ELLIPTIC CURVES WITH COMMON TORSION x-COORDINATES
AND HYPERELLIPTIC TORSION PACKETS

HANG FU AND MICHAEL STOLL

ABSTRACT. We establish a connection between torsion packets on curves of genus 2 and
pairs of elliptic curves realized as double covers of the projective line P! that have many
common torsion x-coordinates. This can be used to show that the set of common torsion
x-coordinates has size at least 22 infinitely often and has 34 elements in some cases. We also
explain how we obtained the current record example of a hyperelliptic torsion packet on a
genus 2 curve.

1 Introduction

Let E; and E, be elliptic curves over C, together with double covers m;: E; — P' and
m,: E; — P' such that the origin of E; is a ramification point of 7r;. It is known (as a
consequence of Raynaud’s [Ray83] proof of the Manin-Mumford Conjecture; see for ex-
ample [BT07, Thm. 4.2]) that when 7t;(E;[2]) # 7, (E;[2]), then the intersection

I(T[] ) 7-[2) =T (E1,tors) N 7'fz(lz—z,tors)

is finite, where E; ,rs denotes the set of torsion points on E;. One can then ask how large
this intersection can be, possibly depending on the size of 7t(E;[2]) N 7,(E;[2]). In [BFT18,
Conjs. 2 and 12] (see also [BF16, Conj. 1.2]), it is conjectured that there should be a
uniform bound for the size of I(7t;, ;) whenever it is finite. The recent paper [DKY20]
by DeMarco, Krieger, and Ye establishes the existence of such a uniform bound in the case
that # (m (E112]) N (E, [2])) = 3. The very recent results by Dimitrov, Gao, Ge, Habegger,
and Kithne [DGH21,Kiih21,Gao21, GGK21] on uniformity in the Mordell-Lang conjecture
for subvarieties of abelian varieties (see also below) now imply the existence of a uniform
bound for #I(m, ;) as conjectured. This follows by applying their result to the families of
curves in E; x E, obtained as the pull-back of the diagonal in P' x P' under (m, 7). The

bounds are (so far) not explicit, and so it is an interesting question how large they have to
be.

An at first sight somewhat different question is how large a torsion packet on a curve of
genus 2 over C can be. Recall that a torsion packet on a curve C of genus at least 2 is a
maximal set of points on C such that the (linear equivalence class of the) difference of any
two points in the set is a point of finite order on the Jacobian of C. Again by [Ray83], such a
torsion packet is always finite, and one can ask for a bound on its size that depends only on
the genus g [Maz86, top of page 234]. In [Poo00] it is shown that there are infinitely many
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essentially distinct curves of genus 2 with a hyperelliptic torsion packet (i.e., containing the
Weierstrass points) of size at least 22. Within the family giving rise to these examples, there
is (at least) one with a torsion packet of size 34; see [Sto] and Section 4 below. Using the
fact that in the case #(m (E412]) N, (E, [2])) = 3, the (desingularization of the) pull-back
of the diagonal in P' x P! under (m;,7,) is a bielliptic curve of genus 2, DeMarco, Krieger,
and Ye deduce the existence of a uniform bound on the size of hyperelliptic torsion packets
on bielliptic curves of genus 2, and the work of Dimitrov, Gao, Ge, Habegger, and Kiihne
already mentioned above now establishes the existence of a bound that depends only on g,
as expected (and much more).

In this article, we use the connection between bielliptic genus 2 curves and pairs (71, 71;)
such that # (7 (E4[2]) N m(E,[2])) = 3 that was already mentioned above, together with
a new observation that relates pairs (7, 7;) with differing sizes of 7t;(E1[2]) N m(E2[2])
to establish a close relation between the largest size of an intersection I(7;,7;) and the
largest size of a hyperelliptic torsion packet on a bielliptic genus 2 curve. Specifically, we
show the following (see Corollary 8).

Theorem 1. The maximal size of a finite intersection 1(mt,7,) is at least as large as the
maximal size of a hyperelliptic torsion packet on a bielliptic genus 2 curve.

This follows from an explicit correspondence between bielliptic genus 2 curves and pairs
(7, 7,). Under this correspondence, the family of genus 2 curves studied in [Poo00] is
related to a family of pairs of elliptic curves with certain properties. As a consequence, we
obtain the following result, which proves Conjecture 23 in [BFT18].

Theorem 2. There are infinitely many essentially distinct pairs (7, ;) as above such that
#1(7'(1,7'(2) > 22.

Applying the correspondence to our example of a torsion packet of size 34, we obtain the
following new record for the size of I(7;, 7).

Theorem 3. Let s € C satisfy s® + 174s* + 81 = 0. Consider
Ery’ = (" —s)(x*—(1/s))  and  Ey:y’ = (x*—(s/3)")(x* — (3/s)).
We take m; and m, to be the x-coordinate map (and fix the origins of E; and E, to be (s,0)
and (s/3,0), respectively). Then
I(7t1, 2) = 711 (E4[48]) N7y (E,[48])
and #1(m, m,) = 34.

Note that except for the fact that all the torsion points with common x-coordinate have
order dividing 48, the statement can be easily checked by a computation, which shows in
particular that #I(m, ;) > 34.

The structure of this paper is as follows. In Section 2, we define a pair P(7m;, ;) of numer-
ical invariants of (71;, ;) and set up a correspondence between pairs (m, ;) and (77, 713)
whose invariants are related in a certain way. This implies a relation between #I(7;, ;)
and #I(mtj, 7). In Section 3, we explain the connection between pairs (71, 7;) such that
#(m(E4[2]) N m,(Ez[2])) = 3 and bielliptic curves of genus 2. This connection, together
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with the correspondence from Section 2 then implies Theorems 1, 2 and 3. In Section 4,
we explain how the example [Sto] of a large hyperelliptic torsion packet was obtained. Fi-
nally, in Section 5, we give more details on the pairs (717, 7t2) with 71 (E;[2]) N7 (E2[2]) =0
that correspond to the curves in the family considered by Poonen in [Poo00]. We show
in particular that the curves E; and E, that appear in Theorem 2 are isogenous, which is
unnecessary for the proof, but gives a hint of why we are able to get many common torsion
x-coordinates in this way.

All geometric objects in this paper will be over the complex numbers unless explicitly stated
otherwise.
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2 Relations among various pairs (71, 71;)

Let m: E — P' be a double cover such that E is an elliptic curve and the origin of E is a
ramification point of 7. We note that the set 7t(E,;s) does not depend on which of the four
ramification points we choose as the origin, since the difference of any two is a point of
order 2. Given 7t as above, the action of E[2] on E by translation induces an action on P'.
We denote the isomorphic copy of the Klein Four Group inside PGL(2) that is the image
of E[2] by G(m).

Given two double covers 7, 71, as above, we can then classify them according to the sizes
of m; (E4[2] )N, (E,[2]) and of G(711)NG(712). Note that the first set is a union of orbits under
the second group, on which the group acts without fixed points. If 7t;(E;[2]) = m(E2[2]),
then E; and E, are isomorphic (up to the choice of origin on the elliptic curves) and
I(t1,72) = 1 (Eqtors) = T2(Esors) is infinite. Excluding this case, the possibilities for the
pair

P(my, ) = (#(m(E1[2]) N, (E,(2])), #(G(m) N G(m;)))
are

3,1, (1), (1,1, (©,1); (22), (0,2); (0,4).

We will now relate pairs with different invariants.

Proposition 4. Let m;: E; — P' and m,: E; — P' be two double covers as above and fix a
non-trivial element « € G(m;) N G(7,) (in particular, we assume that G(m;) N G(7,) is non-
trivial). For j € {1, 2}, we denote by T; € E;[2] the point such that ;(P + T;) = «(75(P)), and
we write £/ = E;/(T;). Then there are double covers m: £/ — P! and a morphism p: P! — P!
of degree 2 such that

#(m(E1(2]) Nm(Ea[2])) = 2# (mi(E{(2]) N m(E3(2])) — 4
and
I(ry,m) = B~ (I(n], 3)) .
In particular, #1(m, m,) = 2#1(ny, ;) — 2.



Conversely, given 7ij: ] — P' and 7t}: €5 — P' such that # (rtj(E{[2]) N7 (E(2])) > 2, there
are double covers m: E; — P' and m: E; — P' and id # « € G(m) N G(m,) such that
(71, 7t5) is obtained from (m;, ;) and « in the way described above.

Proof. First consider one double cover 7t: E — P'. Up to post-composing with an auto-
morphism of P', we can assume that one element of G(m) is x — —x; then E has the
form

E:yl=(x*—s)(x* —t)

(up to scaling y) with s # t and s, t nonzero. Let T € E[2] be the point such that translation
by T on E is given by (x,y) — (—x,—y). Then the isogeny ¢: E — E' = E/(T) is

(x,y) — (x%,xy), with Ey?=x(x—s)(x—1).
Since ¢ is an isogeny, it follows that

W(Etors) = {E S IPﬂ : Ez S ( tors)})

where nt': E/ — P! is the x-coordinate map. Also note that {0, co} C 7/(E’[2]).

Given m;, 7; and « as in the statement, we can again assume that «(x) = —x, so that

the curves E; and E;, have the form E;: y* = (x* —s;)(x* — t;). Let E{ and E} be as in the

statement; by the above, we can take E/: y? = x(x — ;) (x — t;), and we let 7 denote the
x-coordinate map. The first claim follows (with : x — x?).

Since both ramification points 0 and co of the squaring map are in I(7t], 71;), the claim on
the sizes of the sets also follows.

For the converse statement, we can assume that E;: y? = x(x — sj)(x — t;) by moving two
of the common ramification points to 0 and oo. Then it is clear that the construction can
be reversed. O

For (7t;,m,) and (77, 75) as in Proposition 4, we have that
P(m, ) = (2a,2b) and P(mty,15) = (a+2,b)

for some (a,b) € {(0,1), (0,2), (1,1)}.

We write T(a, b) for the maximum of #1(7t;, ;) over all pairs (71, 71;) of double covers such
that P(7,71;) = (a, b). By the uniform boundedness results mentioned in the introduction,
this makes sense. We then have the following relations.

Corollary 5.
T(0,4) =2T(2,2) —2=4T(3,1)—6 and T(0,2) =2T(2,1) —2.

This suggests that the maximal size of #I(7, 71;) is obtained when P(7m, ;) = (0,4).
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3 Relation with genus 2 torsion packets

Let C be a curve of genus g > 2. Recall that a torsion packet on C is a maximal subset T C C
such that the difference of any two points in T, considered as a point on the Jacobian vari-
ety ] of C, has finite order. Raynaud [Ray83] proved that a torsion packet is always finite
(this was the statement of the Manin-Mumford conjecture); a nice and short proof, based
on a deep result of Serre, can be found in [BRO3]. When C is a hyperelliptic curve, then its
hyperelliptic torsion packet is the torsion packet that contains the ramification points of the
hyperelliptic double cover C — P'. We now assume that C has genus 2 (and is therefore in
particular hyperelliptic). The curve C is bielliptic if there is a double cover {: C — E with
E an elliptic curve. This is equivalent to the existence of an “extra involution” « in Aut(C),
i.e., an involution distinct from the hyperelliptic involution (, which is the involution as-
sociated to the hyperelliptic double cover C — P'. Then E = C/(«), and there is another
double cover }’: C — C/(at) = E’, where E’ is also an elliptic curve. The involution &
induces an involution of P! (since ( is central in the automorphism group of C), which we
can take to be x — —x. In this case, C can be given by an equation of the form

C:y? = (x> —uw)(x* —v)(x* —w)
with u, v, w distinct and nonzero, with «(x,y) = (—x,y). Then we have
E:y? = (x—u)(x—v)(x —w) with  p(x,y) = (4, y),
Eiy? =x(x—u)(x—v)(x —w) with V/(x,y) = (x},xy).
There is an obvious birational morphism induced by 1 and 1/,
C—{xy,y): (xy) €E (xy) EE}=Expm E',

where the morphisms 7t: E — P', n/: E/ — P' in the fibered product are the x-coordinate
maps. We see that P(rt,7’) = (3,1). (The morphism C — E xp E’ is injective outside the
ramification points of the hyperelliptic double cover, which are identified in pairs.)

Proposition 6. In the situation described above, let p: C — P' be the natural map obtained
via C — E xpi E/ — P'. Then the hyperelliptic torsion packet of C is the full preimage under p
of I(m, t"). In particular, its size is

4#1(m, ") — 6 — 2# (1(m, ') N {0, 00)) .

Proof. Under the map { x {': C — E x E’, the fixed points of ¢ on C are mapped to 2-
torsion points on E x E’. The map C — E x E’ induces an isogeny ] — E x E’ such that the
following diagram commutes, where the map on the lower left is the diagonal inclusion.

C J

| e |

P'— P xP'<——E x E
diag (mt,mt’)

Here the embedding of C into | is P — [P — W], where W is a fixed ramification point, and
we take the origin on E x E’ to be the image of W.

If P is a point in the hyperelliptic torsion packet, then [P — W] is torsion in J. This implies
that (Y (P),y’(P)) is torsion on E x E’, so that p(P) € I(m, ).
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Conversely, consider & € I(m, t’). Then there are torsion points P € E and P’ € E’ such that
n(P) =n'(P’) = &. Let Q € C be a point with p(Q) = &. Then (P(Q),P'(Q)) = (£P, £P'),
and so (P(Q),P’'(Q)) is torsion. But then [Q — W] € ] must be torsion as well, since its

image under the isogeny | — E x E’ is torsion. So Q is in the hyperelliptic torsion packet
of C.

For the last statement, note that p (which is (x,y) — x?) has degree 4 and ramifies

(1) at the four points on C with x = 0 or x = oo, and
(2) at the six ramification points of the hyperelliptic double cover, which map two-to-one
onto 7t(E[2]) N 7t/(E'[2]). 0

We can reverse this construction.

Proposition 7. Let m: E — P' and ©’: E' — P' be double covers such that P(m, ') = (3,1).
Then there is a bielliptic genus 2 curve C such that C, E and E’ fit into a diagram as in the
proof of Proposition 6.

Proof. By moving the fourth branch point of 7t to co and the fourth branch point of 7’ to 0,
we can assume that E and E’ are as above, with 7t and 7t’ the x-coordinate maps, i.e.,

E:y?=(x—u)(x—v)(x —w) and Eryf=x(x—u)(x—v)(x —w).

Then
C:y? = (X —uw) (x> —v)(x* —w)

is the required curve. O

We denote by T the maximal size of a hyperelliptic torsion packet on a bielliptic curve of
genus 2.

As mentioned in the introduction, the correspondence established in Propositions 6 and 7
is used by DeMarco, Krieger, and Ye [DKY20, §9] to deduce a bound on T from a bound B
on #I(m,m;) when P(my, ;) = (3,1). Their bound is T < 16B; we can improve this as
follows.

Corollary 8.
4T(3,1)—6>T and therefore T(0,4)>T > 34.

Proof. The first statement follows from the previous two propositions. The first inequality
in the second statement then follows by Corollary 5, and the last inequality comes from
the example of Theorem 11. O

Proof of Theorems 2 and 3. By the main result of [Poo00], there are infinitely many (pair-
wise non-isomorphic) bielliptic genus 2 curves with a hyperelliptic torsion packet of size at
least 22. Theorem 11 gives an example in this family with a hyperelliptic torsion packet of
size 34. By Proposition 6 and the construction in the proof of Proposition 4 (applied twice
backwards), we obtain corresponding pairs (71, 7). O
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4 Torsion packets on curves of genus 2

In this section, we explain how we found the example [Sto] of a hyperelliptic torsion packet
of size 34 on a curve of genus 2. The approach is based on Poonen’s result in [Poo00],
where he shows that there are infinitely many essentially distinct curves of genus 2 with
hyperelliptic torsion packets of size at least 22. We first give a rough sketch of the idea
behind Poonen’s result.

One important fact is that the hyperelliptic torsion packet of a hyperelliptic curve C is
invariant under the automorphism group of C. This is because the automorphism group
fixes the set of ramification points of the hyperelliptic double cover and the difference of
any two ramification points is a torsion point (of order dividing 2). This implies that the
points in the hyperelliptic torsion packet come in orbits under the automorphism group.

Now consider the moduli space of curves of genus 2. It has dimension 3. We can (in
principle) write down the condition that some torsion point of given order n is in the image
of the curve (we fix one of the ramification points as the base point of the embedding of
the curve into its Jacobian); this gives a codimension-1 condition: we want to force one of
finitely many points on the Jacobian of dimension 2 to lie on a subvariety of dimension 1
and hence also codimension 1. So we can expect to find curves with a hyperelliptic torsion
packet of size at least 6 + 3 - 2 = 12, where the first summand counts the ramification
points, which are always in the hyperelliptic torsion packet, and the second comes from
the idea that we can impose three independent torsion points onto the curve, each giving
us another one for free, since the hyperelliptic involution is a nontrivial automorphism.
Barring accidents (or “unlikely intersections”), we would not expect more than that. Such
accidents do indeed occur, as the following example shows.

Example 9. The curve
C:y? =4x° —12x° — 3x" +46x> — 15x* — 24x + 40

has minimal (geometric) automorphism group and a hyperelliptic torsion packet of size 18
(which is larger by 6 than the number we expect to find infinitely often).

The first statement can be checked by looking at the invariants of C; for the second we can
use Poonen’s program for computing torsion packets described in [Poo01].

We can try to do better than what we can expect in the generic case by considering subfam-
ilies of genus 2 curves that have a larger automorphism group. This gives us more points
“for free” for any torsion point we get on the curve. On the other hand, the corresponding
moduli spaces have smaller dimension, so we cannot force as many orbits of torsion points
on the curve as in the generic case. These considerations lead to the following table, which
lists the relevant data for each possible automorphism group. We describe it by specifying
the reduced automorphism group Aut(C)/(1), which is a group of automorphisms of P'.
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f Aut(C)/(v) | #Aut(C) | dim M | #Tpin #T
generic {id} 2 3 6 12426
X%+ sx? + tx? +1 C; 4 2 6 14 + 48
X0+t +x C, x Gy 8 1 6 14 + 85
x® 4+t + 1 S; 12 1 10 |22+126
x84+ 1 D 24 0 10 10
x>+ x Sy 48 0 22 22
x° + 1 Cs 10 0 18 18

The curve can be given by an equation of the form y?> = f(x). dim M is the dimension of
the moduli space of curves admitting (at least) the given automorphism group, # Ty, is
the size of the generic hyperelliptic torsion packet in the family, and

#T = #Tin + (dim M+ §) - # Aut(C)

is the size we can expect after forcing dim M orbits of torsion points; § counts the number
of additional full orbits we may be able to obtain (& can be non-integral when there are
nontrivial stabilizers).

The second line, with reduced automorphism group C,, corresponds to the bielliptic curves
that feature in Section 3. We can have & > 0 in this case, too.

Example 10. The curve
C:y? = (=9V3+16)x° + (—63V3 + 113)x* + (133 — 38)x* + 3V3 49

has Aut(C) = C, x C, (and so is generic bielliptic) and a hyperelliptic torsion packet of
size at least 18.

The claim on Aut(C) can be shown in a similar way as for the preceding example. The
torsion packet contains the six ramification points and the points with x-coordinates ++/3,
4++1/3/3, and 4(+/3 4 2). We cannot use Poonen’s program for this curve, since it requires
the curve to be defined over Q.

The last three lines in the table correspond to a single point each in the moduli space of
curves of genus 2. The most interesting case is the family with reduced automorphism
group S;, which has one parameter and has the additional benefit that there are four
additional torsion points on the curve throughout the family: the points at infinity and the
points with x-coordinate zero give points of order dividing 6 (they form an orbit of size 4).
So we get 10 points as our baseline, and we should be able to force one full orbit of size 12
of torsion points on the curve in addition. This is precisely what Poonen proves.

Note that the curves in this family are also bielliptic (an extra involution is given by
(%,y) — (1/%,y/x%)). So we can use the correspondence between torsion packets and sets
[(7t;, ,) that is described in Section 3. What we do is essentially the following. For each
n > 3 up to some bound, we compute the n-division polynomials hy,(t,x) and h,,(t, x)
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of the two elliptic curves (which depend on the parameter t). Then we compute the resul-
tants Ry, (t) = Resy (hhm(t, x), hzm(t,x)), which are rational functions (in fact, polynomi-
als) in t. Aroot t # +2 of R,, ,, then gives us a parameter value such that the corresponding
curve C; has an additional orbit of points in its hyperelliptic torsion packet. If the orbit
does not contain fixed points of some nontrivial automorphism, then the torsion packet
has size at least 10 + 12 = 22.

We now search for common irreducible factors among the various R, . If we find such a
common factor, then its roots give us curves C,; with two additional orbits in the hyperel-
liptic torsion packet. And indeed, we do find one such coincidence, which gives the curve
given in [Sto]. We state this result.

Theorem 11. The curve
C:y?=x°+130x°+13

has a hyperelliptic torsion packet of size 34. It consists of the ramification points for the
hyperelliptic double cover, the points at infinity, the points with x-coordinate zero, and the
points whose x-coordinates satisfy the equation

x'2 —91x7 —273x° —1183x> + 169 = 0.

Proof. This can be shown using Poonen’s pari/gp program for computing hyperelliptic tor-
sion packets on genus 2 curves defined over Q; see [PooO1]. O

5 Poonen’s family

As mentioned above, in [Poo00], Poonen considers the subfamily
Coy? = -1 -t

of the family of all bielliptic curves of genus 2 and shows that there are infinitely many t
such that the hyperelliptic torsion packet of C; has at least 22 points. (Here we use the
12-th power to avoid radicals in the sequel.) More precisely, let

) ey o w) o (Gxy), ) (55
where (3 is a primitive third root of unity; these are automorphisms of C; satisfying
=0>=1"=id, tt=1, w=o0t and oT="70".
As explained in the previous section, the 22 points are
(1) the six Weierstrass points (the fixed points of (),

(2) the four points 0" = (0,t°), 0~ = (0, —t%), oo™, co~ (the fixed points of ¢), and
(3) a full length orbit of the group (i, o, T) of order 12.

As explained earlier in this paper, from a bielliptic curve C of genus 2, we can obtain a
pair (71, ;) with P(m, ;) = (0,4) and such that the size of I(7t, 71;) is usually the same as
the size of the hyperelliptic torsion packet of C; see Corollary 8. The goal of this section is
to explain which pairs correspond to the curves C; in Poonen’s family, and how the effect
of the large automorphism group of C; is reflected in the structure of I(m, 7).
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Since C; is bielliptic, by the construction in Section 3 we have two morphisms
$1: Ce — Co/ (T) ~Erry? = (x —uw)(x —v) (x — W)

(x — t2)2 8t’y
(%, y) — <(x+t2)2’ (t6 + 1)(x+t2)3>

and
d,: Cp — Cy/ (T1) ~ Ey: Y =x(x—u)(x—v)(x —w)
(x —t3)? 8t (x—t )y
o) = ((x + )2 [+ 1) (x+ )
Here we choose the origin of E; to be oo, and the origin of E, to be (0,0).

We abuse notation and also write o for the automorphism of J(C;) induced by 0. We use 6;
to denote the homomorphism J(C;) — E; induced by ¢;, and we write e].vz E; — J(Cy) for
the map induced by pull-back of divisors under ¢;.

Proposition 12. Let T = ¢1(07) and T, = $,(07). Then Ty and T, have order 3. Moreover,
@122920009Y:E1—>E2 and @21:610009¥:E2—>E1

are isogenies with ker(@1,) = (Ty) and ker(¢21) = (Ta).

Proof. It is clear that ¢, is a homomorphism of elliptic curves. Let P € E; and choose

Q,R € C; such that ¢;(Q) = P and ¢(R) = oo (so R = (—t2, £t3(t®* + 1)) and 1R = R).
Then, denoting the linear equivalence class of a divisor D on C; by [D],

©12(P) = (0,0 0)([Q +TQ — R —1R]) = 0,([0cQ + 0TQ — oR — 07R])
= 0,([0Q 4+ 16*Q — oR — 0TR]) . 0,([0Q — 110°Q — oR + LoTR])

= 0,([0Q — 116*Q — 0R + o1TR]) = $2(0Q) — P2(0?Q).

where at (%) we use that [Q; — Q2] = [—1Q; + Q] in J(C,), and for the last equality that
(TR = R. So P € ker(¢,) if and only if 0Q = 0?Q or cQ = T10?*Q = o11Q; equivalently,
Q = o0Q or Q = 11Q. In the first case, P = +T;, and in the second case, P = co. This also
implies that T; has order 3. The claim regarding ¢,; follows in the same way. O

We will also need the following.

Lemma 13. With the notations introduced above, 0; o ¢ o ij is multiplication by —1 on E;.

Proof We first observe that all divisors of the form Q + ¢Q + ¢?Q on C, are linearly
equivalent. This is because the quotient C,/(o) is the curve y*> = (x — 1)(x — t'?) of genus
zero.

Let P € E; and choose Q, R € C; as in the preceding proof. Then
(8, 00007)(P) = (07 00)([Q +TQ —R—1R]) = 0;([0Q + 0TQ — oR — oTR])
=0:([0Q 4+ 10*Q — 0R — 10”°R]) = 0;([0Q + 0°Q — oR — ¢?R])
= 01([R—Q)) =—P.
The argument for E, is identical. O
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Now let

By = (¥ =) (XZ — s_> with origin (s, 0),

and

2 2 2 2
12 (s*+1) . . ((sP+T)
Es.y :X(X—]) (X—4—SZ) with origin (4—52,0 .

We have an isogeny

O E - E, (ay) ((Xz“)z (X4_”y) .

4x2 7 8x3

Note that ker(1y) = E,[2] (in particular, E; and E are isomorphic as elliptic curves) and
is independent of s.

For any t, we have the two covering maps ¢;: C; — E;. By moving the three common
2-torsion x-coordinates of E; and E, to {0, 1, co}, we can assume that E; = E;j for suitable
s; and s,. One of the four preimages under \ of the point T of order 3 will also have
order 3; let S; € E; be this point. Since T; and T, have the same x-coordinate (this is still
true after applying an automorphism of P'), the x-coordinates of S; and S, are equal up

to sign and/or taking inverses; by replacing s, by +s, or +1/s,, we can make sure that
x(S1) =x(S,).

Conversely, if Sy € Eq,[3] and S, € E,[3] have the same x-coordinate, then C = E;1 X pi E;z
contains four points (£ (S;), =P (S;)) whose differences have order 3 in J(C) and form
two orbits under the hyperelliptic involution. Any such curve has a model of the form C;.

For j = 1,2, { can be decomposed as \ = [2] o A;, where A, is an isomorphism from E
to Egj such that A (S;) = —T;. Proposition 12 shows that there are isogenies @1, and @2

between E; and E;,. We use the same symbols for the induced isogenies between Ej,
and E,,.

Asy A
/ / / /
ES] — E ; — ES1 ESZ — ESZ — ESZ

q’]ZL l@lz j (P21l l‘Pm L
Asy (2] As; 2]
/ /
S$2 ES

Proposition 14. Let 7; and 7, be the x-coordinate maps of E;, and Es,. Assume that there
are S; € E,,[3]l and S, € E, [3] with m;(S1) = m,(S2). Then for any Py € Eg, and P, € E,,
with 7;(P;) = m(P;), we have

m (217 (=P1 £ 921 (P2))) = (217 (P2 £ @12(P1))) .

»

This gives usually eight further common torsion x-coordinates, in addition to the set
(P + E4[2]) = m (P2 + E2[2]) of size four, corresponding to an orbit on C; under (i, o, 7).

Proof. We shall use the same notations as in the proof of Proposition 12, except that now
we replace E; and E, with E{, and Eg,.

11



Let Q; = A, (Py) and Q, = (Pz) hen [2]Q; and [2]Q, have the same x-coordinate. So
there is Q € C; such that (d>1(Q) 2(Q)) = ([21Q1, [2]1Q2). Let (Ry,Rz) € Eg, x E¢, be such
that
(61) eZ)V(RhRZ) - [Q - W] )
where W € C, is a fixed Weierstrass point. Then
(121Ry, [2]Ry) = ((64,62) o (61,6,)") (Ry,Ry)
= (01,02)(IQ —WI) = ([2]1Q1, [21Q2) — (b1 (W), d2(W)) .
Therefore, (Ry,R;) = (Q1,Q2) — (W4, W;) for some (W1,W2) € (E;] x E{,)[4]. Since by
Proposition 12 and Lemma 13
—Q1 4+ 921(Q2)) — (Wi + 921(W>)) = (61 0 00 (67,0,)") (Ry, Ry)
= (070 0)([Q —WI]) = ¢1(0Q) — dp1(cW),
we have
—Qi1 + 921(Q2) — $1(0Q) = =W + @21 (W,) — b1(cW) € E [4].
Therefore, (Py,P;) — —Q1 + ©21(Q2) — ¢1(0Q) gives a constant map from E81 xpr Es,
to E¢ . To determine this constant, we take (P, P,) = (§;,5;); then (Q1,Q2) = (=T, —T,)
and Q = 0, which imply
$1(0Q) = d1(Q) =T = —=Q1 + 921(Q2),
showing that the constant is in fact zero. Similarly, we have
$1(0°Q) = —Q1 — 021(Q2),  $2(0Q) =—Q2+ ©12(Q1),  2(0”Q) = —Q2 — 912(Q).
Now consider a point P; € Eq, such that [2]P] = —P; £ ¢2;(P2). Then
B(P]) = A, ([2IP]) = —Q1 £ 921(Q2) = ¢1(0*Q)
(with k = 1 for the positive sign and k = 2 for the negative sign). Since ¢1(0*Q)

and ¢,(0*Q) have the same x-coordinate, there is P; € E,, with [2]P; = —P; £ @12(P)

such that {(P;) has the same x-coordinate as {(P;). Since Eg[2] acts transitively on the

fibers of { (and 1 is independent of s;), the conclusion follows. O
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