product
of their valuation subrings. Suppose that (z : y : z) € X(k,). Without loss of generality,
29,2 € O, and (2,y,2)0, = O,. The point (ug : vy : wy) € P2(L) extends to a point
in @2((9“))' Given ) € A(ky,.) = A(ks), we can specialize up to an element ug in the
valuation ring of &, ,, and define vy and wg similarly; our hypothesis on (ug, vg, wy) implies
that min(v(ug),v(vg), v(wg)) = 0. On the reduction of X at v, the 28 bitangents are distinct,
so the reduction of (x : y: z) € X(k,) lies on at most one bitangent, so

v(ugr + voy + wgz) >0

for at most one ). On the other hand, (27) and our hypothesis on (ug, vg, wy) imply that
2| v(c), so

2 | v(Nr, /i, (UoT + voy + wpz)) = v (H(uQx + vy + sz)> .

Q
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Combining the previous two sentences shows that 2 | v(ugzr + vy + wgz) for all @, and
hence ugw + vy + wez is a square in L ® k, 4. O

By breaking up X (k,) as in Section 11.1, we can compute C, (X (k,)) for any v. (Note
that in contrast to Section 11.1, we do not need to work with extensions of k,.) For a finite
set T C 4, we compute

—_——

Sh={5€ L(2,8): N(6) € ck*?® and §, € C},(X(k,)) for all v € T},

which contains Sel{ake(X ). In particular, if 5% is empty, then X has no k-rational points.
On the other hand, the following may be useful in proving the existence of local points:

Lemma 12.14. Let k, be a nonarchimedean local field with valuation ring O, and residue
field ¥, of size at least 37. If Xy, is a smooth plane quartic, and Xg, is geometrically
irreducible, then X (k,) is nonempty.

Proof. Removing the singularities from Xy, yields a smooth curve of genus g with at most
6 — 2¢g punctures, for some g € {0,1,2,3}. In all four cases, the Hasse-Weil bound implies
the existence of a smooth F,-point. By Hensel’s lemma, it lifts to an O,-point, which gives a
k,-point. 0

12.9. Examples. Denis Simon kindly supplied us with a list of smooth plane quartics with
small integer coefficients and small discriminant. These serve as test cases for the methods
outlined in Section 12.6. In the first three examples, we use fake descent to determine the
structure of J(Q), which in the first two examples lets us determine X (Q). In the fourth
example, we use descent on the curve to prove that X(Q) = ().

12.9.1. A genus 3 curve with J(Q) ~ Z/51Z. Let X be the curve in P defined by

:133y — x2y2 — 2?2 — my2z + a2+ ygz =0.

(This is isomorphic to the curve of smallest discriminant in Simon’s list.)

Steps 1 and 2. The algebra L = QIt]/(h(t)) turns out to be a degree 28 number field
over Q. It follows that Gg acts transitively on the bitangents. We compute Oy, and find that
Disc O = 242 .296 . 1636,

Step 8. We find that Io; = 4727 = 29 - 163. By Remark 12.11, we may take S = {2, 00}.
Step 4. The class group of O is generated by primes of norm below the Minkowski
bound, which is 36 984 868, remarkably small for a degree-28 number field. We can prove
unconditionally that the class group of Op wvial, and we can find explicit generators
of L(2,8). We find L(2,8) ~ (Z/27)'" and L(2,8S) ~ (Z/27)".

Step 5. By computing the Frobenius action at 3 and 5, we find that G is either the full
group Spg(Fy) or the unique index-36 subgroup up to conjugacy. The larger group acts
doubly transitively on the bitangents, whereas the smaller does not. If we factor h(t) over L,
we find factors of degrees 1,12, 15, so GG is the smaller group. With this information we can
check that

(28) 0— J2(Q) — E¥(Q) — RY(Q)

0 0 Fy
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Step 6. Taking T = () (i.e., doing no local computations with X) yields the upper bound
Sp =~ (Z/2Z)" on Selg,.(J). To obtain a better bound, we next try 7 = {2}; it will turn out
that this suffices.

Step 6a. We check that h is irreducible over Q,, so Dy acts transitively on A. This, together
with the general constraints on a decomposition subgroup at 2, leaves only two candidates
for Dy up to conjugacy: a group Gsg of order 56 and a group Gigs of order 168. We can
distinguish these by the number of points fixed by their one-point stabilizers: G5 leaves
4 points fixed and G leaves 1 point fixed. We find that h has 4 roots in Qq(6), so Dy = Gsg.
Actually, the distinction is unimportant, because for either group we have

(29) 0 — J[2J(Qs) — EV(Qy) —— RY(Qy)
I I I
0 0 F,.
Step 6b. From J[2](Qs) = 0 and (26), we deduce #im~, = 8. Embed Xg, in Jg, using
2o = (0:0:1) € X(Qy); we find points in X (Q2) whose images under Cs generate a
group of size 8. Thus the inequality # im Cy < #im~, is an equality; i.e., #im Cy = 8. By
Lemma 10.4 and its proof, we obtain

RY(Q)
30 Wy ~ kerag ~ ——— ~ 7./27,
30 i T R
by (29).
Step 7. Given that we have explicit generators for L(2,S), we can compute the map
L(2,S) — .
2,5) (L ® Q2)*2Qy

In Step 6b, we computed im C5, so we can compute S for 7 = {2}. We find S = 0.
Thus Self,.(J) = 0.

By (28) and Corollary 10.15, Sel?(.J) is either 0 or Z/2Z. We can decide which by computing
ker k in Theorem 10.14. By (30), the map K — W3 is RY(Q)/qEY(Q) — RY(Q2)/qE"(Q2),
which is an isomorphism, so s is injective; thus Sel2(J ) = 0 by Theorem 10.14.

Remark 12.15. The situation can be reinterpreted as follows: the kernel I of the map
a: HY(Q, J[2]) = HY(Q, EY) has a non-trivial element §, but its restriction d, € H'(Qs, J[2])
is not in im . (This is because 0 # dy € ker ap, while im v, Nker iy = 0: see Step 6b above.)
In classical language, 0 corresponds to a 2-covering of J that has no Qs-point, so & & Sel?(.J).

Proposition 12.16. If X is the curve
2y —a?y? — 22—+ e+ P2 =0
in P, then J(Q) = ([(0:1:0)—(0:0:1)]) ~Z/51Z and
X@Q={(1:1:1),(0:1:0),(0:0:1),(1:0:0),(1:1:0),(1:0:1)}.
Proof. Since Sel®(J) = 0, the group J(Q) is finite and of odd order. Reduction modulo 3
injects J(Q)iors into J(F3), which, according to Magma, is of order 51. (We use J(F3) to

denote the group of Fs-points on the reduction.) On the other hand, Magma shows that

[(0:1:0)—(0:0:1)]is of exact order 51 in J(Q). Thus J(Q) ~ Z/517Z.
41



Finally, we determine X (Q). The Abel-Jacobi map X — J given by P +— [P — (0: 0 :
1)] injects X (Q) into J(Q). Magma determines which points in J(Q) can be represented
as [P —(0:0:1)], and the result is as stated. O

12.9.2. A positive rank example. Let X be the curve in IP’?Q defined by
2y —ayP — 2ty — 20727 4yt -2y =0
The group J(Q)tors injects into J(Fs), and its odd part injects into J(Fy) (the curve has good

reduction at 2 and 3). We compute J(Fy) ~ Z/71Z and J(F3) ~ Z/85Z, so J(Q)iors = 0. On
the other hand, the divisor class

G:=[0:1:-1)+(0:0:1)—2(0:1:0)]
is nonzero since X is not hyperelliptic. Thus rk J(Q) > 1.

Steps 1 and 2. The algebra L turns out to be a degree 28 number field. We find that
Disc O = 242 . 416 . 3476,

Step 3. We have Iy; = 41 - 347. By Remark 12.11, we may take S = {2, co}.

Step 4. The Minkowski bound for Oy, is 1008 340 641. The truly dedicated enthusiast could
probably verify unconditionally that the class group of Oy is trivial. We verified this only
conditionally on the Generalized Riemagl\liypothesis for L. Subject to this, we find explicit
generators of L(2,8) ~ (Z/27)'" and L(2,8) ~ (Z/27)".

Step 5. By computing the Frobenius action at 5 and 7, we find that G ~ Spy(F2). Thus
JRI(Q) = E¥(Q) = RV(Q) = 0.

Step 6. It will turn out that taking 7 = {2} is enough to obtain the upper bound S7,, ~ Z/2Z
on Selg, (J).

Step 6a,b. We check that h is irreducible over QQo, so Dy acts transitively on the bitangents.
This leaves 6 possibilities for Dy up to Spg(Fs)-conjugacy, but for all of them we have
J[2](Qs) = EY(Q2) = 0. Following Remark 11.6, we obtain #im Cy < #J(Q2)/2J(Q2) = 8
(see (26)), but we also find enough points in X (Q3) to show that #im Cy > 8, so #im Cy = 8.
Step 7. We can compute the map

P L X
[(2.8) » A LEBIT
(L ® Q2)*2Q;
explicitly, and we have im Cs; from this we compute that S} = Z/27Z.
Since RY(Q) = 0, Corollary 10.15 implies that Sel?(.J) — Sel?,(J) is injective. Thus

JQ < Sel*(J) = Sel¢,(J) C S = 7Z/27,

2J(Q)
so rk J(Q) < 1. Combining this with the earlier information yields J(Q) ~ Z.

Proposition 12.17. Let X be the curve
v2y? —ay? — 2Pz — 220722 Pt -2yt =0
mn Pé. Assume the Generalized Riemann Hypothesis. Then J(Q) ~ Z and
XQ)={(1:1:0),(-1:0:1),(0:=1:1),(0:1:0),
(1:1:-1),(0:0:1),(1:0:0),(1:4:-3)}.
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Proof. We already proved that J(Q) ~ Z. To determine X (Q) we use an explicit version of
the method of Chabauty and Coleman over Q3 (see [MP12] for a survey).

We check that #X (F3) = 7, and that the set of 8 points in X (Q) listed above surjects
onto X (F3), with Py :=(1:1:0) and P, := (1 : 4 : —3) reducing to the same point. Since
rk J(Q) = 1 and dim J = 3, there is a 2-dimensional subspace V' C H%(Xq,, ') such that
flf/ w=0forall P,P" € X(Q) and w € V. Since [P, — Fy] is nonzero in J(Q), it is of infinite
order, so V = {w : 121 w = 0}. We compute this integral (to some 3-adic precision) for w
in a basis for H%(Xq,, ') by evaluating the integral as a power series in a uniformizing
parameter t at Fy; then linear algebra produces a basis for V. Explicitly, if we identify each
w € H%(Xgq,, ') with a linear form uz + vy + wz, a basis for V' is given by w; corresponding
to (21262 + O(3'%))x — y and w, corresponding to (1302 + O(319))z — 2.

For each point of X (F3), we need to find the rational points in the corresponding residue
class in X(Qs). For each point ) € X (F3) other than the reduction of Py (and P;), the
mod 3 reduction of one of wy,ws is nonvanishing at @, so by Proposition 6.3 in [Sto06], there
is at most one rational point reducing to @), and we already know one. The rational points P
in the residue class containing Py and Py satisfy [ PP; wr = [ PPO wy = 0; these give two power
series equations over Q3 to be solved for ¢t € 3Z3;. We calculate that each power series has
three zeros in 3Zs, but the intersection is of size at most 2, so Py and P; are the only rational
points in this residue class. U

12.9.3. A modular curve of level 13. Let X1t (13) (resp. Xnonspiit(13)) be the modular curve

of level 13 over Q corresponding to the normalizer of a split (resp. nonsplit) Cartan subgroup

of SLy(Z/13Z). These are non-hyperelliptic curves of genus 3, and it turns out [Barl3, Barl2]

that both are isomorphic to the smooth plane quartic curve

(31) X 2by+ a3z — 2027 — 2?yz 4+ xy® — xyPz + a0y — 12 — 2222 + 3y = 0.

This curve has at least the following 7 rational points.
{(0:1:0),(0:0:1),(=1:0:1),(1:0:0),(1:1:0),(0:3:2),(1:0:1)}

We compute J(F3) ~ Z/917Z and J(F;) ~ Z/659Z. Since J(Q)iors injects into both groups,
J(Q)tors = 0. This, with the fact that #X(Q) > 2, implies that rk J(Q) > 0. One can verify
that the divisor classes

[(0:1:0)=(1:0:0)],[(0:0:1)=(1:0:0)],[(-1:0:1)=(1:0:0)] € J(Q)
generate a group containing all differences of the points listed above. Furthermore, the image
in J(F3) x J(F5) x J(Fy3) is isomorphic to

Z)(7-13-29-97)Z x Z/13Z x Z/13Z,
sork J(Q) > 3.
We apply the procedure in Section 12.6 to compute an upper bound on rk J(Q).

Steps 1 and 2. The algebra L is a degree 28 number field with Disc O = 242 . 13%4.

Step 3. We have Iz = 13°. The closed subscheme of P7 = defined by (31) is regular, and its
special fiber is a geometrically integral curve of genus 0, so ¢13(.JJ) = 1. Therefore we can take
S ={2,00}.

Step 4. The Minkowski bound for Oy, is 8 158 071 456. The truly dedicated enthusiast could

probably verify unconditionally that the class group of Oy, is trivial. We verified this only
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conditionally on the Generalized Riemaﬂ_liypothesis for L. Subject to this, we find explicit

generators of L(2,8) ~ (Z/27)'" and L(2,8) ~ (Z/27)".

Step 5. Since L is a field, G acts transitively on the bitangents. There are 18 subgroups

of Sps(F2) up to conjugacy with that property. The Fieker-Kliiners implementation in Magma

for finding Galois groups yields #G = 504. This determines G uniquely up to conjugacy.
This information allows us to compute:

(32) 00— J2J(Q) — E¥(Q) — RY(Q)

0 0 2.
Steps 6 and 7. It will turn out that taking 7 = {2} is enough to obtain the upper bound
Sioy 2 Z/2Z on Selg,.(J). The fact that L has only one prime above 2 shows that D, acts

transitively. This together with the constraints on a decomposition group at 2 determines Dy
uniquely up to conjugacy in Spg(F2). We obtain #Dy = 56 and

(33) 0—— J[2](Qs) — EV(Qy) — RV(Q»)
|| || ||
0 0 F2.
Following Remark 11.6, we obtain #imCy < #im~y, = #J(Q2)/2J(Qs) = 23 (see (26)).
Further computation shows that Sj = (Z/27)'* and that the homomorphism

(L ® Q)"
(L ® Q2)**Q3
is injective. It follows that #S5% < #im Cy < 2°. Thus # Selg,.(J) < 2°. By Corollary 10.15
and (32), this implies # Sel*(J) < 2°, so 1k J(Q) < 5.

We now present two approaches to improve this to rk J(Q) < 3. The first is to use the
isomorphism End .J ~ Z[(; + ('] of [Barl2, Proposition 2.4] to obtain that rk.J(Q) is a
multiple of 3, which improves the bound to rk J(Q) < 3. The second is to follow Section 11.1
to compute that #im Cy = 2, which can be used as follows. By the same argument as in
the previous paragraph, #im C, = 2 implies # Sel?,.(J) < 2! and # Sel?(J) < 23. On the
other hand, 3 < rk J(Q) < dimg, Sel*(.J), so equality holds everywhere in this paragraph. In
particular, if ITI(J) is the Shafarevich-Tate group of J, then III(J)[2] = 0. We have proved

Proposition 12.18. Let X = Xqit(13) ~ Xyonspiit(13) over Q. Assume the Generalized
Riemann Hypothesis. Then J(Q) ~ Z? and 111(.J)[2] = 0.

Sy —

Remark 12.19. By (33) and Lemma 10.4, we have Wy = 0. In particular, we are in the
situation of Corollary 10.16.

12.9.4. A genus 3 curve violating the local-to-global principle. The fake descent setup presented
in Section 12.1 allows us also to compute Sel{ake(X ) for a smooth plane quartic X.

Proposition 12.20. Let X be the curve in IP’%D defined by
ot oyt + a?yr + 22y — P 4+ 2t = 0.
Then X(R) # 0 and X(Q,) # 0 for all p, but if the Generalized Riemann Hypothesis holds,

then X(Q) =
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Proof. We have Iy; = —2% . 52 - 1361 - 97103, so Lemma 12.14 implies X (Q,) # 0 for p > 37.
A further calculation using Hensel’s lemma shows that X (Q,) # 0 for p < 37 too, and that

X(R) £ 0.

To prove X (Q) = (), we apply Section 12.8 with & = {00, 2,5,1361,97103}. It is straight-
forward to find (ug, vg, wy) satisfying the hypotheses of Lemma 12.13 for §. We find that
Disc(Op) = 23°.510.1361°-97103% and that the Minkowski bound exceeds 10?2, so determining
Cl(Op,s) unconditionally is out of the question. Conditional on the Generalized Riemann Hy-
pothesis for L, which we assume from now on, we find that C1(Oy, s) = Z/2Z and we also find
O s/O;%. This leads to explicit generators of L(2,8) ~ (Z/2Z)*" and L(2,8) ~ (Z/2Z)*.
We compute ¢ = —1. For 7 = {2,1361}, we find S =0, so X(Q) = 0. O

APPENDIX A. DETERMINING THE ¢-SELMER GROUP DIRECTLY
We can modify our approach so that it computes Sel¢(J ) directly, instead of comput-
ing Selfy e /fake (/) and hoping to control the difference.

The fundamental idea behind a true descent setup is to replace the Galois module J| [5]
whose cohomology we want by a permutation module (Z/nZ)> whose cohomology we can
compute. The discrepancies between Self, . e (/) and Sel?(J) come from the non-injectivity

of (Z/nZ)® — J[¢|. In this section we deal with the non-injectivity by finding another
permutation module (Z/nZ)?" that surjects onto the kernel.

A.1. Correspondences. A correspondence A .5 A’ between finite G-sets is a G-homo-

morphism Z2 — Z#. Given a G-module M and A s A , we define homomorphisms
™ M2 — M? and 7,: M® — M?' as follows. Restricting the composition pairing

Homgy(Z~', M) x Homgz(Z*,Z*") — Homg(Z>, M)

by setting the second argument to 7 yields a G-homomorphism that with the identifications of
Remark 3.3 becomes 7°: M2 — M?. Applying this construction to the Z-dual of 7 yields 7.

Example A.1. Suppose that X is a nice k-variety. If we apply the previous remark to the étale
group scheme M such that M (k,) is the Gy-module Div X, then M* (k) = Div(X x A), and
we obtain 7,: Div(X x A) — Div(X x A’). Similarly we obtain 7, : k(X x A)* — k(X x A’)*.
Lemma A.2. Let M be a finite G-module such that nM = 0.

(a) There exists a finite G-set A with a surjection (Z/nZ)> — M.
(b) There exists a finite G-set A with an injection M < u5 (here we assume chark { n).

Proof. For (a), take A = M: the identity M — M induces Z* — M, which factors through
(Z/nZ)™ since nM = 0. Applying (a) to MV := Homgz (M, k) and applying Homz(—, k)
yields (b). O

Lemma A.3. Fach of the four homomorphisms
Homgz(Z2, Z2") =5 Homy ((Z/nZ)>, (Z/nZ)™)
(22, 2%) 75 Homy ((Z/nZ)™, (Z/nZ)*)
HomZ(ZA,ZA/) 2T Homg (12, p2)
(z* (1

a5
A A
oy 5 n)

Homy,

ZA/) i) Homy
45

HOIIlZ



is surjective with kernel n Homg(Z”, Z2") (in the last two we assume chark {n).

Proof. The statements do not involve the G-action, so each reduces to an easy statement
about abelian groups. ([l

A.2. Determining the Selmer group. Set @ﬁ: = G4 for a true descent setup, and
GA := G5/, for a fake descent setup.

A~ A~

Recall that R = ker(aV: E — J[¢]). Fix a finite étale scheme A’ = Spec L' with a
surjection (Z/nZ)*" — R (one such choice is A’ = R). By definition of R, we have an exact
sequence

A~ A~

(34) (Z/nZ)® — E 25 T[] — 0
and its dual
(35) 0 — Alg] — EY — 1>

in which the image of the last map is R".

Remark A.4. Define (Q and ¢’ by the exact sequence

(36) 0— R — 500

If Q(k) = ¢ (n(L')) and II' (k, u2") = 0 (the latter holds if n is prime, by Lemma 8.2), then
I'(k, RV) = 0, so the first assumption in Corollary 10.16 is satisfied. This gives a simple
way of showing that ITI'(k, R") vanishes, but the criterion can be weaker than that coming
from Section 8.

By Lemma A.3, the composition
(37) (Z/nZ)~ — R < E — (Z/nZ)”

is 7* for some correspondence A - "s A, We use 7. to denote any of several homomorphisms
induced by 7; the context will make the meaning clear. In the fake case, 7,: p2 — p2 kills
the diagonal p,,, because taking duals in (37) shows that 7, factors through EV = p2/u,,.

Thus 7,: G5 — G2 induces 7,: G2 — G2 in both cases.
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Let U be the image of (7,,n): G5 — G2 x G2. The last map in (35) is induced by
To: 2 — &', so we have a commutative diagram with exact rows and columns

0
0 RY
0—— Alg] — G U0
(38) . H o
0 EY GA ", G2 0,
q
RY 0
0
in which ker pr, is identified as R" by the snake lemma. Taking cohomology, we obtain
RY (k)
TNA (T*vn)

(39) (G2)(k) U(k) —— H'(k, Al¢]) — H'(k, GA

EY(k) — (G&)(k) —— L~ H'(k, EY) — H'(k,GD).

Lemma A.5. There is a finite étale k-scheme A" and a correspondence AN Loy A such

that

A//
n

A Te A Th

is exact. There is another correspondence A ---+ A" such that 7" o =n1". Then

_ A/ A A A" / ﬂ M
U—k@I‘(Gm XGm_)Gm X(Gm ) (fyf)l—)(,]_*(g)77_;/(£))>

Proof. Lemma A.2(b) applied to the cokernel of 7, yields A” and 7/. By Lemma A.3, 7o 7
is n times some 7”. Direct computation shows that U is contained in the kernel. To see
the other inclusion, let (¢, ¢) be in the kernel. Let A € G5 (k,) be such that A" = ¢, and let
¢ =0/7,(\). Then ¢ =" /7.(\") = " /7,(f) = 1, s0 ¢’ € p2'. Also,
() () ) n(t) _nl) _
T = = = = =
TN T ) T o T
which implies that ¢’ = 7.(¢) for some ¢ € p4. Then (¢, €) = (1.(CN), (C\)") € U. O
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Corollary A.6. Keeping the notation from Lemma A.5, we have
U(k) = {(f’,f) el x L () =0"7') = 7;:(6')}.

In this paragraph, suppose that we are in the fake case. The map 7,: u5 — ,uﬁ' factors
through EV = u2/u,, so it kills the diagonal image of y,. Let ¢: Z — Z* be the diagonal
embedding; the previous sentence shows that (70¢),: p, — uﬁ’ is trivial. By Lemma A.3,
701 = nf for some correspondence #. The image of a € k* under 0,: G,, — G2  in each
component of (L')* is a fixed power of a.

Lemma A.7.

(a) In the true case, G5 (k) is mapped by (f}%: 5 G2 to L*™ C L* and by (7,,n) to
(40) {(r.(0),0"): ¢ € L™} CU(k).

(b) In the fake case, @A;(k) is mapped by @ﬁ: 5 G5 to L*"k* C L* and by (7.,n) to
(41) {(7.(0)0.(a), ("a) : L € L ;a € k*} CU(k).

Proof. The true case is immediate from the definitions, so assume that we are in the fake
case. We have an exact sequence

0= G — G2 x Gy & GA 0
with maps induced by £+ (£,£7™) and (¢, a) — fa'/™ (the n'" root is well-defined modulo 4,,).
Takir\l_g cohomology shows that j induces a surjection L* x k* — G4 (k). Following j
by G& 55 G2 yields (¢,a) + ("a, whose image on k-points is L*"k*. Following j by
@ﬁ: NNy C G5 x G2 yields (£,a) — (1.(£)04(a), £"a), whose image on k-points is V. [

Remark A.8. The definition of j in the proof of Lemma A.7(b) shows that in (41), it suffices
to let a run over a set of representatives of k™ /k*™.

Define V' :=im <@T§(k) ) U(k)), so V' is given by (40) or (41).

Lemma A.9. Suppose that we have a true (respectively, fake) descent setup (n,A,ZL).
Choose 3 as in Definition 6.2 (respectively, 8 and D as in Definition 6.7). Then 7.(5)
(respectively, T.(8) — 0.(D)) is a principal divisor on X x A’.

Proof. In the true case, the composition

A~

(Z/nZ)> 5 (Z/nZ) 25 J|d) C Pic X,

is 0 by (34), and it sends a basis element P’ to the class of the divisor 7.(5)|xx{p-
In the fake case, we use the following diagram:

. (7,6%) 7ZA % 7, (8,-D) .
7 Pic X
(nP,1): P € A) 100
w l | J
(Z/nZ)N ——— (Z/nZ)go —>— )
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Here the middle vertical map sends ) ,apP (where ap € Z reduces to ap € Z/nZ) to
<2P apP, %) The map (5,—D) sends (> apP,b) to the class of > apfp — bD, so
(nP, 1) goes to the class of nfp — D, which is trivial by the definitions of 5 and D. Both
paths from Z2' to % send a basis element P’ to (Z p 7P PP, %), where 7p/ p
is the coefficient of P’ in 7(P) € Z~'. Both paths from (Z/nZ)5,, to Pic X, send P; — Py to
the class of Gp, — Bp,. Thus (42) commutes. The composition along the bottom row is zero,
so the composition along the top row is zero, which is the desired result. 0]

Lemma A.9 shows that there is a function r = (rp/)prear € k(X x A’)* such that

div(r) = T(6), in the true case,
| 7(B) — 6.(D) in the fake case.

Recall from Definitions 6.2 and 6.7 the function f € k(X x A)* satisfying

) _Jnp, in the true case,
div(f) = {nﬁ — D in the fake case.
Lemma A.10. We have 7.(f) = r™ (mod (L')*). Ify € Y°(X&°Y), then 1.([y, 8]) = r(y)
(resp., T([y, B]p) = r(y))-

Proof. Since div(7.(f)) = n7.(8) = div(r™), the congruence holds. In the true case,

7.([y, ) = [y, (B)] = [y, div(r)] = r(y) € Gy (k).
In the fake case, define [y, f]p using H and h as in (9); then

pnB— ) [pn(8)— 0.0 _ [pdivir0.0)]
mlBo) =T Gy T eww - e WP

In the following diagram with exact rows, the first, second, and fourth rows are as in (5)
or (11), except that the first is a pushout by J[n] - A[¢p]. The third and fourth rows are
the same as in (38). The two maps from Z° x Y° to U coincide by Lemma A.10. Thus the
diagram below commutes:

0—— A[g] A—2 4y 0
0 J[n] 20 x Yo Y, Z0 0
(43) (f)
0— A4] Ga ™M g 0 )/
I
0 BV GA " ,GA 0




Applying cohomology to the first, third and fourth rows and using Lemma A.7(b), we obtain
the following diagram with exact rows:

J(k)  ~

0 AR H'(k, Al¢])
230(}(good)
(44) (r.f)
0 Ux(/k) H 1(k,‘z4[¢]) —— H'(k,G3)
0 L H(k, B¥) —— H(k, G3)

ankx

Uk
We write H := ‘(/ ) and p,: H — H,, where H, is the local analogue of H.

Lemma A.11. IIT'(k, G2) = 0.
Proof. In the true case, H'(k,G%) = 0 (see the end of Section 3). In the fake case, taking
cohomology of -

0— ptn = G5 — GA =0
vields an injection H'(k,G&) — H2(k, 1), which restricts to an injection IIT*(k, GA) —»
12 (k, jt,). But II*(k, p,) = 0 by the local-global property for the Brauer group. O

Proposition A.12. Assume Hypothesis 10.1. Then the injection H — H'(k, A[¢]) in the
third row of (44) identifies

{h€H :p,(h)€(rf) (ZO(XESOd)) for all places v}.

with Sel?(.J).
Proof. Hypothesis 10.1 shows that the image of J(k,)/¢A(k,) i{l\f]l(kv,AM) equals the
image of ZO(X,i?Od), which in (44) for k, maps to 0 in H'(k,,G5). Thus the image of
Sel®(J) C H'(k, A[¢]) in H'(k,G2) lies in IIT*(k,,GA), which is 0 by Lemma A.11, so
Sel®(J) C H by (44). For h € H, the element p,(h) is in the image of J(k,)/¢A(k,) (or
Z0(X§°°%) as above) if and only if it is in the image of (r, f)(Z2°(XF*°)), by (44). O

We now describe the fibers of the map prj, in (44). This will help us obtain a computable

description of Sel?(.J): see Proposition A.15 below.
Recall the exact sequence (cf. Remark A.4)

(45) 0— Alp] — BV =5 12 450 — 0.

n

Lemma A.13. Let £ € L* and let & be its image in H'(k, EV).

(a) If € lifts to H'(k, Al¢]), then 7.(€) is an n™ power in L'
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(b) Conversely, suppose that 7,(€) is an n™ power in L', say 7.(f) = u". Let A\ € L be such
that \* = (. Then:
1. The element w := ¢'(1.(\)/u) € Q is G-invariant,
2. Let Z :={C € pun(L") : ¢({) = w}. Then (Cu,l) € U(k) if and only if ¢ € Z.
3. The set of elements of H(k, A[¢]) mapping to & is the image of {(Cu,l) : ( € Z}
under U(k) — H'(k, Al¢]).
4. Two such pairs (Cu,l) and (('u, £) have the same image in H'(k, A[¢]) if and only if
¢'/¢ € (EY(K)).
(c) In particular, if u,(L') surjects onto Q(k), then & lifts to H'(k, A[@]) if and only if T.(¢)

is an n power in L'.

Proof. In (39), the image of pry'(¢) under U(k) — H'(k, A[¢]) equals the set a~(¢) of lifts
of .

(a) If ¢ lifts, then there is a pair (u,f) € U(k). By Lemma A.5, 7.(¢) = u".

(b) 1. Note that 7.()\)/u € p2’, since

(ZY _zon 0

u

un um

For o € G,

w ¢ (1(\) /) B ,(UT*()\)> _ ,(T (2)) .
w ¢ (r(\)/u) —1 T (N) =\ 7o
since ¢ o 7, is trivial and u is G-invariant.
2. By part (a), the elements of pry'(¢) C U(k) have the form (Cu,f) with suitable
¢ € ,un(L’ ). By definition of U, the condition on ( is that there exists Py € L such
that 7'*( ) = Cu and A" = ¢. BEquivalently, writing A = (), there exists ¢ € fin (L)
such that 7,(C) = Cu/7(A\). By (45), 7. (ptn(Ls)) = ker(¢'), so this in turn is equivalent
to ¢'(¢) = ¢'(T(A)/u) = w.
3. This follows from 2. and the first sentence of this proof.
4. In (39), the intersection of ker pry with the kernel of U (k) — H'(k, A[¢]) is (1, n)(EY (k)) =
m(EY(k)) x {1}.
(c) This follows from part (b). O

Remark A.14. We can compute w € Q(k) by working over a finite field. Let v be a finite
place of k such that the characteristic of its residue field F, does not divide n and such that
¢ is a unit at v. The formula in Lemma A.13(b)1., applied over F, to the mod v reductions
of ¢ and u, computes an element of Q(IF,) that is the image in Q(F,) of the desired w. Since
the reduction map Q(k) — Q(F,) is injective, we can recover w in Q(k).

Proposition A.12 involves an infinite group H. Imposing the condition that elements are
unramified at all places outside a finite set S lets us replace H by a finite subgroup Hs. This
will reduce the determination of Sel?(.J) to a finite computation. Let H'(k, A[¢])s be the
group of classes unramified outside S, as in Section 7.1.

Proposition A.15. Assume Hypothesis 10.1. Let S be a finite set of places of k containing
the set of places in Proposition 9.2 and the places at which EV is ramified. Let Hs be

the preimage in H = U(k)/V of L(n,S) C L*/L*"k* under the map prl, in (44). Then
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the injection H — H(k, A[¢]) in the third row of (44) identifies the subgroup Hs with
H'(k, Al¢])s Nim(H — H'(k, A[¢])), and identifies

(46) {h € Hs: py(h) € (r, f)(ZO(XESOd)) for all v € S}
with Sel®(.J).

Proof. Let v ¢ S be a place of k. Since EV is unramified at v, we have EY(k,,) = EY(ks),
so the first map in

EY(kyu) — RY(kpw) — H (kyu, Alp]) —— H (kyu, EY)

is surjective. This shows that for £ € H'(k, A[¢]), £ is unramified outside S if and only if (&)
is unramified outside S. On the other hand, Proposition 7.2 shows that Hgs equals the set of

—_—

h € H whose image pri(h) in L*/L*"k* is unramified outside S. By (44), the previous two
sentences yield the first identification. Combining this with Proposition 9.2(a) and the last
sentence of the proof of Proposition A.12 yields the second identification. O

We now sketch an algorithm for computing Sel?(.J), using the explicit description given in

Proposition A.15. First compute L(n,S). Lemma A.13 lets us compute its inverse image Hg
under the map prj in (44). To perform the computations required by Lemma A.13, we need
to be able to evaluate 7, : L* — L and extract n'® roots in L’; the remaining computations
use only finite Galois modules like £V, 2", or @, so they are not difficult.

Similarly, for each v € S, first compute LX/LX"k}, and use Lemma A.13 (over k,) to
obtain a description of H,. The map Hs — H, is induced by the inclusion U (k) — U(k,),
so it too is easily described. Next, assuming that we can evaluate r and f on Z°(X ,fde),
we can determine the image of J(k,) in H,. Using all this, the second identification in

Proposition A.15 lets us compute Sel®(.J).

We summarize this discussion as follows.

Theorem A.16. Given a true or fake descent setup with associated isogeny ¢: A — J, we
can compute the Selmer group Sel®(.J) if we can do the following:

e Compute in the algebras L and L' and their completions (this includes the ability to
take n™ roots).

Determine a set S of places of k as in Proposition A.15.

Compute k(n,S) and L(n,S).

Fvaluate 7. on L™ and L} forv € S, and on finite residue fields.

Evaluate f and r on ZO(lei’Od) forveS.

Example A.17. Consider the case of 2-descent on Jacobians of non-hyperelliptic genus-3
curves X, as in Section 12. For generic X, the smallest usable set A’ is the set of syzygetic
quadruples, which has size 315. We have not had the need to implement the approach of this
appendix on such examples, but it is likely that this could be done if required.
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A.3. Determining the Selmer group in special situations. In some cases, the compu-
tation of Sel?(.J) as described in Section A.2 can be simplified. In particular, in the following
proposition, the set § is potentially smaller than that required in Proposition A.15.

Proposition A.18. In the situation of Section A.2, let S be a set of places of k containing
the set of places in Proposition 9.2. Assume that the map EV (k') — RY(K') is surjective for
all field extensions k' of k and that the map ¢ p,(L") — Q(k) is surjective. Then

Sel®(J) ~ {5 =[{] € L(n,S) : 7.(¢) € L™ and 6, € im C, for all v € S}.
Proof. Since EV(k) — RY(k) is surjective, the map H'(k, A[¢]) = H'(k, EV) is injective. So

—_—

the map pr}, in (44) identifies H with a subgroup of L*/L*"k* and similarly identifies H,

with a subgroup of LX/Lx"kx, for each v. Also EV(k,.) — RY(ky.) is surjective for each v,
so the proof of Proposition A.15 shows that Hg is the subgroup of elements of H unramified
outside S. Since p, (L") — Q(k) is surjective, Lemma A.13(c) yields

(47) Hs ~{[f] € L(n,S) : 7.(¢) € L'*"}.
In (44), C, = pryo(r, f), so (r, f)(ZO(X;ESOd)) = im C,. Substituting this and (47) into (46)
completes the proof. O

Remark A.19. In contrast with Theorem A.16, Proposition A.18 lets us determine Sel?(.J)
without evaluating 7. on L, and without evaluating (or even constructing) r.

Remark A.20. The surjectivity assumptions in Proposition A.18 can be checked by a finite
computation. This is clear for the statements over k, since they involve only the k-points
of some finite Galois modules. To check surjectivity of EY (k") — RY (k') for all extension
fields &’ of k, let " be the (finite) Galois group over k of the splitting field of EV; then
the action of Gy on EY (and therefore also RY) factors through a subgroup I < T'. The
surjectivity of EV (k') — RY (k') is determined by I", so it suffices to check it for each I"; in
fact, we need only consider one I'" in each conjugacy class of subgroups.

Remark A.21. Suppose that n is prime, and that the surjectivity assumptions in Proposi-
tion A.18 hold. Then III'(k, RV) = 0 by Remark A.4, and W,, = 0 for all v by Lemma 10.5(b),
and K = 0 by its second definition (preceding (22)). So by Lemma 10.17(b) and Corol-
lary 10.16, we actually have

S€1¢(J> = Seltarue/fake(‘])'

The advantage of computing Sel?(.J) using Proposition A.18 instead of computing Sel® Jtake (/)
using Theorem 10.9(b) is that the former requires local computations at only the places
in S instead of the places in the potentially much larger set 7 of Theorem 10.9(b). This
improvement is possible because of the additional condition 7,(¢) € L'*": Proposition A.18

says that Sel®(J) ~ Ss N {[{] € LTn\,E) : 7.(¢) € L”*"}, which by Lemma A.13(c) equals
Ss Na(H(k, Al¢])) under the assumptions made. In other words, enlarging S to a T large
enough that S = Sel, . (/) has the effect of intersecting Ss with a(H'(k, A[¢])).

Example A.22. We consider 3-descent on an elliptic curve J, as in [SS04]. Let A = J[3]—{0},
and let 3 be the graph of the map A — Div’.J, sending P to (P) — (O). This defines a true

descent setup, for which A[¢] = J[3] and L is an étale algebra of degree 8. Fix a Weierstrass
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equation for J; then let A’ be the set of eight lines in P? passing through three of the points
in A, together with the four vertical lines passing through two of them and the origin of J.
Let the correspondence 7 be given by incidence. A finite computation as in Remark A.20
shows that the maps pu3(L') — Q(k) and u3(L) — RY(k) are surjective over any field. So
Proposition A.18 gives us a way to determine Sel*(.J), if we can compute L(3,S).

The approach described here and in Section A.2 has advantages and disadvantages compared
to computing Self, ¢ ke (/) as in Section 11. One obvious advantage is that it computes the
Selmer group directly. Also, as in Remark A.21, it requires local computations at only the
places in S instead of the places in a potentially much larger set 7. So whenever this direct
approach is feasible (as in the example above), one should use it.

On the other hand, the direct approach requires not only information on (S-)class and
unit groups of L, but also a presentation of L', the map 7, : L* — L'*, and possibly the
function r, which is defined over L'.

A.4. Passing from a true or fake Selmer group to the actual Selmer group. Recall
the exact sequence

0 — ker k — Sel?(J) % Selfyue fake () N o(H" (k, A[¢])) —> coker k.

from Theorem 10.14. Assuming that we have computed Sel,q/ae(-/), we can determine the
order of Sel®(.J) if we can

e find the order of ker x;
e for any given & € Sel /g (J) check if £ € a(H (k, Alg)));
e and if so, find its image in coker .
In this subsection, we will explain why this seems no easier than computing Sel?(.J) directly
using the approach of Section A.2.
Lemma A.13 implies the following.

Corollary A.23. If we can evaluate the map T, explicitly on L* and if we can extract n*
roots in L', then we can determine whether any given element in the image of L* in H'(k, EV)
lies in o(H (k, A[¢)])).

This takes care of the second point in the list above.

For the other two points, we need to find the groups W, and the map x: I — [[, W,.
The group K = RY(k)/qE" (k) can be found by a finite computation, using the inclusion
RY(k) — p,(L') arising from (36) to represent elements of RY(k). For the finitely many v
for which the proof of Corollary 10.6 does not guarantee W, = 0, we use the following to
compute W,:

Lemma A.24. Fiz v.
(a) The map
ker C, <% ker ov, = RY (ky)/qE" (ky)
can be described explicitly as follows. Given [z] € ker C, C J(k,)/dA(k,), represented by
some z € ZO(X,i?Od), the image v,([z]) is represented by ( € RY(k,) C pun(L.) defined as
follows:
In the true case, f(zo) =" for some £ € L; set ¢ :=r(2)/7({).

In the fake case, f(z9) = {"a for some { € L} and a € k) ; set ¢ :=1(z)/(1(£)0.(a)).
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(b) Assume Hypothesis 11.1. If we know #(J (k,)/¢A(k,)) and we can compute the functions

f and r on ZO(XE:Od) and 7. on L}, then we can compute W, in the course of the

computation of im C, as in Remark 11.6 as follows:

1. Search for points on X over finite extensions of k, until a 0-cycle xo of degree 1 on Xy,
s found.

2. Randomly generate elements z := trg, () — dxy € ZO(XESOd) as in Remark 11.6,
let J be the subgroup of J(k,)/pA(k,) they generate so far, compute I := C,(J) C

LY/Lxmkx, and compute G = ,(ker(Cy|7)) C RY(ky)/qE"Y (ky), until #I - #G =

#( (ko) /9A(K)).
3. When equality occurs, I =imC, and W, ~ (R"(k,)/qE" (k,))/G.

Proof.

(a) In the true case, C,([z]) = 0 means that f(z) = ¢" for some £ € L. Let V,, be the local
analogue of V. Dividing (r(z), f(2)) € U(ky) by (7.(¢),£") € V,, (cf. Lemma A.7) yields
(¢,1) € U(k,), so Corollary A.6 implies ¢ € p,(L'). In the fake case, divide instead by
(1(0)0(a),™a) € V,. Lemma A.13(b)2. applied with £ = 1, v = 1, A = 1, and hence
w =1, yields ¢ € ker(¢'|,,. () = RY (k) (see (36)).

(b) We have #I - #G = #J < #(J(k,)/9A(k,)) with equality if and only if J =
J(ky)/pA(k,). When equality occurs, I = imC, and G = ~,(kerC,), and Defini-
tion 10.3(i) yields W, ~ (RY(k,)/qE" (k,))/G. O

Remark A.25. By computing #.J = #I - #G as the algorithm in Lemma A.24(b) progresses,
we can detect when J = J(k,)/¢pA(k,). This stopping rule can help make our computation
more efficient.

Once we know W, as a quotient of RY(k,) for all v for which W, might be nonzero, the
map k: K — [[, W, with K = RY(k)/qE" (k), is induced by the maps R" (k) — RY(k,) and
hence is computable. In particular, we can find the size of ker x, which takes care of the first
point in our list.

The following lemma deals with the last point.

Lemma A.26. Under the assumptions in Corollary A.23 and Lemma A.24(b), given an
element & € Self, e jpare(J) N a(H' (k, A[¢])), represented by some explicit £ € L™, we can find
the image of £ in coker k.

Proof. Use Lemma A.24 (and the sentence preceding it) to compute W, for all v. Compute x
as in the sentences preceding Lemma A.26. Our task is to compute the image of £ under
the snake map implied by (23). To do this, we do a parallel diagram chase in the more
computation-friendly diagram

pro

0— RY(k) U(k) L

» l I

0— [[ R (k) — JJU(ke) —= ] L

(with exact rows from (39)), which maps to (23).
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Use Lemma A.13 to compute u such that (u,?) € U(k), i.e., such that 7.(¢) = u™. For
the places v for which W, =0, set (, :=1 € RY(k,). For the finitely many remaining v, we
have &, = C,([2,]) for some z, € Z%(X ,ijd) found during the local image computation; then

f(zy) = € in L}/LX"k}. Dividing (u,?) € U(k,) by (r(2y), f(2,)) and then by an element
of V, as in Lemma A.7 yields an element ((,, 1) € U(k,) with the same image as (u, ¢) in the
group H'(k,, A[#])/im~, in the corresponding position of (23). By exactness of the second
row of (48), we have ¢, € RY(k,). Then (¢,) € [[ R"(k,) maps to an element of [[ W, in (23),
which represents the image of ¢ in coker . ([l

We conclude that in order to find (the order of) Sel®(J) from Sel®, . Jtake(+/), we need to be
able to lift a given ¢ € L* to (u,f) € U(k) (or show that such a lift does not exist), and to
evaluate r and 7, locally at the places with potentially nontrivial W,. But if we can do all
this, then we can also compute Sel?(.J) directly as described in Theorem A.16.
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