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Abstract. We study the Generalized Fermat Equation x2 + y3 = zp, to be solved in
coprime integers, where p ≥ 7 is prime. Using modularity and level lowering techniques, the
problem can be reduced to the determination of the sets of rational points satisfying certain
2-adic and 3-adic conditions on a finite set of twists of the modular curve X(p).

We first develop new local criteria to decide if two elliptic curves with certain types
of potentially good reduction at 2 and 3 can have symplectically or anti-symplectically
isomorphic p-torsion modules. Using these criteria we produce the minimal list of twists
of X(p) that have to be considered, based on local information at 2 and 3; this list depends
on p mod 24. Recent results on mod p representations with image in the normalizer of a
split Cartan subgroup allow us to reduce the list further in some cases.

Our second main result is the complete solution of the equation when p = 11, which
previously was the smallest unresolved p. One relevant new ingredient is the use of the
‘Selmer group Chabauty’ method introduced by the third author in recent work, applied in
an Elliptic Curve Chabauty context, to determine relevant points on X0(11) defined over
certain number fields of degree 12. This result is conditional on GRH, which is needed to
show correctness of the computation of the class groups of five specific number fields of
degree 36.

We also give some partial results for the case p = 13.

1. Introduction

This paper considers the Generalized Fermat Equation

(1.1) x2 + y3 = ±zn .

Here n ≥ 2 is an integer, and we are interested in non-trivial primitive integral solutions,
where an integral solution is a triple (a, b, c) ∈ Z3 such that a2 + b3 = ±cn; such a solution
is trivial if abc = 0 and primitive if a, b and c are coprime. If n is odd, the sign can be
absorbed into the nth power, and there is only one equation to consider, whereas for even n,
the two sign choices lead to genuinely different equations.

It is known that for n ≤ 5 there are infinitely many primitive integral solutions, which come
in finitely many families parameterized by binary forms evaluated at pairs of coprime integers
satisfying some congruence conditions, see for example [Edw04] for details. It is also known
that for (fixed) n ≥ 6 there are only finitely many coprime integral solutions, see [DG95] for
n ≥ 7; the case n = 6 reduces to two elliptic curves of rank zero. Some non-trivial solutions
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are known for n ≥ 7, namely (up to sign changes)

132 + 73 = 29, 712 + (−17)3 = 27, 210639282 + (−76271)3 = 177,

22134592 + 14143 = 657, 153122832 + 92623 = 1137,

300429072 + (−96222)3 = 438, 15490342 + (−15613)3 = −338,

and for every n, there is the ‘Catalan solution’ 32 + (−2)3 = 1n. It appears likely (and is
in fact a special case of the ‘Generalized Fermat Conjecture’) that these are the only non-
trivial primitive integral solutions for all n ≥ 6. This has been verified for n = 7 [PSS07],
n = 8 [Bru99,Bru03], n = 9 [Bru05], n = 10 [Bro12, Sik13] and n = 15 [SS14]. Since any
integer n ≥ 6 is divisible by 6, 8, 9, 10, 15, 25 or a prime p ≥ 7, it suffices to deal with
n = 25 and with n = p ≥ 11 a prime, given these results. The case n = 25 is considered in
ongoing work by the authors of this paper; the results will be described elsewhere. So we
will from now on assume that n = p ≥ 7 (or ≥ 11) is a prime number.

We note that an explicit version of the abc conjecture with a sufficiently good exponent
would give an effective way of obtaining all solutions to equation (1.1). Namely, suppose
that we know γ > 0 and ε < 5

61
such that for all coprime integers A,B,C with A+ B = C,

we have that
max{|A|, |B|, |C|} ≤ γ

( ∏
p|ABC

p
)1+ε

,

where the product is over the prime divisors of ABC. Assume that a2 + b3 = ±cn with
coprime a, b, c and set M = max{|a|2, |b|3, |c|n}. We then obtain that

M ≤ γ
( ∏
p|a2b3cn

p
)1+ε

= γ
(∏
p|abc

p
)1+ε

≤ γ|abc|1+ε ≤ γM (1/2+1/3+1/n)(1+ε) ,

so M1/6−1/n−(5/6+1/n)ε ≤ γ. Since ε < 5
61
, the exponent on the left is positive as soon as

n ≥ 11, and we get an effective bound on M in this case. Since equation (1.1) has been
solved completely for n ≤ 10, this then would give a complete solution. Whether this would
result in a practical approach very much depends on the quality of the bound γ in relation
to ε. (This is well-known to the experts; see for example [Coh07, Prop. 14.6.5 and Exercise 2
on p. 493].)

Our approach follows and refines the arguments of [PSS07] by combining new ideas around
the modular method with recent approaches to the determination of the set of rational
points on curves. We note that the existence of trivial solutions with c 6= 0 and of the
Catalan solutions prevents a successful application of the modular method alone; see the
discussion below. Nevertheless, in the first part of this paper we will apply a refinement of
it to obtain optimal 2-adic and 3-adic information, valid for an arbitrary prime exponent p.
This information is then used as input for global methods in the second part when tackling
concrete exponents. We now give a more detailed description of these two parts.

The modular method.

The modular method for solving Diophantine equations typically proceeds in the following
steps.

1. To a putative solution associate a Frey elliptic curve E.
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2. Use modularity and level lowering results to show that (for a suitable prime p) the Galois
representation on the p-torsion E[p] is isomorphic to the mod-p representation associated
to a newform f of weight 2 and small level N (for a suitable prime ideal p above p of the
field of coefficients of f),

(1.2) ρE,p ' ρf,p .

3. For each of the possible newforms, show that they cannot occur, or find all possible
associated solutions.

The most challenging step is often the very last, where we want to obtain a contradiction or
list the corresponding solutions. In the proof of Fermat’s Last Theorem (where the modular
method was born) we have N = 2 and there are no candidate newforms f , giving a simple
contradiction. In essentially every other application of the method there are candidates for f ,
therefore more work is needed to complete the argument. More precisely, we must show,
for each newform f at the concrete small levels, that ρE,p 6' ρf,p. This is for example the
obstruction to proving FLT over Q(

√
5); see [FS15]. Thus it is crucial to have methods for

distinguishing Galois representations.

One such method is known as ‘the symplectic argument’; it originated in [HK02] and it uses
a ‘symplectic criterion’ (see Theorem 4.1) to decide if an isomorphism of the p-torsion of two
elliptic curves having a common prime of (potentially) multiplicative reduction preserves the
Weil pairing. In practice, it sometimes succeeds in distinguishing between the mod p Galois
representations of elliptic curves having at least two primes of potentially multiplicative
reduction. Extending the symplectic criteria to include elliptic curves with other types of
reduction will clearly allow to attack many more Diophantine equations. The main challenge
in doing this comes from the fact that, in the presence of potentially good reduction, the
inertia action either does not carry enough information or is hard to describe explicitly.

In the first part of this paper, we prove new symplectic criteria (Theorems 4.6 and 4.7)
for certain cases of potentially good reduction at 2 and 3 and apply them to our concrete
equation x2 + y3 = zp. Previously the only such criterion available was [HK02, Prop. A.2],
which contains a large list of hypotheses making it hard to apply.

Remark 1.3. While completing this paper, the methods of this first part have been generalized
in work of the first author [Fre16,FK19]; furthermore, our symplectic results together with
their more general variants have already allowed for applications to further Fermat-type
equations, including the equation x3 + y3 = zp; see [Fre16,BBF18,FK16].

Note that equation (1.1) admits, for all p, the Catalan solution mentioned above, but also
the trivial solutions (±1, 1, 0), (±1, 0, 1), ±(0, 1, 1). We remark that the existence of these
solutions is a powerful obstruction to the success of the modular method alone. Indeed, if
by evaluating the Frey curve at these solutions we obtain a non-singular curve, then we will
find the modular form corresponding to it via modularity among the forms with ‘small’ level.
This means that we do obtain a ‘real’ isomorphism in (1.2), which for arbitrary p we cannot
discard with current methods (except under highly favorable conditions). Nevertheless,
we will apply our refinement of the symplectic argument together with a careful analysis
of (1.2) restricted to certain decomposition groups to obtain finer local information, valid
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for an arbitrary exponent p. This information is then used as input for global methods in
the second part when tackling concrete exponents.

More precisely, our goal is to reduce the study of equation (1.1) to the problem of determining
the sets of rational points (satisfying some congruence conditions at 2 and 3) on a small
number of twists of the modular curve X(p). For this, we apply our new symplectic criteria
to reduce the list of twists that have to be considered (in the case of irreducible p-torsion on
the Frey elliptic curve, which always holds for p 6= 7, 13) that was obtained in [PSS07]. We
also make use of fairly recent results regarding elliptic curves over Q such that the image of
the mod p Galois representation is contained in the normalizer of a split Cartan subgroup.
Our results here are summarized in Table 4, which says that, depending on the residue class
of p mod 24, there are between four and ten twists that have to be considered.

Rational points on curves.

In the second part of the paper, our main goal is to give a proof of the following.

Theorem 1.4. Assume the Generalized Riemann Hypothesis. Then the only non-trivial
primitive integral solutions of the equation

(1.5) x2 + y3 = z11

are the Catalan solutions (a, b, c) = (±3,−2, 1).

This appears to be only the second ‘hyperbolic’ instance (i.e., with 1/p+ 1/q + 1/r < 1) of
the Generalized Fermat Equation with pairwise distinct prime exponents p, q, r that could be
solved completely. (The first instance was {p, q, r} = {2, 3, 7}, which was solved in [PSS07].)

We use several ingredients to obtain this result. One is the work of Fisher [Fis14], who
obtained an explicit description of the relevant twists of X(11) (which we determine in the
first part). These curves have genus 26 and are therefore not amenable to any direct methods
for determining their rational points. We can (and do) still use Fisher’s description to obtain
local information, in particular on the location in Q2 of the possible j-invariants of the Frey
curves. The second ingredient is the observation that any rational point on one of the relevant
twists of X(11) maps to a point on the elliptic curve X0(11) that is defined over a certain
number fieldK of degree (at most) 12 that only depends on E and such that the image of this
point under the j-map is rational. This is the setting of ‘Elliptic Curve Chabauty’ [Bru03];
this approach was already taken in an earlier unsuccessful attempt to solve equation (1.5)
by David Zureick-Brown. To carry this out in the usual way, one needs to find generators of
the group X0(11)(K) (or at least of a subgroup of finite index), which proved to be infeasible
in some of the cases. We get around this problem by invoking the third ingredient, which
is ‘Selmer Group Chabauty’ as described in [Sto17], applied in the Elliptic Curve Chabauty
setting. We note that we need the Generalized Riemann Hypothesis (GRH) to ensure the
correctness of the class group computation for the number fields of degree 36 arising by
adjoining to K the x-coordinate of a point of order 2 on X0(11). In principle, the class
group can be verified unconditionally by a finite computation, which, however, would take
too much time with the currently available implementations. We would like to stress that
future improvements of the methods for computing class groups could result in removing the
dependence of our result from GRH.
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We also give some partial results for p = 13, showing that the Frey curves cannot have
reducible 13-torsion and that the two CM curves in the list of Lemma 2.3 below can only
give rise to trivial solutions.

We have used the Magma computer algebra system [BCP97] for the necessary computations.
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Notation.

Let K be a field of characteristic zero or a finite field. We write GK for its absolute Galois
group. If E/K is an elliptic curve, we denote by ρE,p the Galois representation of GK arising
from the p-torsion on E. We write NE for the conductor of E when K is a p-adic field or a
number field. For a modular form f and a prime p in its field of coefficients we write ρf,p for
its associated mod p Galois representation.

2. Irreducibility and level lowering

Suppose that (a, b, c) ∈ Z3 is a solution to the equation

(2.1) x2 + y3 = zp, with p ≥ 7 prime.

Recall that (a, b, c) is trivial if abc = 0 and non-trivial otherwise. An integral solution is
primitive if gcd(a, b, c) = 1 and non-primitive otherwise. Note that equation (2.1) admits for
all p the trivial primitive solutions (±1, 1, 0), (±1, 0, 1), ±(0, 1, 1) and the pair of non-trivial
primitive solutions (±3, 2, 1), which we refer to as the Catalan solution(s).

As in [PSS07], we can consider a putative solution (a, b, c) of (2.1) and the associated Frey
elliptic curve

E(a,b,c) : y2 = x3 + 3bx− 2a of discriminant ∆ = −123cp.

This curve has invariants

(2.2) c4 = −122b, c6 = 123a, j =
123b3

cp
.

We begin with a generalization and refinement of Lemma 6.1 in [PSS07].

Lemma 2.3. Let p ≥ 7 and let (a, b, c) be coprime integers satisfying a2 + b3 = cp and
c 6= 0. Assume that the Galois representation on E(a,b,c)[p] is irreducible. Then there is a
quadratic twist E(d)

(a,b,c) of E(a,b,c) with d ∈ {±1,±2,±3,±6} such that E(d)
(a,b,c)[p] is isomorphic

to E[p] as a GQ-module, where E is one of the following seven elliptic curves (specified by
their Cremona label):

27a1, 54a1, 96a1, 288a1, 864a1, 864b1, 864c1 .
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For the convenience of the reader, we give equations of these elliptic curves.

27a1: y2 + y = x3 − 7 864a1: y2 = x3 − 3x+ 6

54a1: y2 + xy = x3 − x2 + 12x+ 8 864b1: y2 = x3 − 24x+ 48

96a1: y2 = x3 + x2 − 2x 864c1: y2 = x3 + 24x− 16

288a1: y2 = x3 + 3x

Proof. By the proof of [PSS07, Lemma 4.6], a twist E(d)
(a,b,c) with d ∈ {±1,±2,±3,±6} of

the Frey curve has conductor dividing 123N ′, where N ′ is the product of the primes ≥ 5
dividing c. In fact, carrying out Tate’s algorithm for E(a,b,c) locally at 2 and 3 shows that
the conductor can be taken to be 2r3sN ′ with r ∈ {0, 1, 5} and s ∈ {1, 2, 3}. (This uses the
assumption that the solution is primitive.) Write E for this twist E(d)

(a,b,c).

Using level lowering as in the proof of [PSS07, Lemma 6.1], we find that ρE,p ' ρE′,p where
E ′ is an elliptic curve of conductor 27, 54, 96, 288 or 864, or else ρE,p ' ρf,p, where f is
a newform of level 864 with field of coefficients Q(

√
13) and p | p in this field. Let f be

one of these newforms and write ρ = ρf,p|D3 for the restriction of the Galois representation
attached to f to a decomposition group at 3. We apply the Loeffler-Weinstein algorithm1

[LW12,LW15] to determine ρ and we obtain ρ(I3) ' S3, where I3 ⊂ D3 is the inertia group.
Since p does not divide 6 = #S3, we also have that ρ(I3) ' S3. On the other hand, it is
well-known that when ρE,p(I3) has order 6, it must be cyclic (see [Kra90, page 354]). Thus
we cannot have ρE,p ' ρf,p for any of these newforms f .

We then check that each elliptic curve with conductor 27, 54, 96, 288 or 864 is isogenous
(via an isogeny of degree prime to p) to a quadratic twist (with d in the specified set) of one
of the seven curves mentioned in the statement of the lemma. �

The following proposition shows that the irreducibility assumption in the previous lemma is
automatically satisfied in most cases.

Proposition 2.4. Let (a, b, c) ∈ Z3 be a non-trivial primitive solution of (2.1) for p ≥ 11.
Write E = E(a,b,c) for the associated Frey curve. Then ρE,p is irreducible.

Proof. First assume p 6= 13, so p = 11 or p ≥ 17. Then by Mazur’s results [Maz78], there is
only a finite list of j-invariants of elliptic curves over Q that have a reducible mod p Galois
representation (see also [Dah08, Theorem 22]). More precisely, either we have that

(i) p = 11, 19, 43, 67, 163 and the corresponding curves have integral j-invariant, or else
(ii) p = 17 and the j-invariant is −172 · 1013/2 or −17 · 3733/217.

Suppose that ρE,p is reducible, hence the Frey curve E(a,b,c) corresponds to one of the curves
in (i) or (ii). Note that gcd(a, b) = 1. Suppose we are in case (i). Since p ≥ 11 and the
j-invariant is integral, it follows that c = ±1, which implies that we either have one of
the trivial solutions (±1, 0, 1), ±(0, 1, 1) or the ‘Catalan solution’ (±3,−2, 1), since the only

1This is implemented in Magma via the commands pi:=LocalComponent(ModularSymbols(f), 3);
WeilRepresentation(pi).

6



integral points on the elliptic curves y2 = x3±1 (which both have finite Mordell-Weil group)
have x ∈ {0,±1, 2}. It remains to observe that the Frey curve associated to the Catalan
solution (which is, up to quadratic twist, 864b1) is the only curve in its isogeny class, so it
has irreducible mod p Galois representations for all p (see [LMFDB, Elliptic curves over Q]).
If we are in case (ii), then the 17-adic valuation of the j-invariant contradicts (2.2).

For p = 13 the claim is shown in Lemma 8.1. �

We remark that the results of [PSS07] show that the statement of Proposition 2.4 is also
true for p = 7.

Note that some of the seven curves in Lemma 2.3 are realized by twists of the Frey curve
evaluated at known solutions. Indeed,

E
(6)
(1,0,1) = 27a1, E(0,1,1) = 288a1, E

(2)
(0,−1,−1) = 288a2, E

(−2)
(3,−2,1) = 864b1,

and 288a2 and 288a1 are related by an isogeny of degree 2. The solutions (±1, 1, 0) give rise
to singular Frey curves. Note also that E(−d)

(−a,b,c) = E
(d)
(a,b,c), so that (−1, 0, 1) and (−3,−2, 1)

do not lead to new curves.

3. Local conditions and representations of inertia

Let ` be a prime. We write Qunr
` for the maximal unramified extension of Q` and I` ⊂ GQ`

for the inertia subgroup.

Let E be an elliptic curve over Q` with potentially good reduction. Let p ≥ 3, p 6= ` and
L = Qunr

` (E[p]). The field L does not depend on p and is the smallest extension of Qunr
` over

which E acquires good reduction; see [ST68, §2, Corollary 3]. We call L the inertial field
of E/Q` or of E at `, when E is defined over Q.

We write L2,96 and L2,288 for the inertial fields at 2 of the elliptic curves with Cremona labels
96a1 and 288a1, respectively, and we write L3,27 and L3,54 for the inertial fields at 3 of the
elliptic curves with Cremona labels 27a1 and 54a1. The following theorem shows that these
are all the inertial fields that can arise from certain types of elliptic curves.

Let H8 denote the quaternion group and Dic12 ' C3 oC4 the dicyclic group of 12 elements.
The properties of H8 and of Dic12 that are used below can easily be verified using a suitable
computer algebra system like for example Magma.

Theorem 3.1. Let E/Q` be an elliptic curve with potentially good reduction, conductor NE

and inertial field L. Assume further one of the following two sets of hypotheses.

(1) ` = 2, Gal(L/Qunr
2 ) ' H8 and v2(NE) = 5;

(2) ` = 3, Gal(L/Qunr
3 ) ' Dic12 and v3(NE) = 3.

Then L = L2,96 or L2,288 in case (1) and L = L3,27 or L3,54 in case (2).

Proof. For a finite extension K/Q` we denote the Weil subgroup of the absolute Galois
group GK by WK . We write W` for WQ`

. We let rK : K× → W ab
K denote the reciprocity map

from local class field theory. It allows us to identify a character χ of WK with the character
χA = χ ◦ rK of K×.
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There is a representation ρE : W` → GL2(C) of conductor `v`(NE) attached to E; see [Roh94,
Section 13] and [DDT94, Remark 2.14]. This representation is either principal series or
supercuspidal; see [Pac13, Section 2], noting that the Steinberg representation corresponds
to infinite inertia.

Hypotheses (1) and (2) both imply that E acquires good reduction over a non-abelian ex-
tension of Qunr

` , hence ρE is a supercuspidal representation. More precisely, ρE = IndW`
WM

χ
where M/Q` is a quadratic extension, WM is the Weil group of M and χ : WM → C× is a
character. If M/Q` is unramified, then ρE|I` ' χ⊕ χs, where χs(g) := χ(sgs−1) and s ∈ W`

lifts the non-trivial element of Gal(M/Q`). Thus inertia has abelian image, a contradiction.
Therefore M/Q` is ramified, and we have that ρE|I` = IndI`IM (χ|IM ), where IM ⊂ WM is the
inertia subgroup.

Write εM for the quadratic character ofGQ`
fixingM . Then (χA|Q×` )·εAM = ‖·‖−1 as characters

of Q×` , where ‖·‖ is the norm character. Furthermore, the conductor exponents of ρE and χ
are related by cond(ρE) = cond(χ) + cond(εM); see [Gér78, 2.8].

We denote the maximal ideal of M by p.

Suppose hypothesis (1). From [Pac13, Corollary 4.1] it follows that M = Q2(d), where
d =
√
−1 or d =

√
−5, hence cond(εM) = 2 and cond(χ) = 5− 2 = 3.

Since cond(χ) = 3, we have that χA|O×M factors via (OM/p3)×, which has order 4 and is
generated by 2 + d. The condition χA|Z×2 = εAM implies χA(−1) = −1, thus χA(2 + d) = ±i.
We conclude that there are only two possibilities for χ|IM , which are related by conjugation,
hence giving the same induction ρE|I2 . Thus, for each possible extension M there is only
one field L, so there are at most two possible fields L.

Finally, from [Kra90, p. 357, Corollary] we see that the curves 96a1 and 288a1 satisfy
hypothesis (1), and a direct computation in Magma using the 3-torsion fields shows that
L2,96 6= L2,288. This proves the theorem in case (1).

Now suppose hypothesis (2). We have M = Q3(d), where d =
√
±3, both fields satisfying

v3(disc(M)) = 1. Thus 3 = cond(χ) + v3(disc(M)) implies that χ is of conductor p2.

For both possible extensions M the character χA|O×M factors through (OM/p2)×, which is
generated by −1 and 1+d of orders 2 and 3, respectively. The condition χA|Z×3 = εAM implies
that χA(−1) = −1 and the conductor forces χA(1 + d) = ζc3 with c = 1 or 2. Again, for each
possible extension M there is only one field L, so there are at most two possible fields L.

Finally, from [Kra90, p. 355, Corollary], we see that the curves 27a1 and 54a1 satisfy hy-
pothesis (2), and again a direct computation with Magma (but now with 5-torsion fields as
we need ` 6= p) shows that L3,27 6= L3,54. This concludes the proof. �

In a similar way as in the preceding proof, using Magma to compute with the 3-torsion fields
over Q2, one checks that 96a1 and 864c1 have the same inertial field at 2; the same is true for
288a1, 864a1 and 864b1. Similarly, working with the 5-torsion over Q3, we also check that
27a1, 864b1 and 864c1 have the same inertial field at 3; the same is true for 54a1 and 864a1.
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i2 a mod 4 b mod 8 d curves v2(NE) j

1 1 −1 1,−3 54a1 1 26−pt−p

−1 −1 −1, 3 54a1 1 26−pt−p

2 0 1 ±1,±3 288a1, 864a1, 864b1 5 123 − 3 · 210t2

0 −3 ±1,±3 288a1, 864a1, 864b1 5 123 + 210t2

0 3 ±2,±6 288a1, 864a1, 864b1 5 123 − 210t2

0 −1 ±2,±6 288a1, 864a1, 864b1 5 123 + 3 · 210t2

3 2 1 ±1,±3 96a1, 864c1 5 −26 + 211t

2 −3 ±1,±3 96a1, 864c1 5 15 · 26 + 211t

2 3 ±2,±6 96a1, 864c1 5 7 · 26 + 211t

2 −1 ±2,±6 96a1, 864c1 5 −9 · 26 + 211t

4 1 0 −2, 6 27a1 0 215t3

−1 0 2,−6 27a1 0 215t3

5 ±1 2 ±2,±6 96a1, 864c1 5 −29 + 211t

6 ±1 −2 ±2,±6 288a1, 864a1, 864b1 5 29 + 211t

7 1 4 −2, 6 impossible 0 (212 + 213t)

−1 4 2,−6 impossible 0 (212 + 213t)

Table 1. 2-adic conditions. Here E = E
(d)
(a,b,c).

j gives the possible values of the associated j-invariant, with t ∈ Z2.

Moreover, we reprove and refine Lemma 2.3 by determining the 2-adic and 3-adic conditions
on a, b and the twists d ∈ {±1,±2,±3,±6} such that the inertial fields at 2 and 3 of E(d)

(a,b,c)

match those of the seven curves in Lemma 2.3. Indeed, the inertial field of E(d)
(a,b,c) at 2 can be

computed from the 3-torsion field with only a finite amount of precision for the Weierstrass
model of E(d)

(a,b,c)/Q2. More precisely, there exists k such that if (x, y, z) ≡ (a, b, c) mod 2k,
then E(d)

(a,b,c) and E
(d)
(x,y,z) have the same inertial field at 2. We run over all congruence classes

for x, y, z modulo 2k (with x, y not both even) and compute the inertial field in each case.
We can use a version of Lemma 7.5 to show that k = 3 is sufficient. Analogously we compute
the inertial fields at 3 using 5-torsion (here k = 2 is sufficient).

The 2-adic information can be found in Table 1. The last row is interesting: in this case,
the twists of the Frey curve that have good reduction at 2 have trace of Frobenius at 2
equal to ±2, so level lowering can never lead to a curve of conductor 27 (which is the only
possible odd conductor dividing 123), since these curves all have trace of Frobenius equal
to 0. The 3-adic conditions can be found in Table 2. The first column in each table is just a
line number; it will be useful as reference in a later section. The remaining columns contain
the indicated data.

Corollary 3.2. Let p ≥ 11 be a prime number. Let (a, b, c) ∈ Z3 be coprime and satisfy
a2 + b3 = cp. Then b 6≡ 4 mod 8, and if c 6= 0, then c is not divisible by 6.
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i3 a mod 9 b mod 3 d curves v3(NE) j

1 1 −1 −3, 6 96a1 1 33−pt−p

−1 −1 3,−6 96a1 1 33−pt−p

2 0 1 ±1,±2,±3,±6 288a1 2 123 − 37t2

0 −1 ±1,±2,±3,±6 288a1 2 123 + 37t2

3 ±3 1 ±1,±2,±3,±6 27a1, 864b1, 864c1 3 33 + 36t

4 ±3 −1 ±1,±2,±3,±6 54a1, 864a1 3 −8 · 33 + 36t

5 ±1 0 ±1,±2,±3,±6 27a1, 864b1, 864c1 3 36t3

±2 0 ±1,±2,±3,±6 27a1, 864b1, 864c1 3 2 · 36t3

6 ±4 0 ±1,±2,±3,±6 288a1 2 4 · 36t3

7 ±1 1 ±1,±2,±3,±6 54a1, 864a1 3 −4 · 33 + 35t

±4 1 ±1,±2,±3,±6 54a1, 864a1 3 −33 + 35t

8 ±2 1 ±1,±2,±3,±6 288a1 2 2 · 33 + 35t

Table 2. 3-adic conditions. j is as in Table 1, with t ∈ Z3 and E = E
(d)
(a,b,c)

i2\i3 1 2, 6, 8 3, 5 4, 7

1 − − − 54a1

2, 6 − 288a1 864b1 864a1

3, 5 96a1 − 864c1 −
4 − − 27a1 −

Table 3. Curves E determined by (a mod 36, b mod 24).

Proof. Table 1 shows that b ≡ 4 mod 8 is impossible. If c 6= 0, then we have a twisted Frey
curve E(d)

(a,b,c), which if 6 | c would have to be p-congruent to 54a1 and to 96a1 at the same
time; this is impossible. �

We observe that the residue classes of a mod 36 and b mod 24 determine the corresponding
curve in Lemma 2.3 uniquely, as given in Table 3. The line number i2 of Table 1 determines
the row and the line number i3 of Table 2, the column.

A Magma script that performs the necessary computations for the results in this section is
available as section3.magma at [Sto].

4. Symplectic and anti-symplectic isomorphisms of p-torsion

Let p be a prime. Let K be a field of characteristic zero or a finite field of characteristic 6= p.
Fix a primitive p-th root of unity ζp ∈ K̄. For E an elliptic curve defined over K we
write E[p] for its p-torsion GK-module, ρE,p : GK → Aut(E[p]) for the corresponding Galois
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representation and eE,p for the Weil pairing on E[p]. We say that an Fp-basis (P,Q) of E[p]
is symplectic if eE,p(P,Q) = ζp.

Now let E/K and E ′/K be two elliptic curves over some field K and let φ : E[p]→ E ′[p] be
an isomorphism of GK-modules. Then there is an element r(φ) ∈ F×p such that

eE′,p(φ(P ), φ(Q)) = eE,p(P,Q)r(φ) for all P,Q ∈ E[p].

Note that for any a ∈ F×p we have r(aφ) = a2r(φ). So up to scaling φ, only the class of r(φ)
modulo squares matters. We say that φ is a symplectic isomorphism if r(φ) is a square in F×p ,
and an anti-symplectic isomorphism if r(φ) is a non-square. Fix a non-square rp ∈ F×p . We
say that φ is strictly symplectic, if r(φ) = 1, and strictly anti-symplectic, if r(φ) = rp.
Finally, we say that E[p] and E ′[p] are symplectically (or anti-symplectically) isomorphic,
if there exists a symplectic (or anti-symplectic) isomorphism of GK-modules between them.
Note that it is possible that E[p] and E ′[p] are both symplectically and anti-symplectically
isomorphic; this will be the case if and only if E[p] admits an anti-symplectic automorphism.

Note that an isogeny φ : E → E ′ of degree n not divisible by p restricts to an isomorphism
φ : E[p]→ E ′[p] such that r(φ) = n. This can be seen from the following computation, where
φ̂ is the dual isogeny, and where we use that fact that φ and φ̂ are adjoint with respect to
the Weil pairing.

eE′,p(φ(P ), φ(Q)) = eE,p(P, φ̂φ(Q)) = eE,p(P, nQ) = eE,p(P,Q)n.

In particular, φ induces a symplectic isomorphism on p-torsion if (n/p) = 1 and an anti-
symplectic isomorphism if (n/p) = −1.

For an elliptic curve E/Q there are two modular curves X+
E (p) = XE(p) and X−E (p) de-

fined over Q that parameterize pairs (E ′, φ) consisting of an elliptic curve E ′ and a strictly
symplectic (respectively, strictly anti-symplectic) isomorphism φ : E ′[p] → E[p]. These two
curves are twists of the standard modular curve X(p) that classifies pairs (E ′, φ) such that
φ : E ′[p] → M is a symplectic isomorphism, with M = µp × Z/pZ and a certain symplec-
tic pairing on M , compare [PSS07, Definition 4.1]. As explained there, the existence of a
non-trivial primitive solution (a, b, c) of (2.1) implies that some twisted Frey curve E(d)

(a,b,c)

gives rise to a rational point on one of the modular curves XE(p) or X−E (p), where E is
one of the seven elliptic curves in Lemma 2.3. Thus the resolution of equation (2.1) for any
particular p ≥ 11 is reduced to the determination of the sets of rational points on 14 modular
curves XE(p) and X−E (p).

We remark that taking quadratic twists by d of the pairs (E ′, φ) induces canonical isomor-
phisms XE(d)(p) ' XE(p) and X−

E(d)(p) ' X−E (p). Also note that each twist XE(p) has a
‘canonical rational point’ representing (E, idE[p]). On the other hand, it is possible that the
twist X−E (p) does not have any rational point. If E ′ is isogenous to E by an isogeny φ of de-
gree n prime to p, then (E ′, φ|E′[p]) gives rise to a rational point on XE(p) when (n/p) = +1
and on X−E (p) when (n/p) = −1.

In this section we study carefully when isomorphisms of the torsion modules of elliptic curves
preserve the Weil pairing. This will allow us to discard some of these 14 modular curves
by local considerations. Of course, from the last paragraph of Section 2 it follows that
it is impossible to discard X27a1(p), X288a1(p) or X864b1(p), since they have rational points
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arising from the known solutions. Moreover, if (2/p) = −1 we also have a rational point on
X−288a1(p) ' X288a2(p).

We now recall a criterion from [KO92] to decide, under certain hypotheses, whether E[p]
and E ′[p] are symplectically isomorphic, which will be useful later.

Theorem 4.1 ([KO92, Proposition 2]). Let E, E ′ be elliptic curves over Q with minimal
discriminants ∆, ∆′. Let p be a prime such that ρE,p ' ρE′,p. Suppose that E and E ′ have
multiplicative reduction at a prime ` 6= p and that p - v`(∆). Then p - v`(∆′), and the
representations E[p] and E ′[p] are symplectically isomorphic if and only if v`(∆)/v`(∆

′) is a
square mod p.

The objective of this section is to deduce similar results for certain types of additive reduction
at ` (see also [Fre16]), which we will then apply to our Diophantine problem in Theorem 5.1.

We will need the following auxiliary result.

Lemma 4.2. Let E and E ′ be two elliptic curves defined over a field K and with isomorphic
p-torsion. Fix symplectic bases for E[p] and E ′[p]. Let φ : E[p] → E ′[p] be an isomorphism
of GK-modules and write Mφ for the matrix representing φ with respect to these bases.

Then φ is a symplectic isomorphism if and only if det(Mφ) is a square mod p; otherwise φ
is anti-symplectic.

Moreover, if ρE,p(GK) is a non-abelian subgroup of GL2(Fp), then E[p] and E ′[p] cannot be
simultaneously symplectically and anti-symplectically isomorphic.

Proof. This is [Fre16, Lemma 1]. �

4.1. A little bit of group theory.

Recall that H8 denotes the quaternion group and Dic12 ' C3 o C4 is the dicyclic group of
12 elements; these are the two Galois groups occurring in Theorem 3.1. We now consider
them as subgroups of GL2(Fp).
Write Dn for the dihedral group with 2n elements and Sn and An for the symmetric and
alternating groups on n letters. We write C(G) for the center of a group G. If H is a
subgroup of G, then we write NG(H) for its normalizer and CG(H) for its centralizer in G.

Lemma 4.3. Let p ≥ 3 and G = GL2(Fp). Let H ⊂ G be a subgroup isomorphic to H8.
Then the group Aut(H) of automorphisms of H satisfies

NG(H)/C(G) ' Aut(H) ' S4.

Moreover,

(a) if (2/p) = 1, then all the matrices in NG(H) have square determinant;
(b) if (2/p) = −1, then the matrices in NG(H) with square determinant correspond to the

subgroup of Aut(H) isomorphic to A4.

Proof. There is only one faithful two-dimensional representation of H8 over Fp (H8 has
exactly one irreducible two-dimensional representation and any direct sum of one-dimensional
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representations factors over the maximal abelian quotient), so all subgroups H as in the
statement are conjugate. We can therefore assume that H is the subgroup generated by

g1 =

(
0 −1
1 0

)
and g2 =

(
α β
β −α

)
,

where α, β ∈ F×p satisfy α2 + β2 = −1. It is easy to see that the elements of H span the
Fp-vector space of 2× 2 matrices, which implies that CG(H) = C(G).

Now the action by conjugation induces a canonical group homomorphism NG(H)→ Aut(H)
with kernel CG(H) = C(G), leading to an injection NG(H)/C(G) → Aut(H). To see
that this map is also surjective (and hence an isomorphism), note that NG(H) contains the
matrices

n1 =

(
1 −1
1 1

)
and n2 =

(
α β − 1

β + 1 −α

)
and that the subgroup of NG(H)/C(G) generated by the images of H and of these matrices
has order 24. Since it can be easily checked that Aut(H8) ' S4, the first claim follows.

Note that A4 is the unique subgroup of S4 of index 2. The determinant induces a homomor-
phism S4 ' NG(H)/C(G)→ F×p /F×2

p whose kernel is either S4 or A4. SinceH ⊂ SL2(Fp) and
all matrices in C(G) have square determinant, it remains to compute det(n1) and det(n2).
But det(n1) = 2 and

det(n2) = −α2 − (β − 1)(β + 1) = −α2 − β2 + 1 = 2

as well. The result is now clear. �

Lemma 4.4. Let p ≥ 5 and G = GL2(Fp). Let H ⊂ G be a subgroup isomorphic to Dic12.
Then the group of automorphisms of H satisfies

NG(H)/C(G) ' Aut(H) ' D6.

Moreover,

(a) if (3/p) = 1, then all the matrices in NG(H) have square determinant;
(b) if (3/p) = −1, then the matrices in NG(H) with square determinant correspond to the

subgroup of inner automorphisms in Aut(H).

Proof. The proof is similar to that of Lemma 4.3. Again, there is a unique conjugacy class
of subgroups isomorphic to Dic12 in G, so we can take H to be the subgroup generated by

g1 =

(
α β
β 1− α

)
and g2 =

(
0 −1
1 0

)
,

where α, β ∈ Fp satisfy β2 = −α2+α−1 with β 6= 0. As before, one sees that CG(H) = C(G),
so we again have an injective group homomorphism NG(H)/C(G)→ Aut(H) ' D6.

The normalizer NG(H) contains the matrix

M =

(
2α− 1 2β

2β 1− 2α

)
and the images of H and M generate a subgroup of order 12 of NG(H)/C(G), which shows
that the homomorphism is also surjective.
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Since H ⊂ SL2(Fp), the determinant of any element of NG(H) that induces an inner auto-
morphism of H is a square. Also, the inner automorphism group of H has order 6, so the
homomorphism D6 ' NG(H)/C(G)→ F×p /F×2

p induced by the determinant is either trivial
or has kernel equal to the group of inner automorphisms. This depends on whether the
determinant of M ,

det(M) = −4α2 + 4α− 1− 4β2 = 3,

is a square in Fp or not. �

4.2. The symplectic criteria.

Let E, E ′ be elliptic curves over Q` with potentially good reduction and respective inertial
fields L = Qunr

` (E[p]) and L′ = Qunr
` (E ′[p]). Suppose that E[p] and E ′[p] are isomorphic as

GQ`
-modules; in particular, L = L′. Write I = Gal(L/Qunr

` ) and recall that I` denotes the
inertia subgroup of GQ`

.

If I is not abelian, then Lemma 4.2 applied with K = Qunr
` says that E[p] and E ′[p] cannot

be both symplectically and anti-symplectically isomorphic I`-modules. Since the symplectic
type of an isomorphism φ : E[p] → E ′[p] does not depend on whether it is considered as
an isomorphism of GQ`

-modules of of I`-modules, we can conclude that E[p] and E ′[p] are
symplectically isomorphic as GQ`

-modules if and only if they are symplectically isomorphic
as I`-modules. In Theorem 4.6 we provide a criterion to decide between the two possibilities
when ` = 2 and I ' H8. In Theorem 4.7 we do the same for ` = 3 and I ' Dic12.

We now introduce notation and recall facts from [ST68, Section 2] and [FK19]. We note
that [FK19], which originated as a continuation of the work done here, contains criteria
similar to those stated below, and also improvements of the second parts of Theorems 4.6
and 4.7.

Let p and ` be primes such that p ≥ 3 and ` 6= p. Let E/Q`, L and I be as above.
Write E for the elliptic curve over F` obtained by reduction of a minimal model of E/L and
ϕ : E[p] → E[p] for the reduction morphism, which preserves the Weil pairing. Let Aut(E)
be the automorphism group of E over F` and write ψ : Aut(E)→ GL(E[p]) for the natural
injective morphism. The action of I on L induces an injective morphism γE : I → Aut(E),
so that E[p] is an I-module via ψ ◦ γE in a natural way. Then ϕ is actually an isomorphism
of I-modules: for σ ∈ I we have

(4.5) ϕ ◦ ρE,p(σ) = ψ(γE(σ)) ◦ ϕ.

Theorem 4.6. Let p ≥ 3 be a prime. Let E and E ′ be elliptic curves over Q2 with potentially
good reduction. Suppose they have the same inertial field and that I ' H8. Then E[p] and
E ′[p] are isomorphic as I2-modules. Moreover,

(1) if (2/p) = 1, then E[p] and E ′[p] are symplectically isomorphic I2-modules;
(2) if (2/p) = −1, then E[p] and E ′[p] are symplectically isomorphic I2-modules if and only

if E[3] and E ′[3] are symplectically isomorphic I2-modules.

Proof. Note that L = Qunr
2 (E[p]) is the smallest extension of Qunr

2 over which E acquires
good reduction and that the reduction map ϕ is an isomorphism between the Fp-vector
spaces E[p](L) and E[p](F2). By hypothesis E ′ also has good reduction over L and ϕ′ is
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an isomorphism. Applying equation (4.5) to both E and E ′ we see that E[p] and E ′[p] are
isomorphic I2-modules, if we can show that ψ◦γE and ψ◦γE′ are isomorphic as representations
into GL(E[p]) and GL(E

′
[p]), respectively.

Since the map γE : I → Aut(E) is injective, we haveH8 ⊂ Aut(E). From [Sil09, Thm.III.10.1
and Ex. A.1 on p. 414] we see that Aut(E) ' SL2(F3) and j(E) = 0. Similarly, we conclude
that j(E ′) = 0. Thus, E and E ′ are isomorphic over F2.

So we can fix minimal models of E/L and E ′/L both reducing to the same E.

There is only one (hence normal) subgroup H of SL2(F3) isomorphic to H8. Therefore we
have that ψ(γE(I)) = ψ(γE′(I)) = ψ(H) in GL(E[p]), and there must be an automorphism
α ∈ Aut(ψ(H)) such that ψ ◦ γE = α ◦ψ ◦ γE′ . The first statement of Lemma 4.3 shows that
there is g ∈ GL(E[p]) such that α(x) = gxg−1 for all x ∈ ψ(H); thus ψ ◦ γE and ψ ◦ γE′ are
isomorphic representations.

Fix a symplectic basis of E[p], thus identifying GL(E[p]) with GL2(Fp). Let Mg denote
the matrix representing g and observe that Mg ∈ NGL2(Fp)(ψ(H)). Lift the fixed basis to
bases of E[p] and E ′[p] via the corresponding reduction maps ϕ and ϕ′. The lifted bases
are symplectic. The matrices representing ϕ and ϕ′ with respect to these bases are the
identity matrix in both cases. From (4.5) it follows that ρE,p(σ) = MgρE′,p(σ)M−1

g for all
σ ∈ I. Moreover, Mg represents some I2-module isomorphism φ : E[p] → E ′[p], and from
Lemma 4.2 we have that E[p] and E ′[p] are symplectically isomorphic if and only if det(Mg)
is a square mod p.

Part (1) then follows from Lemma 4.3 (a).

We now prove (2). From Lemma 4.3 (b) we see that E[p] and E ′[p] are symplectically
isomorphic if and only if α is an automorphism in A4 ⊂ Aut(ψ(H)) ' S4. Note that these
are precisely the inner automorphisms or automorphisms of order 3. Note also that all the
elements in S4 that are not in A4 are not inner and have order 2 or 4. For each p the map
αp = ψ−1 ◦ α ◦ ψ defines an automorphism of γE(I) = H ⊂ Aut(E) satisfying αp ◦ γE′ = γE.

We note that the unique automorphism of SL2(F3) which fixes the order 8 subgroup point-
wise is the identity. Since γE, γE′ are independent of p, it follows that αp is the same for all
p. Since α and αp have the same order and are simultaneously inner or not it follows that
this property is independent of the prime p satisfying (2/p) = −1. This shows that E[p] and
E ′[p] are symplectically isomorphic I2-modules if and only if E[`] and E ′[`] are symplectically
isomorphic I2-modules for one (hence all) ` satisfying (2/`) = −1. In particular, we can take
` = 3, and the result follows. �

Theorem 4.7. Let p ≥ 5 be a prime. Let E and E ′ be elliptic curves over Q3 with potentially
good reduction. Suppose they have the same inertial field and that I ' Dic12. Then E[p]
and E ′[p] are isomorphic as I3-modules. Moreover,

(1) if (3/p) = 1, then E[p] and E ′[p] are symplectically isomorphic I3-modules;
(2) if (3/p) = −1, then E[p] and E ′[p] are symplectically isomorphic I3-modules if and only

if E[5] and E ′[5] are symplectically isomorphic I3-modules.

Proof. This proof is analogous to the proof of Theorem 4.6, with 3 and 5 taking over the
roles of 2 and 3, respectively.
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In this case Aut(E) ' Dic12 [Sil09, Thm.III.10.1], so ψ(γE(I)) = ψ(γE′(I)) = ψ(Aut(E)).
We use Lemma 4.4 instead of Lemma 4.3 to conclude that α is given by a matrix Mg.
Lemma 4.4 (a) concludes the proof of (1) and Lemma 4.4 (b) the proof of (2). �

5. Reducing the number of relevant twists

Using the results of the previous section we will now show that one can discard some of the
14 twists of X(p), depending on the residue class of p mod 24.

Theorem 5.1. Let p ≥ 11 be prime and let (a, b, c) ∈ Z3 be a non-trivial primitive solution
of x2 + y3 = zp. Then the associated Frey curve E(d)

(a,b,c) gives rise to a rational point on one
of the following twists of X(p), depending on the residue class of p mod 24.

p mod 24 twists of X(p)

1 X27a1(p), X54a1(p), X96a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p)

5 X27a1(p), X54a2(p), X96a1(p), X288a1(p), X288a2(p),

X864a1(p), X−864a1(p), X864b1(p), X−864b1(p), X864c1(p), X−864c1(p)

7 X27a1(p), X54a2(p), X96a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p)

11 X27a1(p), X54a1(p), X96a1(p), X288a1(p), X288a2(p),

X864a1(p), X864b1(p), X864c1(p)

13 X27a1(p), X96a2(p), X288a1(p), X288a2(p), X864a1(p), X864b1(p), X864c1(p)

17 X27a1(p), X54a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p)

19 X27a1(p), X54a1(p), X96a2(p), X288a1(p), X288a2(p),

X864a1(p), X−864a1(p), X864b1(p), X−864b1(p), X864c1(p), X−864c1(p)

23 X27a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p)

Proof. Note that among the seven elliptic curves in Lemma 2.3, 27a1 and 288a1 have complex
multiplication by Z[ω] and Z[i], respectively, where ω is a primitive cube root of unity. The
isogeny classes of the first four curves in the list of Lemma 2.3 have the following structure
(the edges are labeled by the degree of the isogeny):

27a2
3

27a1
3

27a3
3

27a4 54a2
3

54a1
3

54a3

96a2 2

96a1
2

96a4 288a1
2

288a2

96a3 2

whereas the isogeny classes of the last three curves are trivial; see [Cre97, Table 1] or [LMFDB].
Since 27a3 is the quadratic twist by −3 of 27a1, we have that X27a1(p) ' X27a3(p). If
(3/p) = −1, then the 3-isogeny between these curves induces an anti-symplectic isomorphism
of the mod p Galois representations, and we have that X27a1(p) ' X27a3(p) ' X−27a1(p). So
when p ≡ 5, 7, 17, 19 mod 24, we only have one twist of X(p) coming from 27a1. (For the
other CM curve 288a1, this argument does not apply, since it is its own −1-twist.)
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For the twists associated to the curves 54a1 and 96a1 we apply Theorem 4.1. From Table 1
we see that the Frey curve E(d)

(a,b,c) has multiplicative reduction at ` = 2 if and only if c is
even and d = ±1,±3, in which case its minimal discriminant is ∆ = 2−633d6cp (compare
the proof of [PSS07, Lemma 4.6]); in particular, v2(∆) ≡ −6 mod p. Then the Frey curve
must be p-congruent to E = 54a1, which is the only curve in our list that has multiplicative
reduction at 2. On the other hand, ∆E = −2339, so that the isomorphism between E(d)

(a,b,c)[p]

and E[p] is symplectic if and only if (−2/p) = 1. So for p ≡ 1, 11, 17, 19 mod 24, we get
rational points at most on X54a1(p), whereas for p ≡ 5, 7, 13, 23 mod 24, we get rational
points at most on X−54a1(p) (which is X54a2(p) when (3/p) = −1). Similarly, Table 2 shows
that the Frey curve has multiplicative reduction at ` = 3 if and only if c is divisible by 3.
In this case d = ±3,±6 and the minimal discriminant is ∆ = 263−3cp (see again the proof
of [PSS07, Lemma 4.6]), so v3(∆) ≡ −3 mod p. Since E = 96a1 is the only curve in our
list that has multiplicative reduction at 3, the Frey curve must be p-congruent to it. Since
∆E = 2632, we find that the isomorphism between E

(d)
(a,b,c)[p] and E[p] is symplectic if and

only if (−6/p) = 1. So for p ≡ 1, 5, 7, 11 mod 24 we get rational points at most on X96a1(p),
whereas for p ≡ 13, 17, 19, 23 mod 24, we get rational points at most on X−96a1(p) (which is
X96a2 when (2/p) = −1).

Now we consider the curves E with conductor at 2 equal to 25; these are 96a1, 288a1, 864a1,
864b1 and 864c1. They all have potentially good reduction at 2 and I = Gal(L/Qunr

2 ) ' H8.
As explained at the beginning of section 4.2, the fact that H8 is non-abelian implies that the
isomorphism of mod p Galois representations is symplectic if and only if it is symplectic on
the level of inertia groups. It follows from Theorem 4.6 (1) that in the case that (2/p) = 1

the isomorphism E
(d)
(a,b,c)[p] ' E[p] can only be symplectic. So when p ≡ 1, 7, 17, 23 mod 24,

we can exclude the ‘minus’ twists X−E (p) for E ∈ {96a1, 288a1, 864a1, 864b1, 864c1}.

We can use a similar argument over Q3 for the curves E in our list whose conductor at 3
is 33, namely 27a1, 54a1, 864a1, 864b1 and 864c1. They all have potentially good reduction
and I ' Dic12. By Theorem 4.7 (1) we conclude that the isomorphism E

(d)
(a,b,c)[p] ' E[p]

must be symplectic when (3/p) = 1. Thus we can exclude the twists X−E (p) for E in the set
{27a1, 54a1, 864a1, 864b1, 864c1} when p ≡ 1, 11, 13, 23 mod 24.

Finally, from the isogeny diagrams we see thatX96a2(p) ' X−96a1(p) andX288a2(p) ' X−288a1(p)
when (2/p) = −1; and also X54a2(p) ' X−54a1(p) when (3/p) = −1. This concludes the
proof. �

We have already observed that XE(p) for E ∈ {27a1, 288a1, 288a2, 864b1} always has a
rational point coming from a primitive solution of (2.1), so these twists cannot be excluded.
In a similar way, we see that we cannot exclude XE(p) by local arguments over Q` with ` = 2
or 3, if E/Q` can be obtained as the Frey curve evaluated at an `-adically primitive solution
of (2.1). Note that, for ` ∈ {2, 3} and p ≥ 5, any `-adic unit is a p-th power in Q`. For
` = 2, we have the following triples (a, b, E), where a, b ∈ Z2 are coprime with a2 + b3 ∈ Z×2
and E/Q2 is the curve obtained as the associated (local) Frey curve:

(253,−40, 27a2), (10,−7, 96a1), (46,−13, 96a2), (1, 2, 864c1).
17



For ` = 3, we only obtain (13, 7, 54a1) and (3,−1, 864a1). The remaining combinations
(E, `), namely

(27a2, 3), (54a1, 2), (54a2, 2), (54a2, 3), (54a3, 2), (54a3, 3), (96a1, 3),

(96a2, 3), (96a3, 2), (96a3, 3), (96a4, 2), (96a4, 3), (864a1, 2), (864c1, 3),

do not arise in this way. This can be verified by checking whether there is d ∈ Q×` such that
a = c6(E)d3 and b = −c4(E)d2 are coprime `-adic integers such that a2 + b3 is an `-adic unit.

In the remainder of this section we will show that there are nevertheless always 2-adic and
3-adic points corresponding to primitive solutions on the twists X±E (p) listed in Theorem 5.1.
This means that Theorem 5.1 is the optimal result obtainable from local information at 2
and 3.

Lemma 5.2. Let p ≥ 3 be a prime such that (2/p) = −1. Then, up to unramified quadratic
twist, the p-torsion GQ2-modules of the following curves admit exclusively the following iso-
morphism types:

96a1
+' 864c1, 288a1

−' 864a1, 288a1
+' 864b1, 864a1

−' 864b1,

where + means symplectic and − anti-symplectic. Moreover, let a, b be coprime integers
satisfying the congruences in line i2 of Table 1 and write E = E

(d)
(a,b,c)/Q2, where d is any of

the possible values in the same line. Then, up to unramified quadratic twist, the p-torsion
GQ2-modules of the following curves admit exclusively the following isomorphism types:

i2 = 2 with d = ±1,±3 or i2 = 6: E
+' 288a1, E

−' 864a1, E
+' 864b1

i2 = 2 with d = ±2,±6: E
−' 288a1, E

+' 864a1, E
−' 864b1

i2 = 3 with d = ±1,±3 or i2 = 5: E
+' 96a1, E

+' 864c1

i2 = 3 with d = ±2,±6: E
−' 96a1, E

−' 864c1

Furthermore, if instead p ≥ 3 satisfies (2/p) = 1, then all the previous isomorphisms are
symplectic.

Proof. Let E and E ′ be any choice of curves that are compared in the statement. We have
seen in Section 3 that E and E ′ have the same inertial field at 2. From Theorem 4.6 we
know that there is an isomorphism of I2-modules φ : E[p]→ E ′[p]. We can then use [FK19,
Theorem 9] to decide whether this isomorphism is symplectic or anti-symplectic. We will
now show that the I2-module isomorphism between E[p] and E ′[p] extends to the whole
of GQ2 up to unramified quadratic twist.

Write Lp = Q2(E[p]) for the p-torsion field of E and let Up be the maximal unramified
extension of Q2 contained in Lp. Note that all the curves in the statement acquire good
reduction over L3 and have trace of Frobenius aL3 = −4 (this can be checked using Magma).
Therefore, we know that

ρE,p|I2 ' ρE′,p|I2 and ρE,p|GL3
' ρE′,p|GL3

.

Note that GU3 = GL3 · I2. We now apply [Cen16, Theorem 2] to find that there is a basis
in which ρE,p(FrobL3) is the scalar matrix −2 · Id2. Thus the same is true in all bases;
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therefore ρE,p(FrobL3) commutes with all matrices in ρE,p(I2). Since the same is true for E ′,
the isomorphism between ρE,p and ρE′,p on the subgroups I2 and GL3 extends to GU3 .

Since all the curves involved have conductor 25, their discriminants are cubes in Q2. Thus,
by [DD08, Table 1] we conclude that Gal(L3/Q2) is isomorphic to the semi-dihedral group
with 16 elements, hence H8 ' I ⊂ G3 with index 2, thus [U3 : Q2] = 2. Therefore,
because the representations ρE,p and ρE′,p are irreducible, they differ at most by the quadratic
character χ fixing U3, that is, we have

ρE,p ' ρE′,p or ρE,p ' ρE′,p ⊗ χ.

The last statement follows from Theorem 4.6 (1). �

When (E,E ′) is any of the pairs of curves in the first part of the statement of Lemma 5.2,
the unramified quadratic twist is actually never necessary, whereas it is necessary for some
of the Frey curves in the second part. This can be checked on the 3-torsion by an explicit
computation; the result for arbitrary p follows from this.

Since the isomorphism class of XE(p) (or X−E (p)) depends only on the symplectic Galois
module E[p] up to quadratic twist, Lemma 5.2 implies that over Q2, X±96a1(p) ' X±864c1(p) and
X±288a1(p) ' X±864b1(p) (writing X+

E (p) = XE(p)), and also that X±288a1(p) ' X±864a1(p) when
(2/p) = 1, whereasX±288a1(p) ' X∓864a1(p) when (2/p) = −1. In this latter case, the Frey curve
gives rise to ‘primitive’ 2-adic points on X−E (p) for E ∈ {96a1, 288a1, 864a1, 864b1, 964c1}.

Lemma 5.3. Let p ≥ 5 be a prime such that (3/p) = −1. Then, up to unramified quadratic
twist, the p-torsion GQ3-modules of the following curves admit exclusively the following iso-
morphism types:

27a1
+' 864c1, 27a1

−' 864b1, 864b1
−' 864c1, 54a1

−' 864a1,

where + means symplectic and − anti-symplectic. Moreover, let a, b be coprime integers
satisfying the congruences in line i3 of Table 2 and write E = E

(d)
(a,b,c)/Q3, where d is any of

the possible values in the same line. Then, up to unramified quadratic twist, the p-torsion
GQ3-modules of the following curves admit exclusively the following isomorphism types:

i3 = 3 or 5 with d = ±1,±2: E
−' 27a1, E

+' 864b1, E
−' 864c1

i3 = 3 or 5 with d = ±3,±6: E
+' 27a1, E

−' 864b1, E
+' 864c1

i3 = 4 or 7 with d = ±1,±2: E
−' 54a1, E

+' 864a1

i3 = 4 or 7 with d = ±3,±6: E
+' 54a1, E

−' 864a1

Furthermore, if instead p ≥ 5 satisfies (3/p) = 1, then all the previous isomorphisms are
symplectic.

Proof. The proof proceeds in the same way as for the previous lemma, replacing 2 and 3
by 3 and 5, respectively. We now use Theorem 11 of [FK19] to obtain the result on the
level of inertia. We then see that GU3 = GL5 · I3 and that all the curves in the statement
acquire good reduction over L5 and have trace of Frobenius aL5 = −18. We conclude as
before that ρE,p and ρE′,p are isomorphic when restricted to GU5 . In the present case we
have [U5 : Q3] = 4, so it a priori conceivable that the representations differ by an unramified
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quartic twist. However, this is not possible, because both representations have the same
determinant. We conclude that they differ at most by an unramified quadratic twist. �

The statements of this lemma can be translated in terms of isomorphisms over Q3 and
‘primitive’ Q3-points in the same way as for the previous lemma.

These results already show that all the curves X±E (p) listed in Theorem 5.1 have ‘primitive’ 2-
adic and 3-adic points (and therefore cannot be ruled out by local considerations at 2 and 3),
with the possible exception of 2-adic points on X±54a1(p) and 3-adic points on X±96a1(p). The
next proposition and corollary show that these curves also have these local ‘primitive’ points.
This then implies that the information in Theorem 5.1 is optimal in the sense that we cannot
exclude more of the twists using purely 2-adic and 3-adic arguments. Note that in some cases
it is possible to use local arguments at other primes to rule out some further twists. For
example, in [FK19, Section 32] it is shown that the twist X−864a1(p) can be excluded for p = 19
and 43 and that X−864b1(p) can be excluded for p = 19, 43 and 67, working at a suitable prime
of good reduction.

Proposition 5.4. Let ` 6= p be primes with p ≥ 3 and ` 6≡ 1 mod p. Let E1 and E2 be
Tate curves over Q` with Tate parameters q1 and q2. Write e1 = v`(q1) and e2 = v`(q2) and
suppose that p - e1e2.

Then E1[p] and E2[p] are isomorphic GQ`
-modules.

Proof. Fix a primitive pth root of unity ζ ∈ Q`. Since p - e1e2, we can find integers n and m
(with p - n) satisfying e2 = ne1 + pm. Write a = q2/q

n
1 `
mp; then a is a unit in Q`. Since by

assumption p 6= ` and ` 6≡ 1 mod p, every unit is a pth power, hence there is α ∈ Q` satisfying
αp = a. Thus q2 = qn1 (`mα)p with p - n. Fix γ1 ∈ Q` with γ

p
1 = q1. Setting γ2 = γn1 `

mα, we
have γp2 = q2. By the theory of the Tate curve, we can use (ζqZi , γiq

Z
i ) as an Fp-basis for the

p-torsion of Ei. We claim that the isomorphism φ : E1[p] → E2[p] of Fp-vector spaces given
by the matrix (

n 0
0 1

)
∈ GL2(Fp)

with respect to these bases is actually an isomorphism of GQ`
-modules. To see this, consider

σ ∈ GQ`
. Then σ(ζ) = ζr for some r ∈ F×p and σ(γ1) = ζsγ1 for some s ∈ Fp, which implies

that σ(γ2) = ζnsγ2. We then have

φ(σ(ζqZ1 )) = φ(ζrqZ1 ) = ζnrqZ2 = σ(ζnqZ2 ) = σ(φ(ζqZ1 ))

and
φ(σ(γ1q

Z
1 )) = φ(ζsγ1q

Z
1 )) = ζnsγ2q

Z
2 = σ(γ2q

Z
2 ) = σ(φ(γ1q

Z
1 ))

as desired. �

Corollary 5.5. For p ≥ 5, there are primitive 2-adic points on X±54a1(p) and primitive 3-adic
points on X±96a1(p). The signs ± here are as given by the entries in Table 4 (which for the
curves considered here summarizes Theorem 5.1).

Proof. Note that 2 6≡ 1 mod p and 3 6≡ 1 mod p, so Proposition 5.4 applies for ` = 2
and ` = 3.
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Let W denote the curve 54a1. From Table 1 we see that for the Frey curve E = Ea,b,c to be
p-congruent to W we must have v2(c) > 0 and v2(a) = υ2(b) = 0. Note that we can always
find a, b, c ∈ Q2 satisfying the previous conditions and a2 + b3 = cp.

Up to unramified quadratic twist the curvesW/Q2 and E/Q2 are Tate curves with parameters
qW and qE respectively. We have v2(qW ) = v2(∆W ) = 3 and v2(qE) = −v2(jE) = −6+pv2(c).

Since p 6= 3, from the previous proposition we conclude that (up to quadratic twist) E[p]
andW [p] are isomorphicGQ2-modules. Therefore we get 2-adic points onX+

54a1(p) orX−54a1(p)
according to the signs in Table 4.

For the curve 96a1 we argue in the same way, but over Q3 instead of Q2. �

A Magma script that performs the necessary computations for the results in this section is
available as section5.magma at [Sto].

6. Ruling out twists coming from CM curves

In [BPR13, Corollary 1.2] it is shown that for p ≥ 11, p 6= 13, the image of the mod p
Galois representation of any elliptic curve E over Q is never contained in the normalizer of
a split Cartan subgroup unless E has complex multiplication. This allows us to deduce the
following.

Lemma 6.1. Let p ≥ 17 be a prime number.

(1) If p ≡ 1 mod 3, then the only primitive solutions of (2.1) coming from rational points
on X±27a1(p) are the trivial solutions (±1)2 + 03 = 1p.

(2) If p ≡ 1 mod 4, then the only primitive solutions of (2.1) coming from rational points
on X±288a1(p) are the trivial solutions 02 + (±1)3 = (±1)p (with the same sign on both
sides).

Proof. If a primitive solution (a, b, c) gives rise to a Frey curve E ′ such that E ′[p] ∼= E[p] for
E = 27a1, then the image of Galois in GL(E ′[p]) ∼= GL(E[p]) is contained in the normalizer
of a split Cartan subgroup, since E has complex multiplication by Z[ω] and p splits in this
ring when p ≡ 1 mod 3. It follows that E ′ also has complex multiplication, which implies
that c = ±1. Since the Frey curve of the Catalan solution does not have CM, the solution
must be trivial, and then only the given solution corresponds to the right curve E. The
other case is similar, using the fact that 288a1 has CM by Z[i]. �

A separate computation for the case p = 13, see Lemma 8.2 below, shows that Lemma 6.1
remains valid in that case, even though the result of [BPR13] does not apply.

We can therefore further reduce the list of twists of X(p) that have to be considered. This
results in Table 4, where an entry ‘+’ (resp., ‘−’) indicates that the twist XE(p) (resp.,
X−E (p)) cannot (so far) be ruled out to have rational points giving rise to a non-trivial
primitive solution of (2.1).

Unfortunately, there is no similar result on mod p Galois representations whose image is
contained in the normalizer of a non-split Cartan subgroup. Such a result would allow us to
eliminate the curves 27a1 and 288a1 also in the remaining cases.
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p mod 24 27a1 54a1 96a1 288a1 864a1 864b1 864c1

1 + + + + +
5 + − + +− +− +−
7 − + + + + +

11 + + + +− + + +
13 − + + +
17 + + + + +
19 + − +− +− +− +−
23 + + + + +

Table 4. Twists of X(p) remaining after local considerations and using in-
formation on X+

sp(p), according to p mod 24. This table is valid for p ≥ 11.

In Section 7.1 below we show how one can deal with the non-split case when p = 11, by
considering the twists X(−1)

ns (p) and X
(−3)
ns (p) of the double cover Xns(p) → X+

ns(p), where
Xns(p) classifies elliptic curves such that the image of the mod p Galois representation is
contained in a non-split Cartan subgroup and X+

ns(p) does the same for the normalizer
of a non-split Cartan subgroup. It turns out that for p = 11 the two curves X(−1)

ns (11)

and X
(−3)
ns (11) are not directly amenable to a Chabauty argument; instead one can use

suitable coverings and Elliptic Curve Chabauty. The following argument shows that the
failure of the Chabauty condition is a general phenomenon.

By a result of Chen [Che98] (see also [dSE00]) the Jacobian variety J0(p2) of X0(p2) is
isogenous to the product Jac(Xns(p)) × Jac(X0(p))2. On the other hand, a theorem of
Shimura [Shi94, Thm. 7.14] implies that J0(p2) is isogenous to the product

∏
f A

mf

f , where
f runs over a system of representatives of the Galois orbits of newforms of weight 2 and
level Mf dividing p2, Af is the abelian variety over Q associated to f defined by Shimura,
and p3−mf = Mf . It follows that Jac(Xns(p)) is isogenous to the product of the Af such that
f is a newform in S2(Γ0(p2)). Similarly, the Jacobian of X+

ns(p) corresponds to the product
of the Af for the subset of f invariant under the Atkin-Lehner involution W at level p2.

If p ≡ −1 mod 4, we need to exclude rational points on the twists X±288a1(p); solutions
associated to this curve will give rise to rational points on the (−1)-twist X(−1)

ns (p) of the
double cover Xns(p) → X+

ns(p). Similarly, for p ≡ −1 mod 3, we need to exclude rational
points on the twist X27a1(p), and solutions associated to that curve will give rise to rational
points on X(−3)

ns (p). To be able to use Chabauty’s method, we would need to have a factor of
the Jacobian J (d)

ns (p) (for d = −1 and/or d = −3) of Mordell-Weil rank strictly less than its
dimension. Since all these factors have real multiplication (defined over Q), the Mordell-Weil
rank is always a multiple of the dimension, so we actually need a factor of rank zero.

By the above, we know that J (d)
ns (p) splits up to isogeny as the product of the twists A(d)

f

for newforms f such that f |W = −f and the untwisted Af for f such that f |W = f . The
L-series of A(d)

f is the product of L(σfχ, s), where σf runs through the newforms in the Galois
orbit and χ is the quadratic character associated to d, see [Shi94, Section 7.5]. By a theorem
of Weil [Wei67, Satz 1] all these L-series have root number −1 when f |W = −f and d < 0 is
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squarefree (note that C = 1 from f |W = −f , ε is trivial, χ is real, so g(χ) = g(χ̄), and A = p2,
so that χ(−A) = χ(−1) = −1), so L(A

(d)
f , s) vanishes at least to order dimA

(d)
f at s = 1.

For the f that are invariant under W we also have that the root number of L(σf, s) is −1, so
L(Af , s) also vanishes to order at least dimAf . Assuming the Birch and Swinnerton-Dyer
conjecture, it follows that all factors of J (d)

ns (p) have positive rank.

To conclude this section, we mention that when p = 13, we are in the split case for both CM
curves. During the work on this paper, it was an open question whether the set of rational
points on X+

sp(13) consists of cusps and CM points. (The curve is of genus 3 and its Jacobian
has Mordell-Weil rank 3, see [Bar14] and [BPS16].) We tried an approach similar to that
used in Section 7.1 below, but did not succeed. However, a different approach using twists
of X1(13) is successful; see Lemma 8.2.

After our work was finished, Steffen Müller announced at a workshop in Banff that in joint
work with Balakrishnan, Dogra, Tuitman and Vonk the set X+

ns(13)(Q) could be determined
using ‘Quadratic Chabauty’ techniques. This work has now appeared as [BDM+19]. Since
there is an accidental isomorphism X+

ns(13) ' X+
sp(13) and there are no unexpected points,

this gives another proof of Lemma 8.2.

7. The Generalized Fermat Equation with exponents 2, 3, 11

We now consider the case p = 11. In this section we will prove the following theorem.

Theorem 7.1. Assume the Generalized Riemann Hypothesis. Then the only primitive in-
tegral solutions of the equation x2 + y3 = z11 are the trivial solutions (±1, 0, 1), ±(0, 1, 1),
(±1,−1, 0) and the Catalan solutions (±3,−2, 1).

We note at this point that the Generalized Riemann Hypothesis is only used to verify the
correctness of the computation of the class groups of five specific number fields of degree 36.

In the following we will say that j ∈ Q is good if it is the j-invariant of a Frey curve
associated to a primitive integral solution of x2 + y3 = z11, which means that j = (12b)3/c11

and 123 − j = 123a2/c11 with coprime integers a, b, c. In a similar way, we say that j ∈ Q2

is 2-adically good if it has this form for coprime 2-adic integers a, b, c.

By Theorem 5.1, it suffices to find the rational points on the twisted modular curves XE(11)
for the elliptic curves E ∈ E ′, where

E ′ = {27a1, 54a1, 96a1, 288a1, 288a2, 864a1, 864b1, 864c1} ,
such that their image on the j-line is good.

Some of the results in this section rely on computations that require a computer algebra
system. We provide a script section7.magma at [Sto] (which relies on localtest.magma,
also provided there) that can be loaded into Magma and performs these computations.

7.1. The CM curves.

In the case p = 11, we can deal with the CM curves E ∈ {27a1, 288a1, 288a2} in the
following way. Note that since (−1/11) = (−3/11) = −1, the images of both relevant Galois
representations are contained in the normalizer of a non-split Cartan subgroup of GL2(F11).
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Elliptic curves with this property are parameterized by the modular curve X+
ns(11), which is

the elliptic curve 121b1 of rank 1. It has as a double cover the curve Xns(11) parameterizing
elliptic curves E such that the image of the mod 11 Galois representation is contained in
a non-split Cartan subgroup. Elliptic curves whose mod 11 representation is isomorphic to
that of 288a1 (or 288a2) or 27a1 will give rise to rational points on the quadratic twists
X

(−1)
ns (11) and X(−3)

ns (11) of this double cover; see [DFGS14, Remark 1]. These curves are of
genus 4; the Jacobian of Xns(11) is isogenous to the product of the four elliptic curves 121a1,
121b1, 121c1 and 121d1, so that the Jacobian of the twist X(d)

ns (11) splits into the four elliptic
curves 121b1, 121a1(d), 121c1(d) and 121d1(d). Unfortunately, for d = −1 and d = −3 all of
these curves have rank 1, so the obvious approach does not work. However, we can use a
covering collection combined with the Elliptic Curve Chabauty method [Bru03], as follows.
An equation for X+

ns(11) is (see [Lig77, Proposition II.4.3.8.1])

y2 = 4x3 − 4x2 − 28x+ 41

and the double cover Xns(11)→ X+
ns(11) is given by

t2 = −(4x3 + 7x2 − 6x+ 19)

(this is an equation for 121c1), see [DFGS14, Proposition 1]. Therefore our twists are given
by

X(−1)
ns (11) :

{
y2 = 4x3 − 4x2 − 28x+ 41

t2 = 4x3 + 7x2 − 6x+ 19

and

X(−3)
ns (11) :

{
y2 = 4x3 − 4x2 − 28x+ 41

t2 = 3(4x3 + 7x2 − 6x+ 19) .

Let α be a root of f1(x) = 4x3−4x2−28x+41 and set K = Q(α). Write f1(x) = (x−α)g1(x)
in K[x]. Since E1 = 121b1 has Mordell-Weil group E1(Q) isomorphic to Z, with generator
P = (4, 11), it follows that each rational point on E1 gives rise to a K-rational point with
rational x-coordinate on one of the two curves{

y2
1 = x− α
y2

2 = g1(x)
and

{
y2

1 = (4− α)(x− α)

y2
2 = (4− α)g1(x) .

(Here we use that the map E1(Q)→ K×/K×2 that associates to a point P the square class
of x(P ) − α is a homomorphism.) So a rational point on X

(d)
ns (11) will give a K-rational

point with rational x-coordinate on

u2 = −d(x− α)(4x3 + 7x2 − 6x+ 19) or u2 = −d(4− α)(x− α)(4x3 + 7x2 − 6x+ 19) .

These are elliptic curves over K, which turn out to both have Mordell-Weil rank 1 for d = −1
and rank 2 for d = −3. Since the rank is strictly smaller than the degree of K in all cases,
Elliptic Curve Chabauty applies, and we find using Magma that the x-coordinates of the
rational points on X(−1)

ns (11) and X(−3)
ns (11) are∞, 5/4, 4,−2, corresponding to O, ±3P , ±P

and ±4P on E1. We compute the j-invariants of the elliptic curves represented by these
points using the formula in [DFGS14] and find that only the curves corresponding to 3P and
to 4P give rise to solutions of (2.1); they are the trivial solutions with a = 0 or b = 0.

24



7.2. Dealing with the remaining curves.

We now set E = {54a1, 96a1, 864a1, 864b1, 864c1}; this is the set of curves E such that we
still have to consider XE(11).

We will denote any of the canonical morphisms

X(11)→ X(1) ' P1 , XE(11) 'Q̄ X(11)→ X(1) ' P1 and X0(11)→ X(1) ' P1

by j and we will also use j to denote the corresponding coordinate on P1.

Recall that X0(11) is an elliptic curve. Let P ∈ XE(11)(Q) be a rational point; then under
the composition XE(11) ' X(11) → X0(11) (where the isomorphism is defined over Q̄) P
will be mapped to a point P ′ on X0(11) whose image j(P ′) = j(P ) on the j-line is rational.
Since the j-map from X0(11) has degree 12, it follows that P ′ is defined over a number
field K of degree at most 12. More precisely, the points in the fiber above j(P ′) = j(P )
in X0(11) correspond to the twelve possible cyclic subgroups of order 11 in E[11], so the
Galois action on the fiber depends only on E and is the same as the Galois action on the
fiber above the image j(E) on the j-line of the canonical point of XE(11). In particular,
we can easily determine the isomorphism type of this fiber. It turns out that for our five
curves E, the fiber is irreducible, with a (geometric) point defined over a field K = KE of
degree 12. The problem can therefore be reduced to the determination of the set of KE-
points P ′ on X0(11) such that j(P ′) ∈ Q and is good. This kind of problem is the setting
for the Elliptic Curve Chabauty method as introduced in [Bru03] that we have already
used in Section 7.1 above. To apply the method, we need explicit generators of a finite-
index subgroup of the group X0(11)(KE). This requires knowing the rank of this group, for
which we can obtain an upper bound by computing a suitable Selmer group. We use the
2-Selmer group, whose computation requires class and unit group information for the cubic
extension LE of KE obtained by adjoining the x-coordinate of a point of order 2 on X0(11)
(no field KE has a non-trivial subfield, so no point of order 2 on X0(11) becomes rational
over KE). To make the relevant computation feasible, we assume the Generalized Riemann
Hypothesis. With this assumption the computation of the 2-Selmer groups is done by Magma
in reasonable time (up to a few hours). However, we now have the problem that we do not
find sufficiently many independent points in X0(11)(KE) to reach the upper bound. This is
where an earlier attempt in 2006 along similar lines by David Zureick-Brown got stuck. We
get around this stumbling block by making use of ‘Selmer Group Chabauty’ as described
in [Sto17]. This method allows us to work with the Selmer group information without having
to find sufficiently many points in X0(11)(KE).

The idea of the Selmer Group Chabauty method (when applied with the 2-Selmer group) is
to combine the global information from the Selmer group with local, here specifically 2-adic,
information. So we first study our situation over Q2. Away from the branch points 0, 123

and ∞ of j : X0(11) → P1
j , the Q2-isomorphism type of the fiber is locally constant in the

2-adic topology. In a suitable neighborhood of a branch point, the isomorphism type of
the fiber will only depend on the class of the value of a suitable uniformizer on P1

j at the
branch point modulo cubes (for 0), squares (for 123) or eleventh powers (for∞). We use the
standard model given by

y2 + y = x3 − x2 − 10x− 20
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for the elliptic curve X0(11), with j-invariant map given by j = (a(x) + b(x)y)/(x − 16)11,
where

a(x) = 743x11 + 21559874x10 + 19162005343x9 + 2536749758583x8

+ 82165362766027x7 + 576036867160006x6 − 1895608370650736x5

− 14545268641576841x4 + 420015065507429x3 + 74593328129816300x2

+ 108160113602504237x− 39176677684144739

and

b(x) = (x5 + 4518x4 + 1304157x3 + 65058492x2 + 271927184x− 707351591)

· (x5 + 192189x4 + 3626752x3 − 3406817x2 − 37789861x− 37315543) .

We define the following set of subsets of P1(Q2).

D =
{

15 · 26 + 211Z2, −26 + 211Z2, 29 + 211Z2, −29 + 211Z2, {2−5t−11 : t ∈ Z2},
{123 − 3 · 210t2 : t ∈ Z2}, {123 − 210t2 : t ∈ Z2},(7.2)

{123 + 210t2 : t ∈ Z2}, {123 + 3 · 210t2 : t ∈ Z2}
}

Note that according to Table 1 all elements in these sets are 2-adically good j-invariants,
and for each set, all fibers of the j-map X0(11) → P1 over points in the set are isomorphic
over Q2 (excluding j = 123 and j =∞).

Lemma 7.3. Let E ∈ E and let P ∈ XE(11)(Q2) such that j(P ) is 2-adically good. Then
j(P ) is in one of the following sets D ∈ D, depending on E.

54a1: {2−5t−11 : t ∈ Z2} .
96a1: 15 · 26 + 211Z2, −26 + 211Z2, −29 + 211Z2 .

864a1: {123 − 210t2 : t ∈ Z2}, {123 + 3 · 210t2 : t ∈ Z2} .
864b1: {123 − 3 · 210t2 : t ∈ Z2}, {123 + 210t2 : t ∈ Z2}, 29 + 211Z2 .

864c1: 15 · 26 + 211Z2, −26 + 211Z2, −29 + 211Z2 .

Proof. This follows from the information in Table 1, together with Lemma 5.2, which allows
us to distinguish between XE(p) and X−E (p) (note that 2 is a non-square mod 11). �

The next step is the computation of the 2-Selmer groups of X0(11) over the fields KE, where
E runs through the curves in E . This is where we assume GRH. Table 5 lists defining
polynomials for the fields KE and gives the F2-dimension of the Selmer group.
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E polynomial defining KE dimF2 Sel2 /KE

54a1 x12 − 6x10 + 6x9 − 6x8 − 126x7 + 104x6 + 468x5 4
+ 258x4 − 456x3 − 1062x2 − 774x− 380

96a1 x12 − 4x11 − 264x7 + 66x6 − 132x5 5
− 2112x4 − 1320x3 − 660x2 − 6240x− 8007

864a1 x12 − 6x11 + 110x9 − 132x8 − 528x7 + 1100x6 + 330x5 5
− 2508x4 + 2134x3 − 594x2 + 456x− 371

864b1 x12 − 6x11 + 22x9 + 99x8 − 396x7 + 440x6 − 132x5 3
− 6501x4 + 33506x3 − 23760x2 − 92418x+ 193081

864c1 x12 − 44x9 − 264x8 − 264x7 − 2266x6 − 4488x5 3
− 264x4 − 17644x3 − 7128x2 + 144x− 15191

Table 5. Fields KE and dimensions of Selmer groups, for E ∈ E .

We eliminate y from the equation of X0(11) and the relation between j and x, y. This results
in

F (x, j) = (x4 − 52820x3 + 1333262x2 + 4971236x+ 9789217)3

+ (1486x11 + 43119747x10 + 38323813979x9 + 5072626276355x8

+ 164063633585170x7 + 1134855511654843x6 − 4074814667347831x5(7.4)

− 29669709666741936x4 + 6839041777752481x3 + 159480622275659333x2

+ 199736619430410535x− 104748564078368391)j

− (x− 16)11j2 = 0 .

We now state a technical lemma for later use.

Lemma 7.5. Let K be a field complete with respect to an absolute value |·|. Consider a
polynomial F =

∑
i,j≥0 fijx

iyj ∈ K[x, y]. Fix an integer e ≥ 1 such that the characteristic
of K does not divide e. We assume that f0j = 0 for 0 ≤ j < e and that f0e = 1. For
j ≥ 0, we set Fj(t) =

∑
i≥0 fijt

i ∈ K[t], so that F (x, y) =
∑

j≥0 Fj(x)yj. Assume that
F0(t) = −ct + higher order terms, with c 6= 0. For a real number r > 0 and a polynomial
f(t) = ant

n + . . .+ a1t+ a0 ∈ K[t], we set |f |r = max{ri|ai| : 0 ≤ i ≤ n}.
There are exactly e formal power series φ0, . . . , φe−1 ∈ L[[t]], where L is the splitting field of
Xe − c over K, such that φj(0) = 0 and F (te, φj(t)) = 0. If ζ ∈ L is a primitive eth root of
unity, then we can label the φj in such a way that φj(t) = φ0(ζjt).

If r > 0 is such that |Fm(te)|r < |F0(te)|(e−m)/e
r for 0 < m < e, |Fe(te) − 1|r < 1 and

|F0(te)|(m−e)/er |Fm(te)|r < 1 form > e, then the φj converge on the closed disk of radius r in L,
and we have |φj(τ)| ≤ |F0(te)|1/er for all τ in this disk. If in addition |F0(te)+cte|r < |F0(te)|r,
then |φj(τ)| = |c|1/e|τ | for all these τ .

Proof. We consider the equation F (te, y) = 0 over the field of Laurent series L((t)). The
assumptions f0j = 0 for 0 ≤ j < e, f0e = 1 and f10 = −c 6= 0 imply that the Newton
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Polygon of F (te, y) has a segment of length e and slope −e, and that all other slopes are ≥ 0.
This already shows that there are at most e power series with the required properties. Also,
the reduction modulo t of t−eF (te, tz) is ze − c, which is a separable polynomial splitting
over L into linear factors. So by Hensel’s Lemma, there are exactly e solutions z ∈ L[[t]].
Let φ0 = tz0 for one such solution z0. Clearly, each solution z gives rise to exactly one
power series φj. Since the original equation is invariant under the substitution t 7→ ζjt,
φj(t) := φ0(ζjt) is a solution for each 0 ≤ j < e. Since γ = z0(0) 6= 0 (it is an eth root of c),
we have φ0(t) = γt+ . . ., and so all these φj are pairwise distinct.

Now consider the completion of the polynomial ring L[t] with respect to |·|r. This is the Tate
Algebra Tr of power series converging on the closed disk of radius r (in the algebraic closure
of L). The assumptions on r guarantee that the Newton Polygon of F (te, y), considered
over Tr, again has a unique segment of length e and slope corresponding to the absolute
value |F0(te)|1/er , whereas all other slopes correspond to larger absolute values. As can be
seen by letting r tend to zero, the corresponding solutions must be given by the φj. The
claim that |φj(τ)| ≤ |F0(te)|1/er follows from |φj|r = |F0(te)|1/er . For the last claim, note
that |F0(te)|r = |c|re and that if |φj(τ)| < |c|1/e, then the term −cτ e would be dominant
in F (τ e, φj(τ)), which gives a contradiction. �

Recall that θ denotes the x-coordinate of a point of order 2 on X0(11), so θ is a root of the
2-division polynomial

4x3 − 4x2 − 40x− 79

of X0(11). We denote the 2-adic valuation on Q̄2 by v2, normalized so that v2(2) = 1. Then
v2(θ) = −2/3.

Lemma 7.6. Let K be a finite extension of Q2 such that X0(11)(K)[2] = 0 and set L = K(θ).
Let D ∈ D, but different from {2−5t−11 : t ∈ Z2}, and let ϕ : Z2 → D be the parameterization
in terms of t as given in (7.2). Let P ∈ X0(11)(K) be such that j(P ) ∈ D. Then P is in
the image of an analytic map φ : Z2 → X0(11)(K) such that j ◦ φ = ϕ, and the square class
of x(φ(z))− θ ∈ L× is constant for z ∈ Z2.

Proof. By the information in Table 1 the Q2-isomorphism type of the fiber of j above D is
constant, say given by the disjoint union of SpecKi for certain 2-adic fields Ki. We note
that all Ki coming up in this way have the property that X0(11)(Kj)[2] = 0, since the
ramification indices are not divisible by 3. We can then take K = Ki, since we will use a
purely valuation-theoretic criterion for the second statement, so the choice of field will be
largely irrelevant. In the following, F (x, j) = 0 is the relation between the x-coordinate
on X0(11) and the associated j-invariant given in (7.4).

If D is not one of the last four sets in (7.2), then we solve F (x0 + φ0, ϕ(t)) = 0 for a power
series φ0 with φ0(0) = 0, where x0 ∈ K is any root of F (x, ϕ(0)). For each possible D and x0,
Lemma 7.5 allows us to deduce that such a power series φ0 exists, that it converges on an
open disk containing Z2 and that it satisfies v2(φ0(τ)) > 4/3 for all τ ∈ Z2. Since we obtain
as many power series as there are roots of F (x, z) = 0 for any z ∈ D (this is because the
fibers over D of the j-map are all isomorphic, so the number of roots in K is constant) and
since the y-coordinate of a point on X0(11) is uniquely determined by its x-coordinate and
its image under the j-map (unless b(x) = 0, but this never happens for the points we are
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considering), we obtain analytic maps φ : Z2 → X0(11)(K) whose images cover all points P
as in the statement. Also, v2(x(φ(τ))−x0) = v2(φ0(τ)) > 4/3 = 2+v2(x0−θ), which implies
(compare [Sto01, Lemma 6.3]) that x(φ(τ))− θ is in the same square class as x0 − θ.
If D is one of the last four sets in (7.2), then we proceed in a similar way. Note that the four
parameterizations ϕ(t) = 123 + a210t2 all have 2-adic units a and so can be converted one
into another by scaling t by a 2-adic unit (in some extension field of Q2). Since we only care
about valuations in the argument, it is sufficient to just work with one of them. In the same
way as before, we consider F (x0 + φ0(t), ϕ(t)) = 0 as an equation to be solved for a power
series φ0 with φ0(0) = 0, where x0 ∈ K is such that F (x0, 123) = 0. We apply Lemma 7.5
again, this time with e = 2, and the remaining argument is similar to the previous case. �

We now use the information coming from the Selmer group together with the preceding
lemma to rule out most of the sets listed in Lemma 7.3.

Lemma 7.7. Let E ∈ E and let P ∈ XE(11)(Q) such that j(P ) is 2-adically good. Then
j(P ) is in one of the following sets D ∈ D, depending on E.

54a1: {2−5t−11 : t ∈ Z2} .
96a1: 15 · 26 + 211Z2, −26 + 211Z2 .

864a1: none .

864b1: 29 + 211Z2 .

864c1: −29 + 211Z2 .

Note that the curve 864a1 can already be ruled out at this stage.

Proof. In view of Lemma 7.3, there is nothing to prove when E = 54a1. So we let E be
one of the other four curves. Any rational point on XE(11) whose image on the j-line is
good will map to a point in X0(11)(KE) with the same j-invariant, and so will give rise to
a point in X0(11)(KE ⊗Q Q2) whose j-invariant is in one of the sets D listed in Lemma 7.3,
depending on E. Recall that LE = KE(θ). We write KE,2 = KE⊗QQ2 and LE,2 = LE⊗QQ2;
KE,2 and LE,2 are étale algebras over Q2. Then we have the commutative diagram

X0(11)(KE) //

��

Sel2(X0(11)/KE) �
� //

��

L×E
L×2
E

��

X0(11)(KE,2) // X0(11)(KE,2)

2X0(11)(KE,2)
� � //

L×E,2

L×2
E,2

.

The composition of the two horizontal maps in the bottom row sends a point (ξ, η) to
the square class of ξ − θ in L×E,2. By Lemma 7.6, the square class we obtain for a point
in X0(11)(KE,2) mapping into a fixed set D does not depend on the image point in D. It
therefore suffices to compute the square class for the points above some representative point
(for example, the ‘center’ if it is not a branch point) of D. Doing this, we find that the
square classes we obtain are not in the image of the Selmer group except for the sets given
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in the statement. Since by the diagram above a point in X0(11)(KE) has to map into the
image of the Selmer group, this allows us to exclude these D. �

It remains to deal with the remaining five sets D. All but one of them do actually contain
the image of a point in X0(11)(KE), so we have to use a more sophisticated approach. The
idea for the following statement comes from [Sto17].

Lemma 7.8. Let E ∈ E and let D ∈ D be one of the sets associated to E in Lemma 7.7.
Assume that there is a point P ∈ X0(11)(KE) with the following property.

(*) For any point Q ∈ X0(11)(KE,2) with Q 6= P and j(Q) ∈ D, there is n ≥ 0 such that
Q = P + 2nQ′ with Q′ ∈ X0(11)(KE,2) such that the image of Q′ in L×E,2/L

×2
E,2 is not

in the image of the Selmer group.

Then if j(P ) ∈ D, P is the only point Q ∈ X0(11)(KE) with j(Q) ∈ D, and if j(P ) /∈ D,
then there is no such point.

Proof. For each E ∈ E , we verify that the middle vertical map in the diagram in the proof of
Lemma 7.7 is injective, by checking that the rightmost vertical map is injective on the image
of the Selmer group. Note that the Selmer group is actually computed as a subgroup of the
upper right group. Since X0(11)(KE)/2X0(11)(KE) maps injectively into the Selmer group,
this means that a KE-rational point that is divisible by 2 in X0(11)(KE,2) is already divisible
by 2 in X0(11)(KE). Since X0(11) has no KE-rational points of exact order 2 (none of the
fields KE have non-trivial subfields, so θ /∈ KE, since [Q(θ) : Q] = 3), there is a unique ‘half’
of a point, if there is any. So if P 6= Q ∈ X0(11)(KE) has j-invariant in D, then the point Q′
in the relation in property (*) is also KE-rational. But then its image in L×E,2/L

×2
E,2 must be

in the image of the Selmer group, which gives a contradiction to (*). The only remaining
possibility for a point Q ∈ X0(11)(KE) with j(Q) ∈ D is then P , and this possibility only
exists when j(P ) ∈ D. �

It remains to exhibit a suitable point P for the remaining pairs (E,D) and to show that
it has property (*). We first have a look at the 2-adic elliptic logarithm on X0(11). Let
K ⊂ X0(11)(Q̄2) denote the kernel of reduction. We take t = −x/y to be a uniformizer at
the point at infinity on X0(11) and write Kν = {P ∈ K : v2(t(P )) > ν}.

Lemma 7.9. The 2-adic elliptic logarithm log : K → Q̄2 induces a group isomorphism be-
tween K1/3 and the additive group D1/3 = {λ ∈ Q̄2 : v2(λ) > 1/3}.
In particular, if K is a 2-adic field and P ∈ K4/3 ∩ X0(11)(K), then P is divisible by 2
in K ∩X0(11)(K).

Proof. Note that the points T of order 2 on X0(11) satisfy v2(t(T )) = 1/3 (the x-coordinate
has valuation −2/3 and the y-coordinate is −1/2). We also note that X0(11) is supersingular
at 2, so X0(11)(F̄2) consists of points of odd order. This implies that the kernel of log on K
consists exactly of the points of order a power of 2. There are no such points P with
v2(t(P )) > 1/3, so log is injective on this set. Explicitly, we find that for P ∈ K with
t(P ) = τ ,

logP = τ − 1

3
τ 3 +

1

2
τ 4 − 19

5
τ 5 − τ 6 +

5

7
τ 7 − 27

2
τ 8 + . . . ;
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for v2(τ) > 1/3 the first term is dominant, so the image is D1/3 as claimed.

Now let P ∈ K4/3 ∩X0(11)(K). Note that restricting log gives us an isomorphism between
K1/3 ∩X0(11)(K) and D1/3 ∩K. Since v2(τ) > 4/3, the image of P in D1/3 ∩K is divisible
by 2 in D1/3 ∩K, so P must be divisible by 2 in K ∩X0(11)(K). �

Lemma 7.10. Let K be some 2-adic field such that X0(11)(K)[2] = 0 and consider an
analytic map φ : Z2 → K ∩ X0(11)(K). We assume that φ actually converges on the open
disk D−c = {τ ∈ C2 : v2(τ) > −c} for some c > 0 and that there is some ν ∈ Q>1/3 such
that |t(φ(τ))| = |2|ν |τ | for all τ ∈ D−c. (This implies that φ(0) is the point at infinity.) We
set µ = dν − 1

3
e − 1 ∈ Z≥0.

Then for each τ ∈ Z2\{0} there is a unique Qτ ∈ K∩X0(11)(K) such that φ(τ) = 2µ+v2(τ)Qτ .
If τ ∈ Z×2 , then Qτ ≡ Q1 mod 2X0(11)(K). If ν−µ+min{1, c, ν− 1

3
} > 4

3
, then this remains

true for arbitrary τ ∈ Z2 \ {0}. Otherwise, we have that Qτ ≡ Q2 mod 2X0(11)(K) if
τ ∈ 2Z2 \ {0}.

Proof. Fix 0 6= τ ∈ Z2 and write n = v2(τ). By assumption, we have that φ(τ) ∈ Kν+n. Since
ν > 1/3+µ, this implies that φ(τ) is divisible by 2µ+n in K∩X0(11)(K) by Lemma 7.9. Since
X0(11)(K)[2] = 0, there is then a unique pointQτ ∈ K∩X0(11)(K) such that φ(τ) = 2µ+nQτ .
We now consider

log φ(τ) = γ
(
τ + a2τ

2 + a3τ
3 + . . .

)
.

We know by assumption and by Lemma 7.9 and its proof that | log φ(τ)| = |t(φ(τ))| = |2|ν |τ |
whenever v2(τ) > −min{c, ν − 1

3
} (for τ ∈ C2). This implies that v2(γ) = ν and that

v2(ak) ≥ (k − 1) min{c, ν − 1
3
} for all k ≥ 2.

Writing τ = 2nu with u ∈ Z×2 , we then have that

logQτ = 2−µ−n log φ(τ) = γ2−µ(u+ 2na2u
2 + 22na3u

3 + . . .)

and so

log(Qτ −Q1) = logQτ − logQ1 = γ2−µ
(
(u− 1) + a2(2nu2 − 1) + a3(22nu3 − 1) + . . .

)
.

If n = 0, then v2(log(Qτ −Q1)) ≥ ν − µ + 1 > 4
3
, and if ν − µ + min{1, c, ν − 1

3
} > 4

3
, then

v2(log(Qτ−Q1)) ≥ ν−µ+min{1, v2(a2), v2(a3), . . .} > 4
3
, so in both cases, Lemma 7.9 shows

that Qτ −Q1 is divisible by 2 in K ∩X0(11)(K). If n ≥ 1, then we find that

log(Qτ −Q2) = γ2−µ
(
(u− 1) + 2a2(2n−1u2 − 1) + 22a3(22n−2u3 − 1) + . . .

)
,

and we see that this has 2-adic valuation > 4
3
, so Qτ −Q2 is divisible by 2. �

Remark 7.11. We will apply this lemma in the following setting. We consider one of the
remaining sets D ∈ D and a point P ∈ X0(11)(KE) such that j(P ) ∈ D. Then there is an
analytic map ψ : Z2

'→ D → X0(11)(KE,2) such that ψ(0) = P and such that the second
map in this composition inverts the j function. We set φ(τ) = ψ(τ) − P ; then φ is an
analytic map into K∩X0(11)(KE,2), which satisfies a polynomial relation Φ(τ, t(φ(τ))) = 0,
where Φ ∈ KE[x, y] has degree 3 in x and degree 12 in y (this is because j : X0(11) → P1

has degree 12 and t : X0(11) → P1 has degree 3). We find Φ explicitly by interpolation:
we compute the pairs (j(Q), t(Q)) for all points Q = nP + T , where −5 ≤ n ≤ 5 and
T ∈ X0(11)(Q)tors ' Z/5Z. This gives us enough information to determine the 52 coefficients
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of Φ (up to scaling). We then use Lemma 7.5 to show that φ actually converges for v2(τ) > −c
for some c > 1/3 and that v2(t(φ(τ))) = ν + v2(τ) for v2(τ) > −c (where ν = 2, 3 or 5/11 in
the concrete cases considered). Finally, we check that Q1 does not map into the image of the
Selmer group (and that Q2 does not, either, in the last case). This then verifies condition (*)
for D, E and P .

Lemma 7.12. Let E ∈ E and let D ∈ D be one of the sets associated to E in Lemma 7.7.
Then the point P given in the table below satisfies (*) for E and D. Here can(E) stands for
the image on X0(11) of the canonical point on XE(11).

E D P j(P ) ∈ D \ {0, 123,∞}
54a1 {2−5t−11 : t ∈ Z2} (16, 60) no
96a1 15 · 26 + 211Z2 − can(96a2) no
96a1 −26 + 211Z2 can(96a1) yes
864b1 29 + 211Z2 can(864b1) yes
864c1 −29 + 211Z2 can(864c1) yes

Proof. The points P given in the table have the property that their image in G = L×E,2/L
×2
E,2

agrees with the image of those points in j−1(D)∩X0(11)(KE,2) whose image is in the image
of the Selmer group. This means that for any point Q in one of the 2-adic disks above D
such that Q maps into the image of the Selmer group, we have that P −Q is divisible by 2
in X0(11)(KE,2).

We first consider the last three cases. In the last two cases only one (out of sixteen) of the
disks above D maps into the image of the Selmer group; this must be the disk containing the
image of the canonical point. For 96a1 we use Fisher’s explicit description of XE(11) and
the j-map on it [Fis14] to obtain a partition of X96a1(11)(Q2) into 2-adic disks; we find that
there is only one residue disk in X96a1(11)(Q2) that maps to D. Its image in X0(11)(K96a1,2)
must be one of the disks above D and this disk contains the image of the canonical point;
the other disks above D can be excluded. So in each of these three cases the only disk
in X0(11)(KE,2) above D that we have to consider is the disk D′ containing the image of the
canonical point. We then follow the approach outlined in Remark 7.11 above to verify (*)
for each of the last three entries in the table.

Next we consider the other disk D for E = 96a1; this is the second entry in the table. There
are four disks D′ in X0(11)(KE,2) above D such that the image of D′ in G is in the image
of the Selmer group; this image is the same as that of P . Taking the difference with P and
halving, we find that on three of these disks the image in G of the resulting points is not
in the image of the Selmer group. On the fourth disk, the image is zero, so the points are
again divisible by 2. After halving again, we find that the resulting points have image in G
not in the image of the Selmer group. This verifies (*) for this case (with n ≤ 2).

Finally, we look at E = 54a1. There is one unramified branch above j = ∞ with the point
at infinity of X0(11) sitting in the center of the disk, and there is one point (with coordinates
(16, 60)) with ramification index 11. We can parameterize the disk relevant to us by setting
j = 2−5τ−11 and solving for the x and y-coordinates in Q( 11

√
2)((τ)). We use the alternative

uniformizer t′ = −(x − 5)/(y − 5) at the origin (the standard uniformizer t does not work
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well in this case, because it is 2-adically small on the other branch above j =∞), which has
the additional benefit that it is of degree 2 instead of 3 as a function on X0(11), leading to a
smaller polynomial Φ. The statements of Lemmas 7.9 and 7.10 are unaffected by this change
of uniformizer. Using the approach of Remark 7.11, we find that the series φ of Lemma 7.10
converges for v2(τ) > −5/11 and satisfies v2(φ(τ)) = 5/11 + v2(τ). We can also check that
for τ = 1 and for τ = 2 we obtain a point whose image in G is not in the image of the Selmer
group, so (*) is verified in this case, too. �

To conclude the proof of Theorem 7.1, it now only remains to observe that the j-invariants
21952/9 of 96a1 and 1536 of 864c1 are not good (the condition on the 3-adic valuation is
violated), so the only remaining point in X96a1(11)(Q) and in X864c1(11)(Q) does not lead to
a primitive integral solution of our Generalized Fermat Equation. The only remaining point
in X864b1(11)(Q) is the canonical point; it corresponds to the Catalan solutions.

Remark 7.13. According to work by Ligozat [Lig77], the Jacobian J(11) of X(11) splits up to
isogeny (and over Q(

√
−11)) into a product of eleven copies of X0(11), ten copies of a second

elliptic curve and five copies of a third elliptic curve (which is X+
ns(11) = 121b1). The powers

of these three elliptic curves correspond to isotypical components of the representation of
the automorphism group of the j-map X(11)→ P1 on the Lie algebra of J(11); the splitting
into these three powers therefore persists over Q after twisting. Our approach uses the 11-
dimensional factor (it can be identified with the kernel of the trace map from RKE/QX0(11)KE

to X0(11), up to isogeny). It would be nice if one could use the 5-dimensional factor instead
in the hope of eliminating the dependence on GRH, but so far we have not found a description
that would allow us to work over a smaller field.

8. The Generalized Fermat Equation with exponents 2, 3, 13

In this section, we collect some partial results for the case p = 13. More precisely, we show
that the Frey curve associated to any putative solution must have irreducible 13-torsion
Galois module and that only trivial solutions can be associated to the two CM curves in the
list of Lemma 2.3.

8.1. Eliminating reducible 13-torsion.

The case p = 13 is special in the sense that it is a priori possible to have Frey curves with
reducible 13-torsion Galois modules. In this respect, it is similar to p = 7; compare [PSS07].
To deal with this possibility, we note that such a Frey curve E will have a Galois-stable
subgroup C of order 13 and so gives rise to a rational point PE on X0(13), which is a curve
of genus 0. The Galois action on C is via some character χ : GQ → F×13, which can be ramified
at most at 2, 3 and 13. Associated to χ is a twist Xχ(13) of X1(13) that classifies elliptic
curves with a cyclic subgroup of order 13 on which the Galois group acts via χ; the Frey
curve E corresponds to a rational point on Xχ(13) that maps to PE under the canonical
covering map Xχ(13) → X0(13). The covering X1(13) → X0(13) is Galois of degree 6 with
Galois group naturally isomorphic to F×13/{±1}; the coverings Xχ(13)→ X0(13) are twisted
forms of it, corresponding to the composition

GQ
χ−→ F×13 −→ F×13/{±1} ' Z/6Z ,
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which is an element of H1(Q,Z/6Z; {2, 3, 13}) (where H1(K,M ;S) denotes the subgroup
of H1(K,M) of cocycle classes unramified outside S). We can describe this group in the
form

H1(Q,Z/6Z; {2, 3, 13}) = H1(Q,Z/2Z; {2, 3, 13})⊕H1(Q,Z/3Z; {2, 3, 13})
' 〈−1, 2, 3, 13〉Q×/Q×2 ⊕ 〈ω, 4+ω

3−ω 〉Q(ω)×/Q(ω)×3 ,

where ω is a primitive cube root of unity. One can check that a model of X1(13) is given by

y2 = (v + 2)2 + 4 , z3 − vz2 − (v + 3)z − 1 = 0 ;

the map to X0(13) ' P1 is given by the v-coordinate. The second equation can be written
in the form ( z − ω

z − ω2

)3

=
v − 3ω

v − 3ω2
,

which shows that it indeed gives a cyclic covering of P1
v by P1

z. If d is a squarefree integer repre-
senting an element in 〈−1, 2, 3, 13〉Q×/Q×2 and γ represents an element of 〈ω, 4+ω

3−ω 〉Q(ω)×/Q(ω)×3 ,
then the corresponding twist is

Xχ(13) : dy2 = (v + 2)2 + 4 , γ
( z − ω
z − ω2

)3

=
v − 3ω

v − 3ω2
.

We note that the first equation defines a conic that has no real points when d < 0 and has
no 3-adic points when 3 | d. This restricts us to d ∈ {1, 2, 13, 26}. We find hyperelliptic
equations for the 36 remaining curves (recall that X1(13) has genus 2). It turns out that
only eight of them have `-adic points for ` ∈ {2, 3, 13}. We list them in Table 6. In the table
we give d and δ, where γ = δ/δ̄ and the bar denotes the non-trivial automorphism of Q(ω).
We denote the curve in row i of the table by Ci.

no. d δ f

1 1 1 x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1

2 2 ω 16x6 + 24x5 + 18x4 + 76x3 + 138x2 + 72x+ 16

3 2 ω + 4 208x6 − 312x5 + 234x4 − 988x3 + 1794x2 − 936x+ 208

4 2 −3ω − 4 16x6 − 24x5 + 106x4 − 252x3 + 226x2 − 72x+ 16

5 13 3ω − 1 x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1

6 26 ω + 4 16x6 − 24x5 + 18x4 − 76x3 + 138x2 − 72x+ 16

7 26 ω 208x6 + 312x5 + 234x4 + 988x3 + 1794x2 + 936x+ 208

8 26 −3ω − 4 16x6 − 24x5 + 106x4 − 252x3 + 226x2 − 72x+ 16

Table 6. Curves Xχ(13) with local points, given as y2 = f(x).

We see that the last four curves are isomorphic to the first four. This is because of the
canonical isomorphism X1(13) ' Xµ(13), where the latter classifies elliptic curves with a
subgroup isomorphic to µ13. On the level of X0(13), this comes from the Atkin-Lehner
involution, which in terms of our coordinate v is given by v 7→ (v + 12)/(v − 1).
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The first curve C1 is X1(13); it is known that its Jacobian has Mordell-Weil rank zero and
that the only rational points on X1(13) are six cusps (there are no elliptic curves over Q with
a rational point of order 13). For the curves C2, C3 and C4, a 2-descent on the Jacobian
as in [Sto01] gives an upper bound of 2 for the rank. C2 and C4 each have six more or less
obvious rational points; their differences generate a subgroup of rank 2 of the Mordell-Weil
group, so their Jacobians indeed have rank 2. On C3 one does not find small rational points,
and indeed it turns out that its 2-Selmer set is empty, which proves that it has no rational
points. See [BS09] for how to compute the 2-Selmer set. It remains to consider C2 and C4.

We note that the j-invariant map on P1
v ' X0(13) is given by

j =
(v2 + 3v + 9)(v4 + 3v3 + 5v2 − 4v − 4)3

v − 1
.

The obvious orbits of points on the six curves that do have rational points then give points
on X0(13) with v =∞, 0, −4, 1, −12, −8/5 and j-invariants

∞ ,
123

3
, −123 · 134

5
, ∞ , −123 · 40793

3
, −123 · (17 · 29)3 · 13

513
,

respectively. None of these correspond to primitive solutions of x2 +y3 = z13, except j =∞,
which is related to the trivial solutions (±1,−1, 0). So to rule out solutions whose Frey
curves have reducible 13-torsion, it will suffice to show that there are no rational points on
C2 and C4 other than the orbit of six points containing the points at infinity.

Computing the 2-Selmer sets, we find in both cases that its elements are accounted for by
the points in the known orbit. So in each orbit of rational points under the action of the
automorphism group, there is a point that lifts to the 2-covering of the curve that lifts the
two points at infinity. So it is enough to look at rational points on this 2-covering.

We first consider C2. Its polynomial f splits off three linear factors over K, where K is the
field obtained by adjoining one of the roots α of f to Q. The relevant 2-covering then maps
over K to the curve y2 = (x − α)g(x), where g is the remaining cubic factor. This is an
elliptic curve (with two K-points at infinity and one with x = α). Computing its 2-Selmer
group (this involves obtaining the class group of a number field of degree 18, which we can
do without assuming GRH; the computation took a few days), we find that it has rank 1.
We know three K-points on the elliptic curve; they map surjectively onto the Selmer group.
So we can do an Elliptic Curve Chabauty computation, which tells us that the only K-points
whose x-coordinate is rational are the two points at infinity. This in turn implies that the
known rational points on C2 are the six points in the orbit of the points at infinity.

Now we consider C4. Here the field generated by a root of f is actually Galois (with group S3).
We work over its cubic subfield L. Over L, f splits as 16 times the product of three monic
quadratic factors h1, h2, h3, and we consider the elliptic curve E given as y2 = h1(x)h2(x),
with one of the points at infinity as the origin. This curve has full 2-torsion over L, so a 2-
descent is easily done unconditionally. We find that the 2-Selmer group has rank 3 and that
the difference of the two points at infinity has infinite order, so the Mordell-Weil rank of E
over L is 1. An Elliptic Curve Chabauty computation then shows that the only K-points
on E with rational x-coordinate are those at infinity and those with x-coordinate −3. Since
there are no rational points on C4 with x-coordinate −3, this shows as above for C2 that the
only rational points are the six points in the orbit of the points at infinity.
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This proves the following statement.

Lemma 8.1. Let (a, b, c) ∈ Z3 be a non-trivial primitive solution of x2 + y3 = z13. Then the
13-torsion Galois module E(a,b,c)[13] of the associated Frey curve is irreducible.

8.2. Dealing with the CM curves.

13 is congruent to 1 both mod 3 and mod 4, so the 13-torsion Galois representations on 27a1
and on 288a1 both have image contained in the normalizer of a split Cartan subgroup. But
unfortunately the general result of [BPR13] does not apply in this case. We can, however,
use the approach taken in Section 8.1 above. Since we are in the split case, the curves have
cyclic subgroups of order 13 defined over a quadratic field K, which is Q(ω) for 27a1 (with
ω a primitive cube root of unity) and Q(i) for 288a1. We find the twist of X1(13) over K
that corresponds to the Galois representation over K on this cyclic subgroup. Finding the
twist is not entirely trivial, since the points on X0(13) corresponding to 27a1 or to 288a1 are
branch points for the covering X1(13) → X0(13) (of ramification degree 3, respectively 2).
In the case of 27a1 we use a little trick: the isogenous curve 27a2 has isomorphic Galois
representation, but j-invariant 6= 0, so the corresponding point in X0(13)(K) lifts to a
unique twist, which must be the correct one also for 27a1. Since cube roots of unity are
in K, we can make a coordinate change so that the automorphism of order 3 is given by
multiplying the x-coordinate by ω. We obtain the following simple model over K = Q(ω) of
the relevant twist of X1(13):

C27a1 : y2 = x6 + 22x3 + 13 .

The points coming from 27a1 are the two points at infinity, and the points coming from 27a2
are the six points whose x-coordinate is a cube root of unity.

For 288a1, we figure out the quadratic part of the sextic twist (the cubic part is unique in
this case) by looking at the Galois action on the cyclic subgroup explicitly. We find that the
correct twist of X1(13) is

C288a1 : y2 = 12ix5 + (30i+ 33)x4 + 66x3 + (−30i+ 33)x2 − 12ix .

Here the points coming from 288a1 are the ramification points (0, 0) and (−1, 0) and the
(unique) point at infinity. There are (at least) six further points over Q(i) on this curve,
forming an orbit under the automorphism group, of which

(
(4i− 3)/6, 35/36

)
is a represen-

tative.

As a first step, we compute the 2-Selmer group of the Jacobian J of each of the two curves. In
both cases, we find an upper bound of 2 for the rank of J(K). The differences of the known
points on the curve generate a group of rank 2, so we know a subgroup of finite index of J(K).
It is easy to determine the torsion subgroup, which is Z/3Z for C27a1 and Z/2Z × Z/2Z
for C288a1. Using the reduction modulo several good primes ofK, we check that our subgroup
is saturated at the primes dividing the group order of the reductions for the primes above 7
for C27a1, or the primes above 5 for C288a1. We also use this reduction information for a
bit of Mordell-Weil sieving (compare [BS10]) to show that any point in C27a1(Q(ω)) with
rational j-invariant must reduce modulo both primes above 7 to the image of one of the
known eight points (the same for both primes), and that any point in C288a1(Q(i)) with
rational j-invariant must reduce modulo both primes above 5 to the image of one of the
three points coming from 288a1 (the other six points have j in Q(i) \Q).
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It remains to show that these points are the only points in their residue classes mod 7,
respectively, mod 5. For this, we use the criterion in [Sik13, Theorem 2]. We compute the
integrals to sufficient precision and then check that the pair of differentials killing J(K) is
‘transverse’ mod 7 (or 5) at each of the relevant points, which comes down to verifying the
assumption in Siksek’s criterion. Note that we apply Chabauty’s method for a genus 2 curve
when the rank is 2; this is possible because we are working over a quadratic field. See the
discussion in [Sik13, Section 2].

We obtain the following result.

Lemma 8.2. Let (a, b, c) ∈ Z3 be a non-trivial primitive solution of x2 + y3 = z13. Then the
13-torsion Galois module E(a,b,c)[13] of the associated Frey curve is, up to quadratic twist,
symplectically isomorphic to E[13] for some E ∈ {96a2, 864a1, 864b1, 864c1}.

Proof. By Lemma 8.1, E(a,b,c)[13] is irreducible, so by Theorem 5.1, it is symplectically
isomorphic to E[13], where E is one of the given curves or one of the CM curves 27a1,
288a1 or 288a2. These latter three are excluded by the computations reported on above. �

A Magma script that performs the necessary computations for the results in this section is
available as section8.magma at [Sto]. It relies on X1_13_opt.magma, which is available at
the same location.

9. Possible extensions

Since X0(17) and X0(19) are elliptic curves like X0(11), the approach taken in this paper
to treat the case p = 11 has a chance to also work for p = 17 and/or p = 19. Since X0(17)
has a rational point of order 4 and X0(19) has a rational point of order 3, suitable Selmer
groups can be computed with roughly comparable effort (requiring arithmetic information of
number fields of degree 36 or 40). This is investigated in ongoing work by the authors. For
p = 13, results beyond those obtained in the preceding section are likely harder to obtain
than for p = 17 or p = 19, since X0(13) is a curve of genus 0. We can try to work with twists
of X1(13), which is a curve of genus 2; our approach would require us to find the (relevant)
points on such a twist over a field of degree 14. The standard method of 2-descent on the
Jacobian of such a curve would require working with a number field of degree 6 · 14 = 84,
which is beyond the range of feasibility of current algorithms (even assuming GRH).
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