
ON THE L-FUNCTION OF THE CURVES y2 = x5 + A

MICHAEL STOLL AND TONGHAI YANG

Abstract. Let CA/Q be the curve y2 = x5 + A, and let L(s, JA) denote the
L-series of its Jacobian. Under the assumption that the sign in the functional
equation for L(s, JA) is +1, we evaluate the critical value L(1, JA) in terms of
the value of a theta series for Q(

√
5) depending on A at a CM point coming

from Q(ζ5).

1. Introduction

In this note, we study the L-function of the genus two curve

(1.1) CA : y2 = x5 + A

and its arithmetic implication to the curve and its Jacobian JA. Here A is a
(non-zero) rational number. The arithmetic of CA has been studied by the first
author in [St1, St2] in a more general setting. Although elliptic curves have been
extensively studied and a lot of progress has been made, little is known for higher
genus curves or higher dimensional abelian varieties. The curves CA are interest-
ing, since their Jacobians JA are not modular in the usual sense in that they are
not isogenous to any quotient of J0(N), the Jacobian of a modular curve, for any
integer N . (This is because JA does not have real multiplication over Q.) To put
it another way, there is no classical (normalized) eigenform f of weight 2 such that

L(s, JA) =
∏

σ:Q(f)−→C

L(s, fσ)

where Q(f) is the subfield of C generated by the Fourier coefficients of f . So
well-known results on the Birch and Swinnerton-Dyer conjecture (as for example
Kolyvagin and Logachev [KL]) do not apply directly.

However, since JA has complex multiplication by Z[ζ5] over E = Q(ζ5), there is
a Hecke character ηA of E such that

(1.2) L(s, JA) = L(s, ηA) ,
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compare [St2]. By results of Jacquet-Langlands [JL, Prop. 12.1], this implies that
there is a Hilbert modular form hA over F = Q(

√
5) such that

L(s, JA) = L(s, hA) .

One then easily obtains that

L(s, JA/F ) = L(s, hA)L(s, hτ
A)

where τ is the non-trivial automorphism of F/Q; therefore JA is modular in the
usual sense over F .

In this note, we will give a method to express the central L-value L(1, ηA)
in terms of the value of a certain theta series for F , which depends on A, at
a certain CM point coming from E (which may also depend on A). We carry
this out explicitly in the special case A = 1, where the result is as follows (see
Theorem 4.1).

L(1, J1) = L(1, η1) =
π2 |I|2

53/4(1− cos(4π/5)− sin(2π/5))

with

I =
∑

a,b∈Z,a+b odd

exp
(
−2π

5

(
sin(2π

5
)3(a+ b

√
5)2 + sin(4π

5
)3(a− b

√
5)2
))
.

In particular, L(1, J1) 6= 0. A 2-descent procedure as described in [St3] shows
that J1(Q) is finite (of order 10). So the rank part of the Birch and Swinnerton-
Dyer conjecture is verified in this case. See Section 6 at the end of this note for
more comments on the Birch and Swinnerton-Dyer conjecture for the Jacobians JA.

We mention that a similar explicit formula has been obtained in [RVY, Ya2, Ya3]
for CM number fields E such that E has no roots of unity other than {±1} and
that every prime of E above 2 is split in E/F . So the work presented here can be
viewed as a complement. The main new ingredient is to work out what happens
above 2 in the case considered here, where tenth roots of unity are present in E
and 2 is inert, see the remark after Proposition 3.1 and Section 5.

This note is organized as follows. In Section 2, we introduce notations and
collect necessary information about the character ηA. In Section 3, we use [Ya1]
to obtain a general formula for the central L-value L(1, ηA). In Section 4, we
obtain the explicit formula for L(1, η1) alluded to above, leaving a local technical
computation to Section 5.

We would like to thank Y. Tian, Don Zagier, S.-W. Zhang and the anonymous
referee for useful discussions, comments and suggestions.
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2. Preliminaries

Let E = Q(ζ5) and F = Q(
√

5). We denote by O = OF the ring of integers
of F . We fix an embedding of E into C by identifying ζ = ζ5 with e2πi/5. Let
Nα denote the norm of α ∈ E from E to Q. Set λ = 1 − ζ and denote by ρ the
character of O×

E,λ of conductor λ2 that is given by ρ|Z×5 = 1 and ρ(ζ) = ζ−1. (This

is χλ2 from [St2].)

Fix δ = ζ−2 − ζ2 ∈ E. Then ∆ = δ2 ∈ F . We also fix a CM type Φ of E
as Φ = {σ2, σ4}, where σa(ζ) = ζa = e2πia/5. Note that σ2(δ) = 2i sin(2π/5) and
σ4(δ) = 2i sin(4π/5). In particular,

(2.1) |σ2(δ)σ4(δ)| =
√

5 .

In the following,
( ·
·

)
denotes the usual Legendre symbol, whereas

( ·
·

)
n

denotes
the nth power residue symbol on E. We denote by A = AF the adele ring and

by A× the idele group of F . Let χA = ηA| · |1/2
A be the unitary counterpart of ηA.

Then

L(1
2
, χA) = L(1, ηA) .

Lemma 2.1. The restriction of χA to A× coincides with the quadratic Hecke

character of F associated to E/F .

Proof: By [St2, Cor. 3.2 and Lemma 3.6], the Größencharakter corresponding
to χA is given (on elements α prime to 10A) by

χ̃A(α) =

(
A

α

)
2

(
4A

α

)4

5

(α
λ

)
2
ρ(α)σ2(α)σ4(α)(Nα)−1/2 .

If α is in F , then the first two power residue symbols take the value 1. The third
symbol gives the quadratic Größencharakter belonging to E/F , ρ is trivial, and
the last three factors cancel. 2

We will fix a ‘canonical’ additive character ψ =
∏
ψv of A/F as follows:

ψv(x) = e−2πiλv(x) ,

where

λv : Fv
Tr−→ Qp −→ Qp/Zp ↪→ Q/Z ,

if v is finite, and λv(x) = −x if v is real. Let ψE = ψ ◦ TrE/F . Note that the λv

used here is the negative of that used in [La].

We need some information on χA. We will suppose that A is an integer not
divisible by 5 or the tenth power of some prime number. Translating the results
of [St2, Sect. 3] into the language used here, we obtain the following.
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Proposition 2.2. Let w be some place of E that lies over the place v of F . The

‘root number’ denotes Tate’s local root number ε(1
2
, χA,w, ψEw(1

2
·)).

(1) If w is infinite (and complex), then χA,w(z) = |z|/z. The root number is i,

and χA,w(δ) = −i.
(2) If w is finite and inert in E/F , and w does not divide 10A, then χA,w(π) =

−1 when π ∈ Fv is a uniformizer, and χA,w is unramified. The root number

and χA,w(δ) are both 1.

(3) If w 6= 2 is finite and inert in E/F , and w divides A, then χA,w(π) = −1

when π ∈ Fv is a uniformizer. The conductor exponent of χA,w is 1, and

on O×
E,w, we have

χA,w(α) =
(α
π

)e

2

(α
π

)e

5
,

where e is the valuation of A at w (or at the prime p below w). The root

number is (−1)e+1 and χA,w(δ) = (−1)e
(

−1
NF/Qπ

)e

.

(4) If w = 2, then χA,2(2) = −1. The conductor exponent f2 of χA,2 is deter-

mined as follows. Write A = 2eB with B odd. Then

f2 =


0 if e = 8 and B ≡ 1 mod 4,

1 if e < 8, e is even and B ≡ 1 mod 4,

2 if e is even and B ≡ −1 mod 4,

3 if e is odd.

On O×
E,2, we have

χA,2(α) =

(
2

Nα

)e(−1

Nα

)(B−1)/2 (α
2

)e+2

5
.

The root number is (−1)1+f2+e and χA,2(δ) = (−1)e.

(5) If w = λ, let q(A) = (A4 − 1)/5. Then the conductor exponent fλ of χA,λ

is 1 if 5|q(A) and 2 otherwise. On O×
E,λ, we have

χA,λ(α) =
(α
λ

)
2
ρ(α)q(A) .

Furthermore, χA,λ(δ) = −
(

A
5

)
, and the root number is −1 if 5|q(A) and(

Aq(A)
5

)
otherwise.

(6) Let NA = 2f2
∏

2 6=p|A p. Then the global root number of χA is given by

−
(

ANA

5

)
if 5|q(A) and by

(
q(A)NA

5

)
otherwise.
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We will assume throughout this paper that the global root number of χA is 1.
Then there is an α ∈ F× (unique up to norm from E×) such that for all places v
of F , ∏

w|v

ε(1
2
, χA,w, ψEw(1

2
·))χA,w(δ) = εv(α) ,

where the product is over places w of E above v, ε(1
2
, χA,w, ψEw(1

2
·)) are the local

root numbers as in the preceding proposition, and εv is the local part of the
Hecke character belonging to E/F . (This is automatically satisfied when v is split
in E/F .) The following lemma follows easily from the preceding proposition.

Lemma 2.3. Suppose the global root number of χA is 1. Then we can take

α = 21+f2

∏
p

p ,

where the product is over primes p 6= 2 such that p | A, but leaving out the primes

p ≡ −1 mod 20 with vp(A) odd. In particular, if A is a square such that v2(A) < 8

then we can take

α =
∏

2 6=p|A

p .

Proof: The first statement follows from the proposition at all places v 6=
√

5.
For this last place, the claim then follows from the product formula and the fact
that the global root number is 1. The second statement follows from the first,
since f2 = 1 and all vp(A) are even. 2

3. A general formula

We will use the notation in [Ya1]. Let S(A) be the space of Schwartz functions
on the adeles A of F . Let G = E1 be the norm one subgroup of E×, and view it as
a unitary group of one variable. Associated to the data (χA, ψ, δ, α) chosen above,
there is a Weil representation ω = ωα,χA

of G(A) on S(A). For each character η
of G(A), there is an associated automorphic representation of G(A) given by

{θφ(η)(g) : φ ∈ S(A), g ∈ G(A)}
Here [G] = G(F )\G(A) and

θφ(η)(g) =

∫
[G]

∑
x∈F

ωα,χA
(gh)φ(x) dh .

The representation is either η or zero. Whether it is η or not is related to the
nonvanishing of the central L-value L(1

2
, χAη̃) where η̃(z) = η(z/z̄). Here η has

nothing do with ηA and will always be the trivial character 1 in this note. What
we need is the following. Let φ =

∏
v φv ∈ S(A) such that φv is the same as φη̄v

(with ηv trivial) in [Ya1, Thm. 2.15] for v - 2. We will choose φ2 later on and let it
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be any locally constant function on F2 with compact support for now. Then the
proof of [Ya1, Thms 1.11 and 2.15] gives the following formula.

C1C2
L(1, ηA)

L(1, ε)
= 2 |θφ(1)(1)|2 .

Here

C1 =
∏

2 6=v|A, inert

(1 + q−1
v )−1

∏
v|A, split

q−1
v (1− qv)

−2

is the constant in [Ya1, Thm. 2.15], and

(3.1) C2 =

∫
G2

〈ωα,χA,2(g)φ2, φ2〉dg ,

where G2 = G(E2) = E1
2 . Moreover, L(1, ε) = π2/25.

Set G2,1 = {g ∈ G2 : g ≡ 1 mod 2}. Then G2 = 〈ζ〉 ×G2,1. Set

U = G2,1

∏
v 6=2, nonsplit

Gv

∏
v split

O×
v ;

then GA = G(F )U and G(F ) ∩ U = {±1}. So

θφ(1)(1) =

∫
[G]

∑
x∈F

ωα,χA
(g)φ(x)dg

= 1
2

∫
U

∑
x∈F

ωα,χA
(g)φ(x)dg

= 1
2

∑
x∈F

∏
v

Iv(x) .

Here

Iv(x) =



∫
O×v

ωα,χA,v(g)φv(x)dg if v is split,∫
Gv

ωα,χA,v(g)φv(x)dg if v 6= 2 is nonsplit,∫
G2,1

ωα,χA,2(g)φ2(x)dg if v = 2.

By definition of φv, it is easy to see that Iv(x) = φv(x) when v - 2A. So we have
proved

Proposition 3.1. Let the notation be as above. Then

L(1, ηA) =
π2

50C1C2

∣∣∣∑
x∈F

∏
v-2A

φv(x)
∏
v|2A

Iv(x)
∣∣∣2

when C2 is nonzero.
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There is always a choice of φ2 making C2 nonzero, e.g., we can take φ2 to be
a unitary eigenfunction of (G2, ωα,χA,2); then C2 = 1, compare [Ya1]. However,
this eigenfunction is not explicitly constructed in the case p = 2. That is why
the primes above 2 are assumed to be split in E/F in [RVY] and [Ya2, Ya3] as
mentioned in the introduction. The fact that E has extra roots of unity also
causes some technical problems. In Section 5, we will exhibit an explicit φ2 that is
almost an eigenfunction of (G2, ωα,χA,2) and makes C2 6= 0. We refer to Section 5
for details and to Corollary 5.8 for the result.

Let char(X) denote the characteristic function of the set X.

Lemma 3.2.

φv(x) =

{
char(Ov)(x) if v - 10A∞ and α ∈ O×

v ,

|2σj(αδ
3)|1/4e−π|σj(αδ3)|σj(x)2 if v = σj ∈ {σ2, σ4}.

Proof: The split case follows from [Ya1, Thm. 2.15]. The nonsplit case with
10Aα ∈ O×

v follows from [Ya2, Prop. 1.2 and Cor. 1.4]. Finally, the infinite case
follows from [Ya2, Lemma 1.1]. 2

Note that |σj(αδ
3)| = −i σj(−αδ3), since α is totally positive and σj(δ) is purely

imaginary with positive imaginary part. Hence

e−π|σj(αδ3)|σj(x)2 = eπiσj(−αδ3)σj(x)2 ,

and the expression under the absolute value in Prop. 3.1 is a theta function eval-
uated at the CM point given by −αδ3.

4. The case A = 1

We now specialize to the case A = 1. By Lemma 2.3, we can then take any
α ∈ NE/FE

×. We choose α = 1/5 (which is a square in F ). Then we have

φ√5(x) = 51/4 char(O√
5)(x) .

This follows from [Ya2, Prop. 1.2 and Cor. 1.4] again, since χA,λ has conductor
(exponent) 1.

For v = 2, we will prove in Cor. 5.8 below that we can take φ2 = char(1
2

+O2).
The constant C2 then has the value

C2 =
1− cos(4π

5
)− sin(2π

5
)

5
,

and I2(x) = φ2(x). Note that here e = 0 and
(−1

α

)
= 1.

Now, putting everything together (and using (2.1)), we finally get an explicit
expression.
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Theorem 4.1. We have

L(1, η1) = C |I|2 > 0

with

C =
π2

53/4(1− cos(4π/5)− sin(2π/5))

and

I =
∑

x∈1
2
+O

exp
(
−π

5

(
(2 sin(2π

5
))3σ2(x)

2 + (2 sin(4π
5

))3σ4(x)
2
))
.

5. Local computations at v = 2

In this section, we find a suitable φ2 and compute related terms in the case that
f2 = 1 in the notation of Prop. 2.2.

We let A be arbitrary for now. To lighten notation, we drop the subscript 2.
So F = Q2(

√
5) is the unramified extension of Q2 of degree 2 and E = F (δ) =

Q2(ζ) is the unramified extension of Q2 of degree 4. We also have G = E1
2 . Let

O = OF = Z2[
1+

√
5

2
] be the ring of integers of F . Set for k ≥ 1

Γk = {g ∈ G : g ≡ 1 mod 2k} , Γ′k = {g = x+ yδ ∈ G : y ∈ 2kO} .

We also write simply χ instead of χA,2.

The following two lemmas on the structure of G are easily verified.

Lemma 5.1. The map a 7→ ga = a+δ
a−δ

is a bijection between P1(F ) = F ∪ {∞}
and G. Moreover

(1) ga ∈ Γ1 if and only if a2 6≡ ∆ mod 4.

(2) ga ∈ Γ1 − Γ′2 if and only if a ∈ O× and a2 6≡ ∆ mod 4.

(3) For k > 1, ga ∈ Γ′k − Γk if and only if a ∈ 2k−1O.

(4) For k > 1, ga ∈ Γk if and only if 1/a ∈ 2k−1O.

Lemma 5.2.

(1) G = 〈ζ〉 × Γ1.

(2) We have

ζ±1 = g∓ 1+
√

5
2

= −1+
√

5
4

∓ 1+
√

5
4
δ ,

ζ±2 = g∓ 3−
√

5
2

= −1+
√

5
4

∓ 1
2
δ .

(3) The group Γ1 is generated by Γ′3, g2, g1+
√

5 and g 1−
√

5
2

.
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Recall that ([Ku, Prop. 4.8], see also [Ya1, (A1)])

ωα,χ(g)φ = µα,χ(g)r(ια(g))φ ,

where r is Rao’s standard section [Rao],

µα,χ(g) = χ(δ(g − 1))γF (αy(1− x)ψ)(∆,−2y(1− x))F

= χ(−δy(g − 1))γF (αy(1− x)ψ) ,

(note that 2(1 − x) is the norm of g − 1, so (∆, 2(1 − x))F = 1 and (∆,−y)F =
ε(−y) = χ(−y)) and

ια : G −→ Sp(1) = SL2(F ) , g = x+ yδ 7→

(
x ∆2αy
y

∆α
x

)
.

Let w =

(
0 −1

1 0

)
. Write

(5.1) ια(g)w =

(
x−1 ∆2αy

0 x

)
w

(
1 − y

∆αx

0 1

)
= m(x−1)n(∆2αxy)wn(− y

∆αx
)

for g ∈ Γ1, and

(5.2) ια(g) =

(
∆α
y

x

0 y
∆α

)
w

(
1 ∆αx

y

0 1

)
= m(

∆α

y
)n(

xy

∆α
)wn(

∆αx

y
)

for g ∈ G− Γ1. Here

m(a) =

(
a 0

0 a−1

)
, n(b) =

(
1 b

0 1

)
.

Set

ξα,χ(g) =

{
µα,χ(g)γF (2∆αxyψ) if g = x+ yδ ∈ Γ1,

µα,χ(g) if g ∈ G− Γ1.

Then one has by (5.1) and [Rao, Thm. 3.5, Cor. 4.3]

(5.3) ωα,χ(g)φ(u) = ξα,χ(g)r(ια(g)w)φ̂(−u)
for every φ ∈ S(F ) and g ∈ Γ1, where

φ̂(u) = r(w)φ(u) =

∫
F

φ(v)ψ(−uv) dv

is the Fourier transform of φ.

From now on, we will assume that f2 = 1 in the notation of Prop. 2.2. Then we
can take α ∈ O× to be a unit. We have χ(2) = −1, and on O×

E , χ is a character of
order 5 which is trivial on 1+2OE. Furthermore, χ(δ) = 1 and χ is trivial on O×.
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Lemma 5.3. Assume α ∈ O×. For β ∈ 1
2
O, set fβ = char(β +O). Then

ωα,χ(g)fβ = ξα,χ(g)ψ(
∆2αy

2x
β2)fβ

for all g = x+ yδ ∈ Γ1.

Proof: We have the following explicit formulas (cf. [Rao, Thm. 3.5]).

r(n(b))φ(u) = ψ(1
2
bu2)φ(u)

r(m(a))φ(u) = |a|1/2φ(au)

r(w)φ(u) = φ̂(u)

r(m(a)n(b)wm(a′)n(b′)) = r(m(a))r(n(b))r(w)r(m(a′))r(n(b′))

We first have to compute f̂β.

f̂β(u) =

∫
F

fβ(v)ψ(−uv) dv

=

∫
O
ψ(−u(β + v)) dv

= ψ(−uβ) char(O)(u)

(use that ̂char(O) = char(O)). Now we use (5.1) and (5.3) together with above
explicit formulas and the fact that x ∈ 1 + 2O and y ∈ 2O when g ∈ Γ1. This
gives

ωα,χ(g)fβ(u) = ξα,χ(g)r(ια(g)w)r(−w)fβ(u)

= ξα,χ(g)r(m(x−1)n(∆2αxy)wn(− y
∆αx

))ψ(βu) char(O)(u)

= ξα,χ(g)r(m(x−1)n(∆2αxy)w)ψ(− y
2∆αx

u2)ψ(βu) char(O)(u)

(use that − y
2∆αx

u2 ∈ O)

= ξα,χ(g)r(m(x−1)n(∆2αxy)w)ψ(βu) char(O)(u)

= ξα,χ(g)r(m(x−1)n(∆2αxy))

∫
O
ψ(βv)ψ(−uv) dv

= ξα,χ(g)r(m(x−1)n(∆2αxy)) char(O)(u− β)

= ξα,χ(g)r(m(x−1)n(∆2αxy)) char(β +O)(u)

= ξα,χ(g)r(m(x−1))ψ(1
2
∆2αxyu2) char(β +O)(u)

= ξα,χ(g)|x|−1/2ψ(∆2αy
2x

u2) char(β +O)(x−1u)
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(use that x ∈ 1 + 2O and β ∈ 1
2
O)

= ξα,χ(g)ψ(∆2αy
2x

u2) char(β +O)(u)

(use that u ∈ β +O and that ∆2αy
2x

∈ O)

= ξα,χ(g)ψ(∆2αy
2x

β2)fβ(u) .

2

Lemma 5.4. Let α ∈ O× and let ϕ(g) = ξα,χ(g). Then ϕ is a character on Γ1

that does not depend on α. It is trivial on the subgroup generated by Γ′3, g1+
√

5

and g 1−
√

5
2

, and ϕ(g2) = −1.

Proof: Write ga = x+ yδ, then

x =
a2 + ∆

a2 −∆
, y =

2a

a2 −∆
, 1− x = − 2∆

a2 −∆
.

We will drop the subscript F on γ and the Hilbert norm residue symbol. We have

γ(αy(1− x)ψ)γ(2∆αxyψ) = γ(2∆x(1− x), ψ)γ(ψ)2(αy(1− x), 2∆αxy)

= γ(−(a2 + ∆), ψ)γ(−1, ψ)(−αa∆, αa∆(a2 + ∆))

= γ(a2 + ∆, ψ)(αa∆, a2 + ∆) .

Here we have used the fact that γ(ψ)2 = γ(−1, ψ)−1 = −1 = γ(−1, ψ). Now, for
ga ∈ Γ1 and α ∈ O×, we have (α, a2 + ∆) = 1 (since a2 + ∆ is a square times
something that is a square mod 4). So

ϕ(g) = ξα,χ(g)(α, a2 + ∆) = χ(−δy(g − 1))(a∆, a2 + ∆)γ(a2 + ∆, ψ)

is independent of α. In particular, we may assume α = 1. Taking β = 0 in the last
lemma, we see that ξ1,χ is a character of Γ1 (since ω1,χ is a true representation).

Since Γ1 is a pro-2 group and χ on O×
E has order five, χ(−δy(g − 1)) =

(−1)ord2(y)+ord2(g−1).

Recall that (a, b) with b ∈ O× only depends on b mod 23, and when also a ∈ O×,
it only depends on b mod 22.

For g ∈ Γ3, one has 1/a ∈ 4O, so ord2(y) = 1 − ord2(a) = ord2(g − 1), and
a2 + ∆ = a2(1 + ∆/a2) is a square, hence ϕ(g) = 1.

For g ∈ Γ′3 − Γ3, one has a ∈ 4O, so ord2(y) = 1 + ord2(a) and ord2(g− 1) = 1.
Furthermore, a2 + ∆ = ∆(1 + a2/∆) is ∆ times a square. Since γ(∆, ψ) = 1, and
(a,∆) = (−1)ord2(a), we again get ϕ(g) = 1.

For a = 1 +
√

5, one has that a2 + ∆ is a square mod 4 but not mod 8 and
ord2(a) = 1, so (a∆, a2 + ∆) = −1 and γ(a2 + ∆, ψ) = γ(∆, ψ) = 1. Since
ord2(y) = 2, ord2(g − 1) = 1, we have ϕ(ga) = 1.
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For a = 1−
√

5
2

, one has a2 + ∆ = −1 and a∆ = −
√

5, so (a∆, a2 + ∆) =

(−
√

5,−1) = −1 and γ(a2 + ∆, ψ) = γ(−1, ψ) = −1. Since ord2(y) = 1 =
ord2(g − 1), we have ϕ(ga) = 1.

Finally, for a = 2, one has a2 +∆ =
(
−1+

√
5

2

)2

and ord2(y) = 2, ord2(g−1) = 1,

hence ϕ(g2) = −1. 2

Corollary 5.5. If α ∈ Z×
2 , then f 1

2
is an eigenfunction of Γ1 with trivial character.

Proof: By Lemma 5.3, it suffices to show that

ψ
(∆2αy

8x

)
= ψ

( αa∆2

4(a2 + ∆)

)
=

{
1 if g ∈ Γ′3, a = 1 +

√
5, or a = 1−

√
5

2
,

−1 if a = 2.

This is trivially true for g ∈ Γ′3 (since then the argument of ψ is integral). The
other three cases are easily verified. 2

Lemma 5.6. For α ∈ O× and g = ζj = x+ yδ with 5 - j, one has

r(ια(g))f 1
2
(u) =

1

2
ψ
(∆αx

2y
(u2 − u

x
+

1

4
)
)

char(1
2
O)(u) .

Proof: This is a computation similar to that in the proof of Lemma 5.3, but
using (5.2) instead of (5.1). Note that x and y are both in 1

2
O×. 2

We need to compute ξα,χ(ζj).

Lemma 5.7. Let α ∈ Z×
2 . Then

ξα,χ(ζj) = −χ(ζj − 1)

{
1 if j = ±1,

±
(−1

α

)
i if j = ±2.

Furthermore, χ(ζj − 1) = ζ−(e+2)j, where e = ord2(A).

Proof: Since y ∈ F and ord2(y) = −1, we have χ(−δy) = −1, which gives
χ(−δy(ζj−1)) = −χ(ζj−1). The factor involving the Weil index can be computed
explicitly (use that γ(aψ) only depends on a mod 4 when a is a unit).

Finally, we have(
ζj − 1

2

)
5

≡ (ζj − 1)3 ≡ 1 + ζj + ζ2j + ζ3j ≡ ζ−j mod 2

and

χ(ζj − 1) = (−1)e

(
ζj − 1

2

)e+2

5

=

(
ζj − 1

2

)e+2

5

by Prop. 2.2, (4) and the fact that e is even (since f2 = 1). 2
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Corollary 5.8. Let α ∈ Z×
2 and denote e = ord2(A). If we choose φ2 = f 1

2
, then

the constant C2 in Prop. 3.1 has the value

C2 =
1

5

(
1− cos

(
(e+ 2)

2π

5

)
+

(
−1

α

)
sin
(
2(e+ 2)

2π

5

))
,

and I2(x) = φ2(x).

Note that C2 6= 0 since e ∈ {0, 2, 4, 6} when f2 = 1.

Proof: By (3.1), we have to compute

C2 =

∫
G

〈ωα,χ(g)f 1
2
, f 1

2
〉 dg .

By Cor. 5.5, ωα,χ(g)f 1
2

= f 1
2

for g ∈ Γ1, so I2 = φ2, and by Lemma 5.2, (1),

G = 〈ζ〉 × Γ1. Hence

C2 =
1

5

4∑
j=0

〈ωα,χ(ζj)f 1
2
, f 1

2
〉

=
1

5

(
1 + 1

2

4∑
j=1

ξα,χ(ζj)ψ
(∆α(xj − 1)

4yj

))
((by Lemma 5.6) where ζj = xj + yjδ)

=
1

5

(
1 + 1

2
ξα,χ(ζ)− 1

2
ξα,χ(ζ2)− 1

2
ξα,χ(ζ3) + 1

2
ξα,χ(ζ4)

)
=

1

5

(
1− 1

2
(ζe+2 + ζ−(e+2)) +

(
−1

α

)
1
2i

(ζ2(e+2) − ζ−2(e+2))
)

(by Lemma 5.7)

=
1

5

(
1− cos

(
(e+ 2)

2π

5

)
+

(
−1

α

)
sin
(
2(e+ 2)

2π

5

))
.

2

6. The Birch and Swinnerton-Dyer Conjecture

Since JA has complex multiplication by Z[ζ5] defined over E = Q(ζ5), there is
a Hecke character ηA of E such that

L(s, JA) = L(s, ηA) ,

compare [Sh1, Thm. 20.9]. See also [St2], where it is shown that ηA has conductor

νA = λfλ2f2

∏
2 6=p|A

p
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if A is not divisible by 5 or the tenth power of a prime number.

Recently, the Gross-Zagier formula [GZ] and the work of Kolyvagin and Lo-
gachev [Ko, KL] have been extended to totally real number fields by S.-W. Zhang
[Zh1, Zh2] and Y. Tian [Ti] respectively under some technical conditions. If these
conditions can be removed to cover more general cases, our result will imply finite-
ness of J1(Q) and of X(Q, J1). In lack of those powerful results, our result still
verifies the rank part of the Birch and Swinnerton-Dyer conjecture for J1 since
the finiteness of the Mordell-Weil group of J1 can be proved by a 2-descent ar-
gument as in [St3]. In fact, J1(Q) has order 10 and is generated by the divisor
class [(0, 1) − (−1, 0)]. The Birch and Swinnerton-Dyer conjecture would imply
that X(Q, J1) is actually trivial, see below. The 2-descent shows at least that its
2-part is trivial.

It is interesting to compare the L-series value L(1, JA) with the value pre-
dicted by the Birch and Swinnerton-Dyer conjecture. One version of it says that
L(1, JA) 6= 0 if and only if JA(Q) is finite, and then

(6.1) L(1, JA) =
Ω(JA)

∏
p cp(JA)#X(Q, JA)

#JA(Q)2
.

Here Ω(JA) is the ‘real period’ of JA over Q and cp(JA) are the Tamagawa numbers.
It is known by a general result of Blasius [Bl] that

L(1, JA)

Ω(JA)

is rational. Since CA has a rational point, #X(Q, JA) should be a square [PS].
So it is very interesting to see whether its predicted or “analytic” value for A = 1

#X(Q, J1)an =
L(1, J1)#J1(Q)2

Ω(J1)
∏

p cp(J1)
=

C |I|2#J1(Q)2

Ω(J1)
∏

p cp(J1)

is indeed an integer square (C and I are given in Theorem 4.1). This involves
relating the value of a theta function at a CM point to the square root of the
period of J1 in a precise way. G. Shimura proved in [Sh2] that the ratio is an
algebraic number, which is not enough for our purpose. Pinning down which
number field the ratio lies in is an important and non-trivial problem, since the
period is in general defined only up to a scalar and thus the square root is defined
only up to square roots of scalars.

We remark that all the invariants in (6.1) are computable except the order of
the Shafarevich-Tate group, see [F+]. If one carries this through for the curves
CA, with A an integer not divisible by 5, one obtains the following.
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Define

ω(p,A) = p4bvp(A)/10c ·


1 if vp(A) ≡ 0, 1, 2, 3 mod 10;

p if vp(A) ≡ 4, 5, 6 mod 10;

p2 if vp(A) ≡ 7, 8, 9 mod 10;

and

c(p,A) =



5 if 10 - vp(A) and A ∈ (Q×
p )2;

2 if vp(A) ≡ 5 mod 10 and p ≡ ±2 mod 5;

4 if vp(A) ≡ 5 mod 10 and p ≡ −1 mod 5;

16 if vp(A) ≡ 5 mod 10, A ∈ (Q×
p )5 and p ≡ 1 mod 5;

1 else.

Then let

ωp(A) =


ω(p,A) if p is odd;

ω(2, A) if p = 2 and v2(A) is odd;

ω(2, 2A) if p = 2, v2(A) is even and 2−v2(A)A ≡ 3 mod 4;

ω(2, 4A) if p = 2, v2(A) is even and 2−v2(A)A ≡ 1 mod 4;

and similarly

cp(A) =



c(p,A) if p 6= 2, 5;

1 if p = 5 and 5 - q(A);

2 if p = 5 and 5 | q(A);

c(2, A) if p = 2 and v2(A) is odd;

c(2, 2A) if p = 2, v2(A) is even and 2−v2(A)A ≡ 3 mod 4;

c(2, 4A) if p = 2, v2(A) is even and 2−v2(A)A ≡ 1 mod 4.

Also let

Ω0(A) =
πΓ( 1

10
)Γ( 3

10
)

5Γ(3
5
)Γ(4

5
)
·

{
A−2/5 if A > 0;

(−A)−2/5/
√

5 if A < 0.

Then we have

cp(JA) = cp(A) and Ω(JA) = Ω0(A)
∏

p

ωp(A) .

Furthermore,

#JA(Q)tors =


10 if A ∈ (Q×)10;

5 if A ∈ (Q×)2 \ (Q×)10;

2 if A ∈ (Q×)5 \ (Q×)10;

1 else.
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For example, if A = 1, the Birch and Swinnerton-Dyer conjecture claims that

L(1, J1) =
πΓ( 1

10
)Γ( 3

10
)

50Γ(3
5
)Γ(4

5
)

#X(Q, J1)

or equivalently

C|I|2 =
πΓ( 1

10
)Γ( 3

10
)

50Γ(3
5
)Γ(4

5
)

#X(Q, J1).

Here C and I are given in Theorem 4.1. By numerical calculations, this would
imply that X(Q, J1) is trivial—the value for #X(Q, J1) comes out as 1.0 to many
decimal digits. So the Birch and Swinnerton-Dyer conjecture in this case implies
a relation between theta values and Gamma values.
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