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Abstract. We study the number of irreducible factors (over Q) of the nth iterate of a polynomial
of the form fr(x) = x2 + r for r ∈ Q. When the number of such factors is bounded independent
of n, we call fr(x) eventually stable (over Q). Previous work of Hamblen, Jones, and Madhu [8]
shows that fr is eventually stable unless r has the form 1/c for some c ∈ Z\{0,−1}, in which case
existing methods break down. We study this family, and prove that several conditions on c of
various flavors imply that all iterates of f1/c are irreducible. We give an algorithm that checks the
latter property for all c up to a large bound B in time polynomial in logB. We find all c-values for
which the third iterate of f1/c has at least four irreducible factors, and all c-values such that f1/c
is irreducible but its third iterate has at least three irreducible factors. This last result requires
finding all rational points on a genus-2 hyperelliptic curve for which the method of Chabauty and
Coleman does not apply; we use the more recent variant known as elliptic Chabauty. Finally, we
apply all these results to completely determine the number of irreducible factors of any iterate of
f1/c, for all c with absolute value at most 109.

1. Introduction

Let K be a field with algebraic closure K, f ∈ K[x], and α ∈ K. For n ≥ 0, let fn(x) be the
nth iterate of f (we take f0(x) = x), and f−n(α) the set {β ∈ K : fn(β) = α}. When fn(x)− α
is separable over K for each n ≥ 1, the set Tf (α) :=

⊔
n≥0 f

−n(α) acquires the structure of a

rooted tree (with root α) if we assign edges according to the action of f .
A large body of recent work has focused on algebraic properties of Tf (α), particularly the

natural action of Gal (K/K) on Tf (α) by tree automorphisms, which yields a homomorphism

Gal (K/K)→ Aut(Tf (α)) called the arboreal Galois representation associated to (f, α). A central
question is whether the image of this homomorphism must have finite index in Aut(Tf (α)) (see
[12] for an overview of work on this and related questions). In the present article we study
factorizations of polynomials of the form fn(x)− α in the case where α = 0.

Definition 1.1. Let K be a field and f ∈ K[x], and α ∈ K. We say (f, α) is eventually stable
over K if there exists a constant C(f, α) such that the number of irreducible factors over K of
fn(x)− α is at most C(f, α) for all n ≥ 1.

We say that f is eventually stable over K if (f, 0) is eventually stable.

Apart from its own interest, eventual stability has proven to be a key link in at least two
recent proofs of finite-index results for certain arboreal representations [4, 3]. This is perhaps
surprising given that eventual stability is a priori much weaker than finite index of the arboreal
representation – the former only implies that the number of Galois orbits on f−n(α) is bounded
as n grows, which is an easy consequence of the latter. There are other applications of eventual
stability as well; for instance, if f ∈ Q[x] is eventually stable over Q, then a finiteness result holds
for S-integer points in the backwards orbit of 0 under f (see [13, Section 3] and [18]).
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The paper [13] provides an overview of eventual stability and related ideas. That article defines
a notion of eventual stability for rational functions, gives several characterizations of eventual
stability, and states some general conjectures on the subject, all of which remain wide open. For
example, a special case of [13, Conjecture 1.2] is the following: if f ∈ Q[x] is a polynomial of
degree d ≥ 2 such that 0 is not periodic under f (i.e. fn(0) 6= 0 for all n ≥ 1), then f is
eventually stable over Q. Theorems 1.3 and 1.7 of [13] also provide some of the few reasonably
general results currently available on eventual stability. The proofs rely on generalizations of the
Eisenstein criterion, and crucially assume good reduction of the rational function at the prime in
question.

In this article, we address some of the conjectures in [13] in cases where Eisenstein-type methods
break down. One of our main results is the following:

Theorem 1.2. Let K = Q and fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. If |c| ≤ 109,
then fr is eventually stable over Q and C(fr, 0) ≤ 4. More precisely, Conjecture 1.7 below holds
for all c with |c| ≤ 109.

The family x2 + (1/c), c ∈ Z \ {0,−1}, is particularly recalcitrant. Eventual stability in this
family (with α = 0) is conjectured in [13, Conjecture 1.4], and it is the only obstacle to establishing
eventual stability (with α = 0) in the family x2 + r, r ∈ Q. This is because [13, Theorem 1.7]
handles the case when there is a prime p with vp(r) > 0. Moreover, [13, Theorem 1.3] uses p = 2
to establish eventual stability for x2 + 1/c when c is odd, but when c is even x2 + 1/c has bad
reduction at p = 2, and Eisenstein-type methods break down completely.

We turn to methods inspired by [10], in particular various amplifications of [10, Proposition 4.2]
and [11, Theorem 2.2], which state that the irreducibility of iterates can be proven by showing a
certain sequence contains no squares. We prove the following theorem, which plays a substantial
role in the proof of Theorem 1.2. For the rest of the article, we establish the following conventions:

all irreducibility statements are over Q; and r = 1/c, where c is a non-zero integer.

Also, we denote by Z \ Z2 the set of integers that are not integer squares.

Theorem 1.3. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. Then fnr (x) is irreducible for
all n ≥ 1 if c satisfies one of the following conditions:

(1) −c ∈ Z \ Z2 and c < 0;
(2) −c, c+ 1 ∈ Z \ Z2 and c ≡ −1 mod p for a prime p ≡ 3 mod 4;
(3) −c, c+ 1 ∈ Z \ Z2 and c satisfies one of the congruences in Proposition 3.5 (see Table 1).
(4) −c ∈ Z \ Z2 and c is odd;
(5) −c ∈ Z \ Z2, c is not of the form 4m2(m2 − 1),m ∈ Z, and∏

p:2-vp(c)
pvp(c)∏

p:2|vp(c)
pvp(c)

>
1.15

|c|1/30
.

This holds whenever c is squarefree.
(6) c = k2 for some k ≥ 2 and ∏

p:p6≡1 mod 4

pvp(c)∏
p:p≡1 mod 4

pvp(c)
>

1.15

|c|1/30
.
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(7) c is not of the form 4m2(m2 − 1) with m ∈ Z and 1 ≤ c ≤ 101000.

Our next result gives an explicit and relatively small bound for m such that the irreducibility
of fm implies the irreducibility of all fn (see Corollary 4.6). In the following, ε(c) is a function
that decreases monotonically to 2 as c grows; for a precise definition, see p. 20 in Section 4.

Theorem 1.4. Let fr(x) = x2 + r with r = 1/c for c ∈ Z with c ≥ 4. If fm is irreducible for

m = 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.

The methods used in the proof of this result can be used to derive a very efficient algorithm
that checks the condition in Theorem 1.4 for all c up to a very large bound. This leads to a proof
of case (7) of Theorem 1.3, which at the same time verifies Conjecture 1.8 below for all c with
|c| ≤ 101000. This is explained in Section 5.

We also prove results on unusual factorizations of small iterates in the family x2 + 1/c.

Theorem 1.5. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}, and let kn denote the number
of irreducible factors of fnr (x). Then

(a) We have k1 = k2 = 2 and k3 = 3 if and only if c = −16. In this case kn = 3 for all n ≥ 3.
(b) We have k3 ≥ 4 if and only if c = −(s2 − 1)2 for s ∈ {3, 5, 56}. In this case, k1 = 2,

k2 = 3, and kn = 4 for all n ≥ 3.
(c) We have k1 = 1 and k3 ≥ 3 if and only if c = 48. In this case, k2 = 2 and kn = 3 for all

n ≥ 3.

Observe that part (b) of Theorem 1.5 shows that the bound C(fr, 0) ≤ 4 in Theorem 1.2 (and
also Conjecture 1.7) cannot be improved. Moreover, a consequence of Conjecture 1.7 is that
C(fr, 0) = 4 if and only if c = −(s2 − 1)2 for s ∈ {3, 5, 56}.

To prove Theorem 1.5, we reduce the problem to finding all integer square values of certain
polynomials (see Lemma 2.2 in Section 2 for details.) The curve that arises in this way in the
proof of part (c) of Theorem 1.5 is of particular interest, as it is a hyperelliptic curve of genus
two, whose Jacobian has rank two:

(1.1) y2 = 8x6 − 12x4 − 4x3 + 4x2 + 4x+ 1.

Because the genus and the rank of the Jacobian coincide, we cannot apply the well-known method
of Chabauty and Coleman. On the other hand, we are able to use a variant of the standard method,
called elliptic Chabauty [5, 7], to prove:

Theorem 1.6. The only rational points on the curve (1.1) are those with x ∈ {−2,−1, 0, 1}.
The idea is the following. Given an elliptic curve E over a number field K and a map

φ : E → P1, then one can often compute the set of points in E(K) mapping to P1(Q) as
long as the rank of E(K) is strictly less than the degree of the extension K/Q; this method
is known as elliptic Chabauty. Moreover, in certain situations, one can use a combination of
descent techniques and elliptic Chabauty to determine the full set of rational points on a curve
C (of higher genus) defined over Q; see, for instance, the proof of Theorem 1.6. Moreover, un-
der suitable conditions, several components of the elliptic Chabauty method are implemented
in MAGMA [2], and we make use of these implementations here. Our code verifying the cal-
culations in the proof of Theorem 1.5 can be found within the file called Elliptic Chabauty at:
https : //sites.google.com/a/alumni.brown.edu/whindes/research.
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The above results furnish evidence for several conjectures. The first is a refinement of Conjec-
ture 1.4 of [13], which states that x2 + 1

c is eventually stable for c ∈ Z \ {0,−1}.

Conjecture 1.7. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. Then fr is eventually
stable and C(fr, 0) ≤ 4. More precisely, let kn denote the number of irreducible factors of fnr (x).
Then

(1) If c = −m2 for m > 0 with m+ 1 ∈ Z \ Z2 and m 6= 4, then kn = 2 for all n ≥ 1.
(2) If c = −16, then k1 = k2 = 2 and kn = 3 for all n ≥ 3.
(3) If c = −(s2 − 1)2 for s ∈ Z \ {3, 5, 56}, then k1 = 2 and kn = 3 for all n ≥ 2.
(4) If c = −(s2 − 1)2 for s ∈ {3, 5, 56}, then k1 = 2, k2 = 3, and kn = 4 for all n ≥ 3.
(5) If c = 4m2(m2 − 1) for m ∈ Z, m ≥ 3, then k1 = 1 and kn = 2 for all n ≥ 2.
(6) If c = 48, then k1 = 1, k2 = 2, and kn = 3 for all n ≥ 3.
(7) If c is not in any of the above cases, then kn = 1 for all n ≥ 1.

We remark that case (7) of Conjecture 1.7 is precisely the case where f2r (x) is irreducible (see
Proposition 2.1) and thus case (7) asserts that if f2r (x) is irreducible, then fnr (x) is irreducible for
all n ≥ 1. We state this as its own conjecture:

Conjecture 1.8. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. If f2r (x) is irreducible,
then fnr (x) is irreducible for all n ≥ 1.

As mentioned above, we have verified this conjecture for all c with |c| ≤ 101000.
Observe that Conjecture 1.7 gives a uniform bound for kn, in contrast to Conjecture 1.4 of [13].

It would be of great interest to have a similar uniform bound for fr(x) as r is allowed to vary
over the entire set Q \ {0,−1} (as opposed to just the reciprocals of integers, as in Conjecture
1.7). We pose here a much more general question. Given a field K, call f ∈ K[x] normalized
(the terminology depressed is also sometimes used, especially for cubics) if deg f = d ≥ 2 and
f(x) = adx

d + ad−2x
d−2 + ad−3x

d−3 + a1x+ a0. Note that every f ∈ K[x] of degree not divisible
by the characteristic of K is linearly conjugate over K to a normalized polynomial.

Question 1.9. Let K be a number field and fix d ≥ 2. Is there a constant κ depending only on d
and [K : Q] such that, for all normalized f ∈ K[x] of degree d such that 0 is not periodic under
f , and all n ≥ 1, fn(x) has at most κ irreducible factors? In the case where K = Q, d = 2, and
f is taken to be monic, does the same conclusion hold with κ = 4?

It is interesting to compare Question 1.9 to [1, Question 19.5], where a similar uniform bound
is requested, but under the condition that f−1(0) ∩ P1(K) = ∅.

We close this introduction with some further comments on our methods, as well as the statement
of one additional result (Theorem 1.12) on the densities of primes dividing orbits of polynomials
of the form x2 + 1/c.

A primary tool in our arguments is the following special case of [11, Theorem 2.2]: for n ≥ 2,
fnr is irreducible provided that fn−1r is irreducible and fnr (0) is not a square in Q. The proof
of this relies heavily on the fact that fr has degree 2, and is essentially an application of the
multiplicativity of the norm map. Using ideas from [11, Theorem 2.3 and discussion preceding],
one obtains the useful amplification (proven in Section 3) that for n ≥ 2, fnr is irreducible provided

that fn−1r is irreducible and neither of (fn−1r (0)±
√
fnr (0))/2 is a square in Q. When r = 1/c, we

have

fr(0) = 1/c, f2r (0) = (c+ 1)/c2, f3r (0) = (c3 + c2 + 2c+ 1)/c4,
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and so on. The numerator of fnr (0) is obtained by squaring the numerator of fn−1r (0), and adding

c2
n−1−1. We thus introduce the family of sequences

(1.2) a1(c) = 1, an(c) = an−1(c)
2 + c2

n−1−1 for n ≥ 2.

To ease notation, we often suppress the dependence on c, and write a1, a2, etc. We can then
translate the results of the previous paragraph to:

Lemma 1.10. Suppose that c ∈ Z \ {0}, r = 1/c, and f2r is irreducible. Let an = an(c) be defined
as in (1.2), and set

(1.3) bn :=
an−1 +

√
an

2
∈ Q.

If for every n ≥ 3, bn is not a square in Q (which holds in particular if an is not a square in Q),
then fnr (x) is irreducible for all n ≥ 1.

We make the following conjecture, which by Lemma 1.10 immediately implies Conjecture 1.8:

Conjecture 1.11. Let bn = bn(c) be defined as in (1.3). If c ∈ Z \ {0,−1}, then bn is not a
square in Q for all n ≥ 3.

Conjecture 1.11 also has strong implications for the density of primes dividing orbits of fr. We
define the orbit of t ∈ Q under fr to be the set Ofr(t) = {t, fr(t), f2r (t), . . .}, and we say that a
prime p divides Ofr(t) if there is at least one non-zero y ∈ Ofr(t) with vp(y) > 0. The natural
density of a set S of prime numbers is defined to be

D(S) = lim
B→∞

#{p ≤ B : p ∈ S}
#{p ≤ B}

.

Note that the elements of Ofr(t) also form a nonlinear recurrence sequence, where the relation is
given by application of fr. The problem of finding the density of prime divisors in recurrences has
an extensive literature in the case of a linear recurrence; see the discussion and brief literature
review in [10, Introduction]. The case of non-linear recurrences is much less-studied, though there
are some recent results [8, 10, 17]. The following theorem is an application of [8, Theorem 1.1,
part (2)].

Theorem 1.12. Let c ∈ Z, let r = 1/c, suppose that −c and c + 1 are non-squares in Q, and
assume that Conjecture 1.11 holds for c. Then

(1.4) for any t ∈ Q we have D({p prime : p divides Ofr(t)}) = 0.

We remark that in each of the cases of Theorem 1.3, we show that Conjecture 1.11 holds for
c. Hence in cases (2), (3), and (6) of Theorem 1.3, and also in cases (1), (4), and (5) with the
additional hypothesis that c+ 1 is not a square in Q, we have that (1.4) holds. We also note that
when the hypotheses of Theorem 1.12 are satisfied, we obtain certain information on the action
of GQ on Tf (0) =

⊔
n≥0 f

−n(0); see Section 6.
A complete proof of Conjecture 1.11 appears out of reach at present. One natural approach is

to prove the stronger statement that an is not a square for each n ≥ 3, or equivalently that the
curve

(1.5) Cn : y2 = an(c)

has no integral points with c 6∈ {0,−1} for any n ≥ 3. It is easy to see that an(c) is separable
as a polynomial in c (one considers it as a polynomial in Z/2Z[c], where it is relatively prime to
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its derivative), and because the degree of an(c) is 2n−1 − 1, it follows from standard facts about
hyperelliptic curves that the genus of Cn is 2n−2 − 1. Siegel’s theorem then implies that there
are only finitely many c with an(c) a square for given n ≥ 3. However, the size of the genus
of Cn prevents us from explicitly excluding the presence of integer points save in the cases of
n = 3 and n = 4 (see Proposition 3.3). One idea that has been used to show families of integer
non-linear recurrences contain no squares (see e.g. [19, Corollary 1.3] or [10, Lemma 4.3]) is to
show that sufficiently large terms of each sequence are sandwiched between squares: they are
generated by adding a small number to a large square. In the case of the family an(c), however,

the addition of the very large term c2
n−1−1 to the square a2n−1 ruins this approach. A similar

problem is encountered in a family of important two-variable non-linear recurrence sequences first
considered in [14] (see [14, Theorem 1.8]). The main idea used in [14] to show the recurrence
contains no squares is to rule out certain cases via congruence arguments. This is the essence
of our method of proof for cases (2) and (3) of Theorem 1.3. Subsequently Swaminathan [22,
Section 4] amplified these congruence arguments and gave new partial results using the idea of
sandwiching terms of the sequence between squares. In the end each of these methods succeeds in
giving only partial results, applicable to c-values satisfying certain arithmetic criteria. It would be
of great interest to have a proof of Conjecture 1.11 for c-values satisfying some analytic criterion,
e.g., for all c sufficiently large. Case (1) of Theorem 1.3 provides one result with this flavor, but
at present no other results are known.

Acknowledgements: We thank Jennifer Balakrishnan for conversations related to the proof
of Theorem 1.6, and the anonymous referee for many helpful suggestions.

2. The case where fr(x) or f2r (x) is reducible

We begin by studying the factorizations of iterates of fr(x) when either fr(x) or f2r (x) is
reducible. The behavior of higher iterates becomes harder to control because of the presence of
multiple irreducible factors of the first two iterates, but we are still able to give some results. At
the end of this section we prove Theorem 1.5, which gives a complete characterization of certain
subcases.

Proposition 2.1. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. Then fr(x) is reducible
if and only if c = −m2 for m ∈ Z. If fr(x) is irreducible, then f2r (x) is reducible if and only if
c = 4m2(m2 − 1) for m ∈ Z.

Proof. The first statement is clear. Assume now that fr(x) is irreducible over Q. Let α be
a root of f2r (x), and observe that fr(α) is a root of fr(x), and by the irreducibility of fr(x),
we have [Q(fr(α)) : Q] = 2. Now f2r (x) is irreducible if and only if [Q(α) : Q] = 4, which is
equivalent to [Q(α) : Q(fr(α))] = 2. But α is a root of fr(x) − fr(α) = x2 + r − fr(α), and so
[Q(α) : Q(fr(α))] = 2 is equivalent to fr(α)− r not being a square in Q(fr(α)).

Without loss of generality, say fr(α) =
√
−r. Then fr(α) − r is a square in Q(fr(α)) if and

only if there are s1, s2 ∈ Q with

−r +
√
−r = (s1 + s2

√
−r)2 = s21 − rs22 + 2s1s2

√
−r.

This holds if and only if 2s1s2 = 1 and s21 − rs22 = −r. Substituting s2 = 1/(2s1) into the second
equation and multiplying through by s21 gives s41 + rs21− r/4 = 0, which by the quadratic formula
holds if and only if

(2.1) s21 =
−r ±

√
r2 + r

2
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or equivalently, 2c(−1±
√

1 + c) is an integer square (here we have written 1/c for r and multiplied
both sides of (2.1) by 4c2). If c < −1, then

√
1 + c is irrational, so we may assume c > 0. We

may then discard the − part of the ±, since integer squares are positive. Writing c = k2 − 1 for
k > 0, we then obtain that 2(k2 − 1)(−1 + k) = 2(k+ 1)(k− 1)2 is a square, whence k+ 1 = 2m2

for some integer m. Thus c = k2 − 1 = (2m2 − 1)2 − 1 = 4m4 − 4m2, as desired. �

We now give a lemma, closely related to [10, Proposition 4.2], which we will use often in the
sequel.

Lemma 2.2. Let K be a field of characteristic not equal to 2, let g ∈ K[x] be monic of degree
d ≥ 1 and irreducible over K, and let f(x) be monic and quadratic with critical point γ. If no
element of

{(−1)dg(f(γ))} ∪ {g(fn(γ)) : n ≥ 2}
is a square in K, then g(fn(x)) is irreducible over K for all n ≥ 1.

Proof. Let f(x) = x2+bx+c, so that γ = −b/2. We proceed by induction on n, with the n = 0 case
covered by the irreducibility of g(x). Assume then that g(fn−1(x)) is irreducible over K for some
n ≥ 1, and let d1 be the degree of g(fn−1(x)). By Capelli’s Lemma ([6, Lemma 0.1]), g(fn(x)) is
irreducible over K if and only if for any root β of g(fn−1(x)), we have f(x)−β is irreducible over
K(β), or equivalently (because K has characteristic different from 2), Disc(f(x)−β) = b2−4c+4β
is not a square in K(β).

This must hold if NK(β)/K(b2 − 4c + 4β) is not a square in K. The Galois conjugates of

b2 − 4c+ 4β are precisely b2 − 4c+ 4α as α varies over all roots of g(fn−1(x)). Thus

NK(β)/K(b2 − 4c+ 4β) = (−4)d1
∏

α root of g ◦ fn−1

[(
−b

2

4
+ c

)
− α

]
= (−4)d1 · g(fn−1(−b2/4 + c)) = (−4)d1 · g(fn−1(f(γ))),

where the second equality holds because g(fn−1(x)) is monic. Now d1 is odd if and only if n = 1
and d is odd, which proves the Lemma. �

2.1. The case of fr reducible. When c = −m2 for some m ≥ 1, we fix the notation

(2.2) g1(x) = x− 1

m
and g2(x) = x+

1

m
,

so that fr(x) = g1(x)g2(x). We exclude the case m = 1 in what follows, as in that case fr(x) is
not eventually stable (see [13, discussion following Corollary 1.5]).

Proposition 2.3. Let r = 1/c and c = −m2 for m ≥ 2. Let g1 and g2 be as in (2.2). Then the
following hold.

(1) We have g2(fr(x)) irreducible, while g1(fr(x)) factors if and only if m+ 1 is a square in
Q.

(2) If g1(fr(x)) is irreducible, then g1(f
n
r (x)) is irreducible for all n ≥ 2.

(3) If every term of the sequence {g2(f ir(0))}i≥2 is a non-square in Q, then g2(f
n
r (x)) is irre-

ducible for all n ≥ 2.

Proof. The first item follows from observing that g1(fr(x)) = x2− m+1
m2 and g2(fr(x)) = x2 + m−1

m2 .

The latter is irreducible because m ≥ 2 implies (m − 1)/m2 > 0. Item (3) is an immediate
consequence of item (1) and Lemma 2.2 (with g = g2 ◦ fr and f = fr). To prove item (2), observe
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that g1(f
n
r (0)) = fnr (0)− 1

m . However, one easily checks that x2− 1
m2 maps the interval (−1/m, 0)

into itself, and in particular, fnr (0) < 0 for all n ≥ 1. Thus g1(f
n
r (0)) < 0 as well, and hence

cannot be a square in Q. Item (2) now follows from Lemma 2.2 with g = g1 ◦ fr and f = fr. �

Proposition 2.4. Let r = 1/c and c = −m2 for m ≥ 2, and let g1 and g2 be as in (2.2). Then
g2(f

2
r (0)) is a square in Q if and only if m = 4. Moreover, g2(f

2
r (x)) is reducible if and only if

m = 4.

Proof. Observe that

g2(f
2
r (0)) =

m3 −m2 + 1

m4
,

and hence g2(f
2
r (0)) is a square in Q if and only if the elliptic curve y2 = x3 − x2 + 1 has an

integral point with x = m. This is curve 184.a1 in the LMFDB [16], and has only the integral
points (0,±1), (1,±1), (4,±7). Because m ≥ 2, the only m-value for which g2(f

2
r (0)) is a square

is m = 4. If m 6= 4, then [10, Proposition 4.2] (or the proof of Lemma 2.2, with g = g2 ◦ fr and
f = fr) shows that g2(f

2
r (x)) is irreducible. On the other hand, if m = 4, then

g2(f
2
r (x)) = (x2 − x+ 7/16)(x2 + x+ 7/16),

showing that g2(f
2
r (x)) is reducible. We return to the analysis of the case m = 4 in Proposition

2.10. �

We now seek to give congruence conditions on m that ensure the sequence (g2(f
n
r (0)))n≥2

contains no squares in Q. Prime factors of the numerators of the terms of this sequence are often
related to each other. To formalize this, we require the following definition.

Definition 2.5. A sequence (sn)n≥1 is a rigid divisibility sequence if for all primes p we have the
following:

(1) if vp(sn) = e > 0, then vp(smn) = e for all m ≥ 1, and
(2) if vp(sn) > 0 and vp(sj) > 0, then vp(sgcd(n,j)) > 0.

Remark 2.6. If (sn)n≥1 is a rigid divisibility sequence and s1 = 1, then from (2) it follows that if
p | gcd(sn, sn−1) then p | s1 = 1, which is impossible. Hence gcd(sn, sn−1) = 1 for all n ≥ 2. A
similar argument shows that for q prime we have gcd(sq, si) = 1 for all 1 ≤ i < q.

Proposition 2.7. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in (2.2). Then g2(f
n
r (x))

is irreducible for all n ≥ 2 provided that m 6= 4 and at least one of the following holds:

m ≡ 3 (mod 4) m ≡ 3 (mod 5)

m ≡ 2, 5, 6 (mod 7) m ≡ 4, 6, 7 (mod 11)

m ≡ 8, 10 (mod 13) m ≡ 2, 4, 7, 8, 9, 11, 15 (mod 17)

m ≡ 3, 5, 11 (mod 19) m ≡ 9, 11, 14, 15, 18, 20, 21, 22 (mod 23)

m ≡ 3, 19, 26 (mod 29) m ≡ 2, 12, 30 (mod 31)

m ≡ 6, 20 (mod 37) m ≡ 12, 14, 27, 29 (mod 41)

m ≡ 15, 21, 30 (mod 43) m ≡ 9, 22, 38, 46 (mod 47)
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If in addition m− 1 is not a square in Q, then the following congruences also suffice:

m ≡ 2 (mod 3) m ≡ 5 (mod 8)

m ≡ 10 (mod 11) m ≡ 18 (mod 19)

m ≡ 2, 13 (mod 23) m ≡ 8, 10, 14 (mod 29)

m ≡ 9, 26 (mod 31) m ≡ 13, 31 (mod 37)

m ≡ 3, 11, 19, 37, 38 (mod 41) m ≡ 22, 36, 39, 42 (mod 43)

m ≡ 3, 10 (mod 47)

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0)) is not a square in Q for

all n ≥ 2. Note that for each n ≥ 1, g2(f
n−1
r (0)) is a positive rational number with denominator

m2n−1
, and numerator prime to m. We take wn to be the numerator of g2(f

n−1
r (0)). We first

observe that the proof of [10, Proposition 5.4] shows that the sequence (wn)n≥1 is a rigid divisibility
sequence. In particular, if w2 is not a square in Q, then because w2 > 0 we must have some prime
p dividing w2 to odd multiplicity, and the rigid divisibility condition implies that w2j is not a
square for all j ≥ 2. A similar argument shows that if w3 is not a square in Q, then neither is w3j

for all j ≥ 1.
By Proposition 2.4 and our assumption that m 6= 4, we have that g2(f

2
r (0)) is not a square in

Q. It follows that w3j is a non-square for all j ≥ 1.
Now for a given modulus k and m 6≡ 0 mod k, the sequence (g2(f

n
r (0)) mod k)n≥1 eventually

lands in a repeating cycle, and we search for values of k and congruences classes of m modulo k
such that g2(f

n
r (0)) mod k fails to be a square for all n ≥ 2. Note that this method works even

when g2(f
3j−1
r (0)) mod k is a square for all j ≥ 1, since we have shown in the previous paragraph

that w3j is a non-square for all j ≥ 1. A computer search yields the congruences given in the
first part of the proposition. If in addition m − 1 is a non-square in Q, then we have w2j not a
square in Q for all j ≥ 1, and the congruences in the second part of the proposition show that

w2j+1 = g2(f
2j
r (0)) mod k is a non-square for all j ≥ 1. �

Proposition 2.8. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in (2.2). If m ≡ −1 mod p
for a prime p ≡ 7 mod 8, then g2(f

n
r (x)) is irreducible for all n ≥ 2. The same conclusion holds

if m− 1 is not a square in Q and m ≡ −1 mod p for a prime p ≡ 3 mod 8.

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0)) is not a square in Q for all

n ≥ 2. We have c = −m2 ≡ −1 mod p, and so (fnr (0) mod p)n≥0 is the sequence 0,−1, 0,−1 . . ..
Thus (g2(f

n
r (0)) mod p)n≥0 is the sequence −1,−2,−1,−2,−1, . . .. If p ≡ 7 mod 8, then both

−1 and −2 are non-squares modulo p, and the proof is complete. If p ≡ 3 mod 8, then −1 is

a non-square modulo p but −2 is a square, meaning we can only conclude that g2(f
2j
r (0)) is a

non-square in Q for j ≥ 1. However, as in the proof of Proposition 2.7, this implies that b2j+1 is
a non-square for all j ≥ 1. If in addition m − 1 is not a square, then b2j is not a square for all
j ≥ 1, completing the proof. �

Propositions 2.7 and 2.8 allow us to prove a case of Theorem 1.2. Recall that g1(f
n
r (x))g2(f

n
r (x)) =

fn+1
r (x).

Corollary 2.9. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in (2.2). Suppose that
m 6= 4 and m2 ≤ 109. Then g2(f

n
r (x)) is irreducible for all n ≥ 1. If in addition m + 1 is not a

square in Q, then fnr (x) is a product of two irreducible factors for all n ≥ 1.



10 DEMARK, HINDES, JONES, MISPLON, STOLL, AND STONEMAN

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0)) is not a square in Q for

all n ≥ 2. Because m 6= 4, we may apply both Propositions 2.7 and 2.8. The first group of
congruences in Proposition 2.7 applies to all m with 2 ≤ m ≤ 109/2 except for a set of 1326
m-values. After applying the first part of Proposition 2.8, that number decreases to 1021. Of
these, 13 have the property that m − 1 is a square. We apply the second group of congruences
in Proposition 2.7 and the second part of Proposition 2.8 to the remaining 1008 values, and only
196 survive. This leaves 209 values of m that we must handle via other methods.

To do this, we employ a new method to search for primes p such that g2(f
n
r (0)) is a non-square

modulo p for all but finitely many n. We search for p such that:

(2.3) the sequence (g2(f
n
r (0)) mod p)n≥0 eventually assumes a non-square constant value

or eventually cycles between two distinct values, both of which are non-squares modulo p.

If we find such a p, it implies that all but finitely many terms of the sequence (g2(f
n
r (0)))n≥2 are

non-squares in Q. We then reduce modulo other primes to show that the remaining terms are
non-squares.

The method proves quite effective. Of the 209 m-values left over from the first paragraph of
this proof, all have a prime p < 500 that satisfies (2.3). For each such m and p, we take the
finitely many terms of the sequence (g2(f

n
r (0)))n≥2 that have still not been proven non-square

by (2.3), and reduce modulo small primes until all have been proven non-square. The m-value
producing the largest number of such terms is m = 4284, where we must check that each of
g2(fr(0)), g2(f

2
r (0)), . . . , g2(f

34
r (0)) is a non-square. In all cases the desired result is achieved by

reducing modulo primes less than 100. �

We now consider the case m = 4. As shown in Proposition 2.4, it is the only one with m ≥ 2
for which g2(f

2
r (x)) is reducible; indeed, we have

(2.4) g2(f
2
r (x)) = (x2 − x+ 7/16)(x2 + x+ 7/16) =: g21(x)g22(x),

and we note that both g21(x) and g22(x) are irreducible.

Proposition 2.10. Let r = −1/16 and let g21 and g22 be as in (2.4). For all n ≥ 1, both
g21(f

n
r (x)) and g22(f

n
r (x)) are irreducible for all n ≥ 1. In particular, fnr (x) has precisely three

irreducible factors for all n ≥ 3.

Proof. Because m + 1 is not a square, Proposition 2.3 shows that g1(f
n
r (x)) is irreducible for all

n ≥ 1. By Lemma 2.2 and the fact that g21 and g22 have even degree, it suffices to prove that
neither g21(f

n
r (0)) nor g22(f

n
r (0)) is a square in Q for all n ≥ 1. Observe that fnr (0) ≡ 5 mod 11

for n ≥ 3, and g21(5) ≡ 6 mod 11. Because 6 is a non-square modulo 11, we must only verify
that neither of g21(fr(0)) or g21(f

2
r (0)) is a square in Q. The former is 129/256 and the latter is

(19 ·1723)/216, neither of which is a square in Q. For g22(f
n
r (0)) we have a simpler argument using

p = 5: observe that g22(0) ≡ g22(−1) ≡ 2 mod 5 and fnr (0) ≡ 0 or −1 mod 5 for all n ≥ 1. �

We now consider the case where m + 1 is a square. Say m + 1 = s2 with s ≥ 2, so that
fr(x) = x2 − 1/m2 = x2 − 1/(s2 − 1)2. We have

(2.5) g1(fr(x)) = x2 − m+ 1

m2
=

(
x− s

s2 − 1

)(
x+

s

s2 − 1

)
=: h1(x)h2(x).

Now h1(fr(x)) = x2 − s3−s+1
(s2−1)2 . Thus h1(fr(x)) is irreducible unless s is the x-coordinate of an

integral point on the elliptic curve y2 = x3 − x + 1. This is curve 92.a1 in LMFDB, and has an
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unusually large number of integral points: (0,±1), (1,±1), (−1,±1)(3,±5), (5,±11), (56,±419).
We assume for a moment that s 6∈ {3, 5, 56}, so that h1(fr(x)) is irreducible. Observe that
x2 − 1

m2 maps the interval (−1/m, 0) into itself, and in particular, fnr (0) < 0 for all n ≥ 1. Thus
h1(f

n
r (0)) < 0 as well, and hence cannot be a square in Q. Then Lemma 2.2 (with g = h1 ◦ fr

and f = fr) proves that h1(f
n
r (x)) is irreducible for all n ≥ 2. Thus for s 6∈ {3, 5, 56}, we have

that h1(f
n
r (x)) is irreducible for all n ≥ 1. We now present a result that builds on Corollary 2.9.

Corollary 2.11. Let r = 1/c and c = −(s2 − 1)2 for s ≥ 2, and let g2 be as in (2.2) and h1, h2
as in (2.5). Suppose that (s2 − 1)2 ≤ 109. Then for all n ≥ 1 we have g2(f

n
r (x)) and h2(f

n
r (x))

irreducible. If in addition s 6∈ {3, 5, 56} then for all n ≥ 1 we have h1(f
n
r (x)) irreducible. In

particular if (s2− 1)2 ≤ 109 and s 6∈ {3, 5, 56}, then fnr (x) is a product of three irreducible factors
for all n ≥ 2.

Proof. Observe that (s2 − 1)2 ≤ 109 if and only if s ≤ 177. We have shown in Corollary 2.9
that g2(f

n
r (x)) is irreducible for all s with 2 ≤ s ≤ 177. In the paragraph preceding the present

corollary, we showed that s 6∈ {3, 5, 56} implies that h1(f
n
r (x)) is irreducible for all n ≥ 1. To

show that h2(f
n
r (x)) is irreducible for n ≥ 1, it suffices by Lemma 2.2 to show that {−h2(fr(0))}∪

{h2(fnr (0)) : n ≥ 2} contains no squares in Q. Note that −h2(fr(0)) = − s3−s−1
(s2−1)2 , and we have

s3 − s − 1 > 0 for s ≥ 2. Hence h2(fr(0)) is not a square in Q. To verify that h2(f
n
r (0)) is

a non-square in Q for all n ≥ 2, we search for primes p satisfying the condition (2.3), with h2
replacing g2. We find that there exists a prime p ≤ 500 with the desired property for all s with
2 ≤ s ≤ 177 except for s = 153. For that s-value, the prime p = 1051 suffices.

For each such s and p, we take the finitely many terms of the sequence (h2(f
n
r (0)))n≥2 that

have still not been proven non-square, and reduce modulo small primes until all have been proven
non-square. Unsurprisingly, the s-value producing the largest number of such terms is s = 153,
where we must check that each of h2(fr(0)), h2(f

2
r (0)), . . . , h2(f

67
r (0)) is a non-square. In all cases

the desired result is achieved by reducing modulo primes less than 100. �

Finally, we handle the case of s ∈ {3, 5, 56}. These are precisely the s-values for which s3−s+1
is a square. In this case, h1(f(x)) is no longer irreducible; indeed, we have

(2.6) h1(f(x)) =

(
x−
√
s3 − s+ 1

s2 − 1

)(
x+

√
s3 − s+ 1

s2 − 1

)
=: h11(x)h12(x).

Proposition 2.12. Let r = 1/c and c = −(s2 − 1)2 for s ∈ {3, 5, 56}. Let g2 be as in (2.2),
h2 as in (2.5), and h11 and h12 as in (2.6). Then for all n ≥ 1 we have g2(f

n
r (x)), h2(f

n
r (x)),

h11(f
n
r (x)), and h12(f

n
r (x)) irreducible; in particular, fnr (x) is a product of four irreducible factors

for all n ≥ 3.

Proof. Corollary 2.11 shows that for s ∈ {3, 5, 56}, we have g2(f
n
r (x)) and h2(f

n
r (x)) irreducible

for all n ≥ 1. To show that h11(f
n
r (x)) and h12(f

n
r (x)) are irreducible for n ≥ 1, it suffices by

Lemma 2.2 to show that none of

{−h11(fr(0))} ∪ {−h12(fr(0))} ∪ {h11(fnr (0)) : n ≥ 2} ∪ {h12(fnr (0)) : n ≥ 2}
is a square in Q. Note that −h11(fr(0)) = ((s2 − 1)(

√
s3 − s+ 1) + 1)/(s2 − 1)2. For s = 3, 5, 56

respectively, the prime factorization of the numerator of −h11(fr(0)) is 41, 5 · 53, 2 · 656783, none
of which is a square. Moreover, −h12(fr(0)) < 0, and hence cannot be a square. Also, one readily
sees that h11(f

n
r (0)) < 0 for all n ≥ 2. For s = 3, we reduce the sequence (h12(f

n
r (0))n≥2 modulo

29 and find that it cycles among the four values 17, 15, 26, 21, none of which is a square modulo
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29. For s = 5 we reduce modulo 23 and find that the sequence in question cycles between 10 and
11, which are both non-squares modulo 23. For s = 56 we reduce modulo 31 and find that the
sequence takes only the value 6, i.e. h12(f

n
r (0)) ≡ 6 mod 31 for all n ≥ 2. But 6 is non-square

modulo 31. �

2.2. The case of fr irreducible, f2r reducible. Assume now that c = 4m2(m2 − 1) for some
m ≥ 2, in which case we have

(2.7) f2r (x) =

(
x2 − 1

m
x+

2m2 − 1

4m2(m2 − 1)

)(
x2 +

1

m
x+

2m2 − 1

4m2(m2 − 1)

)
=: q1(x)q2(x).

We note that q1 and q2 both have discriminant −1/(m2 − 1), and so are irreducible.
Observe that for m = 2 we have the factorization

(2.8) q2(fr(x)) = (x2 − (1/2)x+ 19/48)(x2 + (1/2)x+ 19/48).

However, this is the only m-value for which such a factorization occurs, as the next two results
show.

Proposition 2.13. Let r = 1/c and c = 4m2(m2 − 1) for m ≥ 2. If f3(x) has strictly more than
two irreducible factors, then either

8m6 − 12m4 + 4m3 + 4m2 − 4m+ 1 or 8m6 − 12m4 − 4m3 + 4m2 + 4m+ 1

is a square in Q.

Proof. Observe that f3r (x) has strictly more than two irreducible factors if and only if qi(fr(x))
is reducible for at least one i ∈ {1, 2}. Assume that qi(fr(x)) is reducible, let α be a root of
qi(fr(x)), and observe that fr(α) =: β is a root of qi(x). By the irreducibility of qi(x), we
have [Q(β) : Q] = 2. Because qi(fr(x)) is reducible, we have [Q(α) : Q] < 4, which implies
[Q(α) : Q(β)] = 1, and thus α ∈ Q(β). But α is a root of fr(x)−β = x2 + r−β, and so α ∈ Q(β)
is equivalent to β − r being a square in Q(β). Letting β′ be the other root of qi(x), we have

NQ(β)/Q(β − r) = (β − r)(β′ − r) = qi(r) =
8m6 − 12m4 ∓ 4m3 + 4m2 ± 4m+ 1

(4m4 − 4m2)2

The multiplicativity of the norm map implies that the rightmost expression is a square in Q. �

We now prove Theorem 1.6, which we restate here.

Theorem 2.14. The only rational points on the curve y2 = 8x6 − 12x4 − 4x3 + 4x2 + 4x+ 1 are
those with x ∈ {−2,−1, 0, 1}.

Proof. We note first that the map (x, y)→ (1/x, y/x3) gives a birational transformation from the
curve y2 = 8x6 − 12x4 − 4x3 + 4x2 + 4x+ 1 to the curve

C : y2 = F (x) = x6 + 4x5 + 4x4 − 4x3 − 12x2 + 8.

Therefore, it suffices to find all rational points on C. Next, we see that the polynomial F (x)
factors over a small extension of Q. Fix an algebraic number β satisfying β3− 8β2 + 20β− 8 = 0,
and observe that

F (x) =
(
x2 + (−β + 4)x+ 1/2(β2 − 6β + 8)

)(
x4 + βx3 + 1/2(β2 − 2β)x2 − 4x− 2β + 4

)
.
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Let K = Q(β), a number field of class number 1. Therefore, if (x, y) is a rational point on C,
then there exist y1, y2, α ∈ K such that

αy21 = F1(x) = x2 + (−β + 4)x+ 1/2(β2 − 6β + 8)

αy22 = F2(x) = x4 + βx3 + 1/2(β2 − 2β)x2 − 4x− 2β + 4
(2.9)

simultaneously; this follows from the fact that F1(x) and F2(x) lie in the same square-class in K.
Moreover, we may assume that α is in the ring of integers OK of K and that the ideal αOK is not
divisible by the square of an ideal in OK . On the other hand, since the degrees of F1 and F2 are
not both odd (see Example 9 and Theorem 11 of [20]), if p is a prime in OK that divides α and is
coprime to 2, then p must divide the resultant R = 36β2 − 240β + 400 of F1 and F2. Therefore,
we may write

(2.10) α = (−1)e0 · 2e1 ·
(β2

4
− 3β

2
+ 2
)e2
·
(3β2

4
− 4β + 5

)e3
for some ei ∈ {0, 1} and 0 ≤ i ≤ 3; here we use Sage to factor the fractional ideal generated by R

and find generators −1 and β2

4 −
3β
2 + 2 of the unit group of K. In particular, we have deduced

that if (x, y) ∈ C(Q), then (x, y2) is a K-point on

Vα : αy2 = F2(x),

for some y2 ∈ K and some α in (2.10). In particular, for such α it must be the case that Vα(Kv)
is non-empty for every completion Kv/K. However, we check with MAGMA that only the curves

Vα corresponding to α = 1 and α = β2

4 −
3β
2 + 2 have points everywhere locally. On the other

hand, Vα(K) is non-empty for both of these choices of α. Therefore, there exist computable
elliptic curves E1 and E2 (in Weierstrass form) together with birational maps φ1 : E1 → V1 and
φ2 : E2 → Vβ2

4
− 3β

2
+2

all defined over K. In particular, it suffices to compute the sets

Si =
{
P ∈ Ei(K) : x(φi(P )) ∈ P1(Q)

}
for i ∈ {1, 2}, to classify the integral points on C. However, E1(K) and E2(K) both have rank 2.
In particular, rank(E1(K)) and rank(E2(K)) are both strictly less than [K : Q] = 3. Therefore,
S1 and S2 are finite sets, and we may use the elliptic Chabauty method to describe them; see,
for instance, [5, §4.2]. Moreover, since both E1 and E2 are in Weierstrass form and we succeed in
finding explicit generators for their Mordell-Weil groups, we may use an implementation of the
elliptic Chabauty method in MAGMA to describe S1 and S2; see the file named Elliptic Chabauty
at the website above for the relevant code. In particular, we deduce that

C(Q) = {∞+,∞−, (±1,±1), (−1/2,±19/8)},
from which Theorem 2.14 easily follows. �

Corollary 2.15. Let r = 1/c and c = 4m2(m2 − 1) for m ≥ 2. Then f3r (x) has more than two
irreducible factors if and only if m = 2.

Proof. The sufficiency is clear from (2.8). To see that m = 2 is also necessary, assume that f3r (x)
has more than two irreducible factors. From Proposition 2.13, we have that m or −m is the
x-coordinate of an integral point on the curve y2 = 8x6−12x4−4x3+4x2+4x+1. It then follows
from Theorem 2.14 that ±m ∈ {−2,−1, 0, 1}. Since m ≥ 2, the only possibility is m = 2. �

We have now assembled enough ingredients to prove Theorem 1.5.
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Proof of Theorem 1.5. Part (a) is proven in Propositions 2.4 and 2.10. Part (b) follows from
Proposition 2.12 and the remarks after (2.5).

The first assertion of part (c) is proven in Corollary 2.15. To prove the second assertion,
let m = 2, let q1 and q2 be as in (2.7), and set v1(x) = x2 − (1/2)x + 19/48 and v2(x) =
x2 + (1/2)x+ 19/48, so that q2(fr(x)) = v1(x)v2(x). We must show that q1(f

n
r (x)) and vj(f

n
r (x))

(j ∈ {1, 2}) are irreducible for all n ≥ 1. Because q1, v1, and v2 have even degree, by Lemma 2.2
it suffices to prove q1(f

n
r (0)) and vj(f

n
r (0)) are not squares in Q for all n ≥ 1.

We now search for primes p satisfying the condition (2.3), with q1 and vj replacing g2. We
reduce the sequence q1(f

n
r (0)) modulo 239, and find that it only takes the non-square value 13

for n ≥ 7. For n with 1 ≤ n ≤ 6, one verifies directly that q1(f
n
r (0)) is not a square. We reduce

the sequence v1(f
n
r (0)) modulo 239, and find that it only takes the non-square value 73 for n ≥ 7.

For n with 1 ≤ n ≤ 6, one verifies directly that v1(f
n
r (0)) is not a square. We reduce the sequence

v2(f
n
r (0)) modulo 41, and find that it only takes the non-square value 24 for n ≥ 7. For n with

1 ≤ n ≤ 6, one verifies directly that v2(f
n
r (0)) is not a square. �

We close this section with a proof of one case of Theorem 1.2.

Proposition 2.16. Let r = 1/c and c = 4m2(m2−1) for m ≥ 3, and let q1 and q2 be as in (2.7).
Suppose that 4m2(m2−1) ≤ 109. Then for all n ≥ 1 we have q1(f

n
r (x)) and q2(f

n
r (x)) irreducible.

Hence fnr (x) is a product of two irreducible factors for all n ≥ 2.

Proof. Observe that 4m2(m2 − 1) ≤ 109 if and only if m ≤ 125. Because q1 and q2 have even
degree, by Lemma 2.2 it suffices to prove q1(f

n
r (0)) and q2(f

n
r (0)) are non-squares in Q for all

n ≥ 1. We search for primes p satisfying the condition (2.3), with q1 and q2 replacing g2.
For q1(f

n
r (0)), we find that there exists a prime p ≤ 500 (indeed, p ≤ 337) with the desired

property for all m with 3 ≤ m ≤ 125. For q2(f
n
r (0)), we also find that there exists a prime p ≤ 500

with the desired property for all m with 3 ≤ m ≤ 125.
For each such m and p, we take the finitely many terms of the sequence (q1(f

n
r (0)))n≥2 (resp.

(q2(f
n
r (0)))n≥2) that have still not been proven non-square, and reduce modulo small primes until

all have been proven non-square. �

3. The proof of cases (1)-(4) of Theorem 1.3

In the last section, we saw the primary importance of whether or not p(fnr (0)) is a square,
for various polynomials p(x). For the remainder of this article, we use similar ideas to study the
irreducibility of fr(x) in the case where f2r (x) is irreducible. However, we use a refinement of [10,
Proposition 4.2], similar to [11, Theorem 2.3], that is more powerful; see Lemma 1.10 (restated
as Lemma 3.2 below).

Recall from the introduction that r = 1/c, and that fnr (0) is a rational number with denominator

c2
n−1

. We define an(c) to be the numerator of fnr (0). Hence an(c) is described by the recurrence

(3.1) a1(c) = 1, an(c) = an−1(c)
2 + c2

n−1−1 for n ≥ 2.

To ease notation, we often suppress the dependence on c, and write a1, a2, etc. Recall also that
we define

(3.2) bn :=
an−1 +

√
an

2
∈ Q.

Proposition 3.1. If c < 0, then an is not a square in Q for all n ≥ 2.
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Proof. Let r = 1/c and fr(x) = x2 + r, and consider the image of the interval I = (−
√
−r, 0)

under fr : R → R. We have fr(−
√
−r) = 0 and fr(0) = r ∈ I, so as fr is a continuous function

with no critical points in I, it follows that fr(I) ⊂ I. As fr(0) = r ∈ I, inductively, fnr (0) ∈ I for
all n ≥ 1. Hence 0 > fnr (0) = an/c

2n , and hence an < 0 for n ≥ 1, proving that an is not a square
in Q. �

We now prove Lemma 1.10, which we restate here.

Lemma 3.2. Suppose that c ∈ Z \ {0}, r = 1/c, and f2r is irreducible. Let an = an(c) and bn
be defined as in (3.1) and (3.2), respectively. If for every n ≥ 3, bn is not a square in Q (which
holds in particular if an is not a square in Q), then fnr (x) is irreducible for all n ≥ 1.

Proof. This proof is essentially the same as the proof of [11, Theorem 2.3], but for completeness
we give the argument here. By hypothesis f2r (x) is irreducible; assume inductively that fnr (x) is
irreducible for some n ≥ 2. Let α be a root of fn+1

r (x), and observe that fr(α) =: β is a root
of fnr (x). By our inductive assumption, we have [Q(β) : Q] = 2n. Now fn+1

r (x) is irreducible if
and only if [Q(α) : Q] = 2n+1, which is equivalent to [Q(α) : Q(β)] = 2. This holds if and only
if fr(x) − β is irreducible over Q(β), i.e. β − r is not a square in Q(β). Now factor fnr (x) over
K1 := Q(

√
−r). We have fnr (x) = (fn−1r (x)−

√
−r)(fn−1r (x)+

√
−r), and because [Q(β) : Q] = 2n,

we must have [Q(β) : K1] = 2n−1, which implies that the minimal polynomial of β over K1 is one
of fn−1r (x)±

√
−r. It follows that NQ(β)/K1

(β− r) is the product of (β′− r), where β′ varies over

all roots of fn−1r (x) ±
√
−r; this product is just fn−1r (r) ±

√
−r (here we use that n ≥ 2, so the

degree of fn−1r (x) is even and we may replace the product of (β′−r) with the product of (r−β′)).
To summarize, we have

NQ(β)/K1
(β − r) = fn−1r (r)±

√
−r = fnr (0)±

√
−r.

Suppose now that fn+1
r (x) is reducible, and hence β − r is a square in Q(β). Because the norm

map is multiplicative, this implies NQ(β)/K1
(β − r) is a square in K1, i.e. there exist s1, s2 ∈ Q

with (s1 + s2
√
−r)2 = fnr (0) ±

√
−r. Elementary calculations show this last equality implies

s2 = 1
2s1

and s21 − rs22 = fnr (0), whence

s21 =
fnr (0)±

√
fn+1
r (0)

2
=
an ±

√
an+1

2c2n−1 .

Now n ≥ 2, and hence we have that one of (an ±
√
an+1)/2 is a square in Q. If c < 0, then this

is impossible by Proposition 3.1. Hence suppose c > 0. As an+1 = a2n + c2
n−1 > a2n > 0, we have

(an −
√
an+1)/2 < 0, implying that (an +

√
an+1)/2 is a square in Q. But this is contrary to the

hypotheses of the lemma, and we thus conclude that fn+1
r (x) is irreducible. �

Proposition 3.3. Let c ∈ Z \ {0,−1}. Then neither a3 nor a4 is a square in Q.

Proof. We have a3(c) = c3 + c2 + 2c+ 1, and so if a3(c) = y20 for y0 ∈ Q, then necessarily y0 ∈ Z,
and (c, y0) is an integer point on the elliptic curve y2 = x3 +x2 +2x+1. This curve has conductor
92, and is curve 92.b2 in the LMFDB [16]. Besides the point at infinity, it has only the rational
points (0,±1), but c = 0 is excluded by hypothesis.

We now address a4(c). As in the previous paragraph, if a4(c) = y20 for y0 ∈ Q, then (c, y0) is
an integer point on the hyperelliptic curve

C : y2 = x7 + x6 + 2x5 + 5x4 + 6x3 + 6x2 + 4x+ 1.
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One easily checks that x7 +x6 +2x5 +5x4 +6x3 +6x2 +4x+1 has no repeated roots, and hence C
has genus 3. Denote by J the Jacobian of C. A two-descent using MAGMA [2] shows that J(Q)
has rank zero, and hence consists only of torsion. We now use standard reduction techniques
to determine all torsion in J(Q) [9, Theorem C.1.4 and Section C.2]. We have a commutative
diagram

(3.3)

C(Q) −−−−→ J(Q)y y
C(F3) −−−−→ J(F3)

where the vertical maps are reduction modulo 3 and the horizontal maps are the Abel-Jacobi
maps taking P to the divisor class of (P − ∞). The latter are injective [9, Corollary A.6.3.3].
The discriminant of C is 212 · 23 · 2551, and it follows that C, and hence J [9, p. 164], has good
reduction at all primes p /∈ {2, 23, 2551}. Because J(Q) is torsion, it follows that for any such
prime p, the reduction map J(Q) → J(Fp) is injective; see, for instance, the appendix of [15].
Thus the right vertical map in (3.3) is injective, and it follows that the left vertical map is injective
as well. But one verifies that #C(F3) = 4, and hence C(Q) = {∞, (0,±1), (−1, 0)}. Because we
have excluded c = 0,−1, we arrive at the desired contradiction.

One may attempt the same argument with a5(c), but a 2-descent on the Jacobian J of the
associated genus-7 hyperelliptic curve shows only that the rank of J(Q) is at most 2. �

Proposition 3.4. The sequence (an)n≥1 is a rigid divisibility sequence. (See Definition 2.5).

Proof. This is a straightforward application of [8, Lemma 2.5]. �

Proposition 3.5. Suppose that c + 1 is not a square in Z. If c satisfies any of the congruences
in Table 1, then an is not a square in Q for all n ≥ 2.

Proof. By Proposition 3.1, it suffices to consider c > 0. Because a2 = c + 1 > 0 is non-square
by assumption, there is a prime q with vq(c + 1) odd. Proposition 3.4 then implies that a2m is
non-square for all m ≥ 1, so we need only check that an is non-square for odd n ≥ 2. To do
this, we let f(x) = x2 + 1/c and we take p to be a fixed prime with p < 100 and p - c. Let

c0 ∈ {1, . . . , p − 1} satisfy (1/c) ≡ c0 mod p and put f̄ = x2 + c0 ∈ Fp[x]. Now an = c2
n−1

fn(0),
and it follows that if f̄n(0) is not a square in Fp, then an is not a square in Q. The sequence
(f̄n(0) mod p)n≥1 eventually lands in a repeating cycle. When this sequence is such that f̄2n+1(0)
is a non-square in Fp for all n ≥ 2, then a2n+1 is a non-square in Z for all n ≥ 1 (the n = 1 case
is by Proposition 3.3). Most of the pairs of p, c listed in Table 1 yield such a result. For instance,
when p = 3 and c ≡ 1 mod p, we have f̄n(0) = 2 for all n ≥ 2. When p = 5 and c ≡ 3 mod p, the
sequence f̄n(0) is 2, 1, 3, 1, 3, . . ., and hence f̄2n+1(0) is a non-square for all n ≥ 1. The remaining

pairs p, c in Table 1 satisfy the condition that both f̄3(n+1)+1(0) and f̄3n+2(0) are non-squares for
n ≥ 1 (the n+ 1 comes from the fact that a4 is automatically a non-square by Proposition 3.3).
Thus a3n+1 and a3n+2 are non-squares in Z for all n ≥ 1. But by Proposition 3.3 we have that a3
is not a square in Z, and it follows from Proposition 3.4 that a3n is a non-square in Z for all n ≥ 1.
An example is when p = 7 and c ≡ 5 mod p, for which the sequence f̄n(0) is 3, 5, 0, 3, 5, 0, . . .. �

We now prove cases (1)-(4) of Theorem 1.3, which we restate here.

Theorem 3.6. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}, and let an and bn be as in
(3.1) and (3.2). Assume that c satisfies one of the following conditions:
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c ≡ 1, 2 (mod 3)

c ≡ 3 (mod 4)

c ≡ 2, 3 (mod 5)

c ≡ 1, 2, 5, 6 (mod 7)

c ≡ 1 (mod 8)

c ≡ 1, 3, 5, 7, 10 (mod 11)

c ≡ 3, 4, 5, 6, 8, 11 (mod 13)

c ≡ 6, 10, 14, 15 (mod 17)

c ≡ 1, 4, 9, 11, 12, 13, 15, 16, 18 (mod 19)

c ≡ 6, 10, 12, 18, 20, 22 (mod 23)

c ≡ 2, 12, 14, 17, 18, 27 (mod 29)

c ≡ 1, 10, 13, 16, 22, 27, 30 (mod 31)

c ≡ 6, 18, 23, 31, 32, 35 (mod 37)

c ≡ 7, 8, 11, 19, 25, 28, 35, 36 (mod 41)

c ≡ 1, 2, 4, 5, 9, 14, 15, 21, 27, 33, 37, 42 (mod 43)

c ≡ 6, 7, 9, 10, 24, 25, 28, 33, 46 (mod 47)

c ≡ 5, 18, 21, 23, 26, 30, 37, 40, 43, 45, 46, 47 (mod 53)

c ≡ 10, 14, 16, 29, 37, 47, 55, 57, 58 (mod 59)

c ≡ 2, 3, 11, 13, 15, 27, 30, 32, 34, 40, 45, 50 (mod 61)

c ≡ 10, 15, 20, 32, 33, 38, 41, 49, 51, 53, 55, 66 (mod 67)

c ≡ 4, 10, 49, 51, 53, 61, 70 (mod 71)

c ≡ 1, 3, 35, 43, 44, 50, 51, 71 (mod 73)

c ≡ 3, 12, 25, 32, 36, 58, 78 (mod 79)

c ≡ 15, 16, 19, 23, 25, 29, 31, 37, 41, 44, 51, 56, 59, 68, 71, 82 (mod 83)

c ≡ 13, 25, 49, 63 (mod 89)

c ≡ 3, 9, 21, 53, 59, 79, 89 (mod 97)

Table 1. Congruences that ensure an is not a square for n ≥ 2, provided that
c+ 1 is not a square.

(1) −c ∈ Z \ Z2 and c < 0;
(2) −c, c+ 1 ∈ Z \ Z2 and c ≡ −1 mod p for a prime p ≡ 3 mod 4;
(3) −c, c+ 1 ∈ Z \ Z2 and c satisfies one of the congruences in Proposition 3.5 (see Table 1);
(4) −c ∈ Z \ Z2 and c is odd;

In cases (1)-(3), an is not a square in Q for any n ≥ 2, while in case (4), bn is not a square for
any n ≥ 2. In all cases, fnr (x) is irreducible for all n ≥ 1.
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Proof. Observe that conditions (1)-(4) each imply that f2r (x) is irreducible, by Proposition 2.1
(note that c = 4m2(m2 − 1) implies that c+ 1 = (2m− 1)2, and that this is impossible when c is
odd). We now argue that in cases (1)-(3) an is not a square in Q for any n ≥ 2 and in case (4),
bn is not a square for any n ≥ 2. In all these cases, Lemma 1.10 proves that fnr (x) is irreducible
for all n ≥ 1.

If we are in case (1), then the desired conclusion holds by Proposition 3.1.
Assume we are in case (2). Because we have already established case (1), it suffices to consider

c > 0. Because 1/c ≡ −1 mod p, we see that modulo p, the orbit of 0 under fr is 0 7→ −1 7→ 0 7→
· · · . Moreover, −1 is not a square modulo p by assumption, and so a2n+1 is not a square for all
n ≥ 3. Because a2 = c+ 1 ≥ 2 is assumed non-square, it must be divisible by some prime to odd
multiplicity. From Proposition 3.4 it then follows that a2n is not a square in Q for all n ≥ 1.

In case (3) the desired conclusion holds by Proposition 3.5.
In case (4), if an is not a square in Q then bn cannot be a square in Q, and so we are done. If

an is square in Q, then from the recursion in (3.1) and the fact that any integer equals its square
modulo 2, we have

√
an ≡ an ≡ a2n−1 + c2

n−1−1 ≡ a2n−1 + 1 ≡ an−1 + 1 (mod 2).

Thus modulo 2, we have an−1 +
√
an ≡ 2an−1 + 1 ≡ 1, whence v2

(
an−1+

√
an

2

)
= −1, proving that

bn =
an−1+

√
an

2 is not a square in Q. �

4. Proof of cases (5) and (6) of Theorem 1.3

In this section we deduce consequences from the assumption that an(c) or even bn(c) is a square.
This will lead to a fairly small upper bound on n in terms of c. One application is the proof of
cases (5) and (6) of Theorem 1.3. Another is the development of a fast algorithm for checking
that all iterates of f are irreducible as soon as f2 is, for all c up to a very large bound; this is
done in the next section.

We denote the set of positive integers by Z+.

Lemma 4.1. Let c ∈ Z+ and n ≥ 2 such that an(c) is a square. Then we can write c = uv with
coprime integers u and v such that

(1) if c is odd, then

v2
n−1−1 − u2n−1−1 = 2an−1(uv);

(2) if c is even, then u is even and

v2
n−1−1 − 1

4u
2n−1−1 = an−1(uv).

If in addition bn(c) = (an−1(c) +
√
an(c))/2 is a square (with the positive square root), then c is

even and v is a square (and u and v are positive) or −u is a square (and u and v are negative).

Proof. To simplify notation, we set N := 2n−1 − 1. By assumption, there is s ∈ Z+ such that

an(c) = cN + an−1(c)
2 = s2

and hence

cN =
(
s+ an−1(c)

)(
s− an−1(c)

)
.
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It follows easily by induction that am(c) ≡ 1 mod c for all m ≥ 1; in particular, an−1(c) and s are
coprime with c. Since gcd(an−1(c), s) divides a power of c, it follows that an−1(c) and s are also
coprime. So we can deduce that

gcd
(
s+ an−1(c), s− an−1(c)

)
| gcd(2s, 2an−1(c)) = 2.

We set t+ := s+ an−1(c) and t− := s− an−1(c).
(1) If c is odd, then the gcd on the left is odd (since it divides a power of c), so t+ and t− are

coprime. Then t+t− = cN implies that c = uv with u, v coprime and t+ = vN , t− = uN .
The claim follows, since t+ − t− = 2an−1(c).

(2) Now assume that c is even. Then gcd(s + an−1(c), s − an−1(c)) = 2, since both entries
have the same parity and their product is even. We can then write c = uv with coprime
u and v and u even such that either t+ = 2vN and t− = 1

2u
N or t+ = 1

2u
N and t− = 2vN .

In the first case, the claim again follows from t+ − t− = 2an−1(c). In the second case, we
obtain (−v)N − 1

4(−u)N = (−t− + t+)/2 = an−1((−u)(−v)), so we get the claim upon
changing the signs of u and v.

For the last claim, observe that

0 <
an−1(c) +

√
an(c)

2
=
an−1(c) + s

2
=
t+
2
.

If c is odd, then t+ is odd, and t+/2 cannot be a square. Otherwise, t+/2 is equal to either vN or
(−u)N/4. Since N is odd, the claim follows. �

We set, for c ≥ 4,

F (c) =
1

2

(
1−

√
1− 4

c

)
=

2

c

(
1 +

√
1− 4

c

)−1
.

From the first expression, it is clear that F (c) decreases monotonically from 1/2 to 0 as c grows
from 4 to infinity. The second expression shows that for large c, F (c) is close to 1/c.

Lemma 4.2. Let c ≥ 4. Then the sequence (ān(c))n≥1, where

ān(c) =
an(c)

c2n−1−1 ,

satisfies 1 = ā1(c) < ā2(c) < . . . and limn→∞ ān(c) = cF (c).

Proof. We have that ān+1(c) = 1 + ān(c)2/c. When 1 ≤ x < cF (c), then cF (c) > 1 +x2/c > x, so
that the sequence is strictly increasing and bounded by cF (c). Since cF (c) is the smallest fixed
point ≥ 1 of x 7→ 1 + x2/c, it must be the limit. �

We make a couple of definitions.

Definition 4.3. Let c ≥ 2 be an integer. We set

q(c) = min
{v
u

: u, v ∈ Z+ coprime with v > u and c = uv
}

and

q̃(c) = min
{v
u

: u, v ∈ Z+ coprime with v > u, c = uv and at least one of u and v is a square
}
.

We note that q̃(c) ≥ q(c) > 1 + 1/
√
c, since v ≥ u + 1 in the set above, so q(c) ≥ 1 + 1/u for

the minimizing u, and u <
√
c, since u2 < uv = c.

We write “log” for the natural logarithm.
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Definition 4.4. Let c ∈ Z+ and n ≥ 2. We define ε(n, c) so that

log

√
an(c) + an−1(c)√
an(c)− an−1(c)

=
ε(n, c)√

c
.

It follows from Lemma 4.2 and the properties of F (c) that for fixed c ≥ 4, ε(n, c) increases
with n with limit

ε(c) := lim
n→∞

ε(n, c) =
√
c log

1 +
√
F (c)

1−
√
F (c)

and that ε(c) decreases monotonically when c increases, with limc→∞ ε(c) = 2. In particular, we
have that

ε(n, c) ≤ ε(c) ≤ ε(4) = 4 log(1 +
√

2) and
ε(n, c)√

c
≤ 2 log(1 +

√
2) .

Since (ex − 1)/x is monotonically increasing for positive x, this implies that (for c ≥ 4)

(4.1) exp
(ε(n, c)√

c

)
≤ 1 +

1 +
√

2

log(1 +
√

2)
· ε(n, c)√

c
≤ 1 +

4(1 +
√

2)√
c

.

We note that

ε(c)√
c log q(c)

< 3.46 for c ≥ 4,(4.2)

ε(c)√
c log(1 + 1/

√
c)
< 2.12 for c ≥ 100,(4.3)

ε(c)√
c log(1 + 1/

√
c)
< 2.01 for c ≥ 10400.(4.4)

(To get (4.2), we use (4.3) and the explicit values of q(c) for c < 100. The maximum is achieved
for c = 6.) We will also need the elementary bound

(4.5)
1

log(1 + 1/
√
c)
≤
√
c+ 1

2 .

We can now deduce an upper bound on n such that an(c) can be a square.

Proposition 4.5. Let c ≥ 4 be an integer and n ≥ 4. If c is odd or

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q(c)

+
log 4

log q(c)

)
,

then an(c) is not a square. This is the case whenever

√
c ≤ 2n−1 − 1

log 4
− 3.

If the weaker condition

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q̃(c)

+
log 4

log q̃(c)

)
holds, then bn(c) is not a square.
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Proof. In the following, we write am for am(c), since c is fixed. We assume that an is a square,
so by Proposition 3.3 we have n ≥ 5, and by Lemma 4.1 and its proof we can write c = uv with
coprime u, v (and u even when c is even) such that

(vN , uN ) = (
√
an + an−1,

√
an − an−1) if c is odd;

(vN , uN ) =
(
1
2(±
√
an + an−1), 2(±

√
an − an−1)

)
if c is even,

where N = 2n−1 − 1.
First assume that c is odd. Then v > u > 0, and we obtain using (4.1)

1 +
N√
c
≤
(

1 +
1√
c

)N
<
(v
u

)N
=

√
an + an−1√
an − an−1

= exp
(ε(n, c)√

c

)
≤ 1 +

4(1 +
√

2)√
c

,

which is a contradiction, since N ≥ 15. So an cannot be a square.
Now assume that c is even. If u, v > 0 (this corresponds to the positive sign above), then(v

u

)N
=

1

4

√
an + an−1√
an − an−1

.

If u, v < 0, then (u
v

)N
= 4

√
an + an−1√
an − an−1

.

In both cases, we have that | log(v/u)| ≥ log q(c). This gives

(4.6) N log q(c) ≤ N
∣∣∣log

v

u

∣∣∣ ≤ log 4 +
ε(n, c)√

c
,

which is equivalent to the inequality we wanted to show. If we assume that bn(c) is a square, then
we have in addition that |u| or |v| is a square, hence the bound is valid for q̃(c) in place of q(c).

The bound on
√
c follows from the first inequality, the estimates ε(n, c) ≤ ε(c), q(c) > 1+1/

√
c,

and from (4.2) and (4.5). Note that 3.46/(log 4) + 0.5 < 3. �

This gives the following.

Corollary 4.6. Let c ≥ 4 be an integer and set f(x) = x2 + 1/c.

(1) If c is odd, then all fn are irreducible.
(2) If c is even and fm is irreducible for

m = 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.
(3) If c is even, f2 is irreducible, and ap(c) is not a square for all prime numbers p with

5 ≤ p ≤ 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.
(4) If f2 is irreducible, c > 50, and q̃(c) ≥ 1.15c−1/30, then all fn are irreducible.

We note that case (1) gives another proof of case (4) of Theorem 1.3 for positive c.
For large c, the bound on n in case (2) of the corollary is close to 1 + log2(3 + (

√
c+ 1

2) log 4).

Proof. We recall that all fn are irreducible when fm is irreducible for some m and an(c) or bn(c)
is not a square for all n > m.
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(1) If c is positive and odd, then f is irreducible and f2 is also irreducible (since c is not of the
form 4m2(m2 − 1), compare Proposition 2.1). By Proposition 3.3, a3(c) is never a square
when c > 0. By Proposition 4.5, an(c) is not a square for all n ≥ 4, so the claim follows.

(2) If c is even and n > m, then

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q(c)

+
log 4

log q(c)

)
,

since q(c) > 1 + 1/
√
c and ε(n, c) < ε(c). So by Proposition 4.5, an(c) is not a square, and

the claim again follows.
(3) Let m be as in (2). Then an(c) is not a square for n > m. For 3 ≤ n ≤ m, an(c) is not

a square by assumption (or by Proposition 3.3 for n = 3) if n is prime. Otherwise, n is
divisible by 4 or by an odd prime p ≤ m; then it follows that an(c) is not a square either,
because (an(c)) is a rigid divisibility sequence by Proposition 3.4 and neither a4(c) (by
Proposition 3.3 again) nor ap(c) is a square.

(4) First note that 22/15ε(c)1/15 < 1.15 when c > 50. The stated inequality then implies that
the bound on n in the second statement of Proposition 4.5 is < 5. �

We remark that recent work by one of the authors [21] shows that a5(c) is never a square when
c 6= 0, which allow us to replace “5” by “7” in case (3) of the corollary and the condition in

case (4) by “q̃(c) ≥ 1.034c−1/126”.
We can use case (4) of Corollary 4.6 to deduce case (5) of Theorem 1.3; case (6) of this theorem

follows by a similar argument.

Proof of cases (5) and (6) of Theorem 1.3. We can assume that c > 50 and c is even, since nega-
tive c are dealt with by case (1) and odd c are covered by case (4) of the theorem; the few positive
even c ≤ 50 can be checked individually by the methods of this section. Then the assumptions of
case (5) imply that f2r is irreducible by Proposition 2.1. Since when c is a square, c cannot be of
the form 4m2(m2 − 1) either, this is also true in case (6).

We first consider case (5). Assume that c = uv with u and v coprime and (say) |u| a square.

Then |v| ≥
∏

p:2-vp(c)
pvp(c) and |u| ≤

∏
p:2|vp(c)

pvp(c), so that the inequality in the statement implies

that q̃(c) > 1.15c−1/30. The claim follows by invoking case (4) of Corollary 4.6.
We now consider case (6). If the claim is false, then there is n ≥ 5 such that an(c) is a square.

By Lemma 4.1 it follows that we can write c = uv with coprime u and v, with u even, such that

v2
n−1−1 − 1

4u
2n−1−1 = an−1(c). Both u and v are now squares up to sign, so that we have

(v2
n−1−1, 14u

2n−1−1) = ±(x2, y2)

with coprime integers x and y, which implies that

(4.7) x2 − y2 = ±an−1(c).
Recall that an−1(c) ≡ 1 mod c. Since c is an even square, x is odd, and y is even, we obtain
the congruence 1 ≡ ±1 mod 4, which shows that we must have the positive sign in (4.7). Let
p 6≡ 1 mod 4 be a prime dividing c; since c is a square, p2 | c. It follows that x2 ≡ y2 + 1 mod p2,
and since −1 is a non-square mod p2, p | x is impossible, so that we must have p | y. This in turn

implies that |u| ≥
∏

p:p 6≡1 mod 4

pvp(c) and |v| ≤
∏

p:p≡1 mod 4

pvp(c). The inequality in the statement

then implies that u/v > 1.15c−1/30. This contradicts the second inequality in (4.6), so that we
can conclude as in the proof of Proposition 4.5 that an(c) cannot be a square, a contradiction. �
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5. A fast algorithm and the proof of case (7) of Theorem 1.3

In this section we always assume that c ≥ 4 is an even integer. Fix n ≥ 5 and assume that
an = an(c) is a square. Set N = 2n−1 − 1. By Lemma 4.1, we can write c = uv with u and v
coprime integers and u even such that

(5.1) vN − 1

4
uN = an−1(c).

We now consider equation (5.1) as a relation between real numbers. First note that for c ≥ 6,
we have (using Lemma 4.2 for the second inequality)

c2
n−2−1 + c2

n−2−2 ≤ an−1(c) ≤ c2
n−2

F (c) ≤ c2n−2−1 + 2c2
n−2−2,

so (5.1) implies that

vN − 1

4
uN = (uv)M + λ(uv)M−1

with 1 ≤ λ ≤ 2, where M = 2n−2 − 1 (so that N = 2M + 1).

We now set θ := 21/N , x := θ−1u and y := θv; this gives

yN − xN = 2(xy)M + 2λ(xy)M−1.

Writing

z :=
(xy)M

x2M + x2M−1y + . . .+ y2M
> 0

and recalling that N = 2M + 1, this leads to

(5.2) y − x = 2
(

1 +
λ

xy

)
z.

We want to estimate z. We expect that z is close to 1/N , which is the value we obtain when
x = y. Since x2M−kyk + xky2M−k ≥ 2(xy)M , it follows that

z ≤ 1

N
.

Since xy = uv = c ≥ 6, we see that y − x has to be small:

(5.3) 0 < y − x < 3

N
.

We get a lower bound on z as follows. Write wk := xk + xk−1y + . . .+ yk. We consider

xy

(y − x)2
(1−Nz) =

xyw2M −N(xy)M+1

(y − x)2w2M
=

M∑
j=1

(xy)M+1−j(yj − xj)2

(y − x)2w2M
=

M−1∑
j=0

(xy)M−jw2
j

w2M
.

We note that

(xy)M−jw2
j = xM+jyM−j +2xM+j−1yM−j+1+ . . .+(j+1)xMyM + . . .+xM−jyM+j ≤ (j+1)w2M ,

which gives that

xy

(y − x)2
(1−Nz) ≤

M−1∑
j=0

(j + 1) =
M(M + 1)

2
,

so, using (5.3) for the second inequality,

z ≥ 1

N
− M(M + 1)

2N

(y − x)2

xy
≥ 1

N
− 9M(M + 1)

2N3

1

xy
.
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Using this, 1 ≤ λ ≤ 2, and 0 < λ/(xy) ≤ 1/3 in (5.2), we obtain∣∣∣y − x− 2

N

∣∣∣ ≤ 4

N

1

xy
.

Going back to our original integral variables u and v, this final bound is equivalent to

(5.4)
∣∣∣θ2v − u− 2θ

N

∣∣∣ ≤ 4θ

N

1

uv
.

We want to replace 1/(uv) on the right by 1/v2. The following lemma allows us to do that.

Lemma 5.1. Let c ≥ 4 be even. We assume that an(c) is a square for some n ≥ 2 and take u

and v as in (5.1). Then, with N = 2n−1 − 1 and θ = 21/N ,

(3− 2
√

2)1/N <
u

θ2v
< (3 + 2

√
2)1/N

and

(3− 2
√

2)1/N <
θ2v

u
< (3 + 2

√
2)1/N .

In particular,

1

uv
<

(3 + 2
√

2)1/N

θ2
1

v2
and c > θ2(3− 2

√
2)1/Nv2.

Proof. Note that for c ≥ 4, we have an−1(c) < 2c2
n−2−1 ≤ cN/2. Using this in (5.1) and dividing

by vN , this gives ∣∣∣1− ( u

θ2v

)N ∣∣∣ < 2

√( u

θ2v

)N
.

Set µ := (u/(θ2v))N/2 > 0. Rearranging, we obtain that

(µ− 1)2 < 2 and (µ+ 1)2 > 2,

which gives

(
√

2− 1)2 < µ2 =
( u

θ2v

)N
< (
√

2 + 1)2,

from which the bounds in the statement are easily derived. �

Corollary 5.2. Let c ≥ 6 be even. We assume that an(c) is a square for some n ≥ 2 and take u

and v as in (5.1). Then, with N = 2n−1 − 1 and θ = 21/N ,

(5.5)
∣∣∣θ2v − u− 2θ

N

∣∣∣ < 4(3 + 2
√

2)1/N

θN

1

v2
.

Proof. This follows immediately from (5.4) and Lemma 5.1. �

We can use the estimate (5.5) to compute a large lower bound on v (and therefore on c, by
Lemma 5.1), in the following way. We set

δ :=
4(3 + 2

√
2)1/N

θN
.

Choose some ε > 0 (roughly of size B−2 when B is the desired lower bound for v). Let Λε ⊂ R2

be the lattice generated by the vectors (ε, θ2) and (0,−1). Use lattice basis reduction to find the
minimal squared euclidean distance σ(ε) between a lattice point and (0, 2θ/N). Now, assuming
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that (v, u) ∈ Z2 satisfies |θ2v − u − 2θ/N | < δ/v2 (which follows by Corollary 5.2 for suitable
(v, u) if an(c) is a square), we see that

σ(ε) ≤ (εv)2 + |θ2v − u− 2θ/N |2 < ε2v2 + δ2v−4.

If the polynomial ε2X3 − σ(ε)X2 + δ2 has two positive roots 0 < ξ− ≤ ξ+, then it follows that

|v| >
√
ξ+ or |v| <

√
ξ−.

If we already know (from Proposition 4.5 or a previous application of the method) that |v| must

be larger than
√
ξ−, then we get the new lower bound |v| >

√
ξ+.

Since the covolume of Λε is ε, we expect that σ(ε) ≈ ε. If ε is sufficiently smaller than δ2, then

we get
√
ξ− ≈

√
δ/ 4
√
ε and

√
ξ+ ≈ 1/

√
ε.

This gives the following algorithm for checking that an(c) can never be a square when 4 ≤ c ≤
θ2(3− 2

√
2)1/NB2, for a large bound B.

(1) Use Proposition 4.5 and Lemma 5.1 to determine B0 such that |v| ≥ B0 in any solution
of an(c) = �. For example, we can take

B0 :=

⌈
(
√

2− 1)1/N

θ

( N

log 4
− 3
)⌉

,

where N = 2n−1 − 1 and θ = 21/N as usual.
(2) Repeat the following steps until B0 > B.

(a) Set ε := γδ2B−40 with some γ ≈ 1.
(b) Compute σ(ε) and ξ−, ξ+.
(c) If ξ− ≥ B2

0 (or does not exist), increase γ and go to Step (2a) .

(d) Set B0 :=
⌈√

ξ+

⌉
.

If the algorithm terminates, then this gives a proof that |v| ≥ B and therefore (by Lemma 5.1)

c > θ2(3− 2
√

2)1/NB2 in any solution of an(c) = �.
Since this uses real numbers, it does not yet give a method that can be implemented on a

computer. We need to figure out which precision is necessary. The lattice basis reduction will
essentially compute continued fraction approximations to θ2 with numerators and denominators
of size roughly B2

0 . The resulting reduced lattice basis will have lengths of order B−20 . The vector
that is closest to (0, 2θ/N) will then have coefficients of order B2

0 in terms of this lattice basis.
We need the resulting minimal distance to be computed to an accuracy that is somewhat better
than B−20 . This means that we need more than 6 log2B0 bits of precision. In practice, we work
with an integral lattice obtained by scaling and rounding the basis given above, as follows. We
assume that we have computed θ to > 8 log2B0 bits of precision. In the following, bαe denotes
any integer a such that |α− a| ≤ 1. We can then make the loop in Step 2 of the algorithm above
precise in the following way.

(1) Set γ := δ2.
(2) Let Λ ⊂ Z2 be the lattice generated by (bγB4

0e, bθ2B8
0e) and (0,−B8

0).
(3) Compute the four points of Λ closest to (0, b2θB8

0/Ne); call (vj , uj) (for j = 1, 2, 3, 4) their
coefficients with respect to the original basis of Λ and set
(aj , bj) := (vjbγB4

0e, vjbθ2B8
0e − ujB8

0 − b2θB8
0/Ne).

(4) Set σ := min
j=1,2,3,4

(
max{0, |aj | − |vj |}2 + max{0, |bj | − |vj | − 1}2

)
.

(5) Set h(x) = bγB4
0e2x6 − σx4 + dδ2B16

0 e ∈ Z[x].
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(6) If h(B0) ≥ 0, then set γ := 2γ and go to Step (2) .
(7) Set B0 := max{x ∈ Z>B0 : h(x) ≤ 0}+ 1.

The main point here is that σ/B16
0 is a lower bound for σ(ε), where ε = γ/B4

0 .
If we denote the successive values taken by B0 by B0, B1, B2, . . ., then we expect that Bk+1 ≈

B2
k/δ. So to reach a given bound B, we will have to make about log logB passes through the

loop. The computational cost of the last pass dominates all others; it is polynomial in logB.

Example 5.3. We illustrate how the method works in the case n = 5. The initial lower bound
for |v| is B0 = 8. The lattice Λ has basis (336, 18401670) and (0,−16777216); the target vector
is (0, 2342757). We compute σ = 2373638400 and find that h(B0) < 0. We obtain the new lower
bound B1 = 145. In the same way, we find the successive lower bounds

B2 = 56956

B3 = 1196488139

B4 = 7319637204404186177

B5 = 41458361126834155279142315082592517830

B6 = 635194914945680574670678782626217170933611345052234788659193201707737005413

and so on.

This allows us to verify Conjecture 1.8 for all c up to a very large bound X in reasonable
time. We just have to run our algorithm for all n = p ≥ 5 prime and the corresponding bound B
for |v|, as long as the initial bound B0 (which grows roughly like 2p) is less than B. Using a
straight-forward implementation in MAGMA [2], it took less than 12 minutes (on the laptop of
one of the authors) to prove the following, which by Proposition 2.1 amounts to a proof of case (7)
of Theorem 1.3.

Proposition 5.4. Let c ∈ Z+ and set f(x) = x2 + 1/c. If c ≤ 101000 and the second iterate f2 is
irreducible, then all iterates of f are irreducible.

Proof. For c ∈ {1, 2, 3}, this can be checked by considering an(c) modulo 3, 5, and 11, respectively.
So we can assume that c ≥ 4. By Corollary 4.6, it is enough to show that ap(c) is not a square
for even c as in the statement and primes

5 ≤ p ≤ 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
≤ 1 +

⌊
log2

(
3.01 +

log 4

log(1 + 10−500)

)⌋
= 1662.

(For c ≥ 10400, we use the bound (4.4). For smaller c, the expression is much smaller than 1662.)
This is a finite computation using the algorithm described above. �

We remark that in the course of executing the algorithm, it was never necessary to increase the
initial value of γ.

We have now at last assembled all the ingredients required to prove Theorem 1.2.

Proof of Theorem 1.2. Let fr(x) = x2 + r with r = 1/c, c ∈ Z \ {0,−1} and |c| ≤ 109. If f2r (x) is
irreducible and c is negative or odd, then the claim follows from parts (1) and (4) of Theorem 1.3
(recall that fr(x) and so also f2r (x) is reducible when −c is a square). If f2r (x) is irreducible and
c is positive and even, Theorem 1.2 holds by Proposition 5.4.

If fr(x) or f2r (x) is reducible, then the relevant cases of Theorem 1.2 follow from Theorem 1.5,
Corollaries 2.9 and 2.11, and Proposition 2.16. �
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6. Applications to the density of primes dividing orbits

In this section, we prove Theorem 1.12, which we restate here for the reader’s convenience.

Theorem 6.1. Let c ∈ Z, let r = 1/c, suppose that −c and c + 1 are non-squares in Q, and

assume that Conjecture 1.11 holds for c, i.e. that
an−1+

√
an

2 is not a square in Q for all n ≥ 3.
Then for any t ∈ Q we have D({p prime : p divides Ofr(t)}) = 0.

Remark 6.2. Observe that the hypothesis that
an−1+

√
an

2 not be a square for n ≥ 2 is strictly
weaker than an not being a square for n ≥ 2; in the latter case the conclusion of Theorem 6.1
follows immediately from part (2) of [8, Theorem 1.1]. To prove Theorem 6.1, we must apply [8,
Theorem 1.1] in a non-trivial way.

Remark 6.3. When the hypotheses of Theorem 6.1 are satisfied, we also obtain certain information
on the action of GQ on Tf (0) (see p. 1 for the definition). The index-two subgroup GQ(

√
−r) acts on

both Tf (
√
−r) and Tf (−

√
r). Both of these actions are transitive on each level of the tree, i.e., on

f−nr (
√
−r) (resp. f−nr (−

√
−r)), and the images of the maps GQ(

√
−r) → Sym(f−nr (±

√
−r)) ∼= S2n

cannot lie in the alternating subgroup.

Proof. Let K = Q(
√
−r), so that fr = (x +

√
−r)(x −

√
−r) over K. Let g1 = (x +

√
−r)

and g2 = (x −
√
−r). To apply part (2) of [8, Theorem 1.1], we must show that for i = 1, 2,

gi(f
n−1
r (0)) is a non-square in K for all n ≥ 3, and also that −gi(fr(0)) is a non-square in K. But

gi(f
n−1
r (0)) = fn−1r (0)±

√
−r. As in the final part of the proof of Lemma 3.2, fn−1r (0)±

√
−r is

a square in K if and only if (fn−1r (0) ±
√
fnr (0))/2 is a square in Q, which in turn is equivalent

to (an−1 +
√
an)/2 being a square in Q. But by assumption (an−1 +

√
an)/2 is not a square

in Q for any n ≥ 3. Moreover, −gi(fr(0)) = −r ∓
√
−r, which is a square in K if and only if

(−r ±
√
r2 + r)/2 is a square in Q. Because c + 1 is not a square in Q, it follows that r2 + r is

not a square in Q either, proving that −gi(fr(0)) is not a square in Q.
Therefore we may apply part (2) of [8, Theorem 1.1] twice to show

(6.1) 0 = lim
B→∞

#{p ∈ S : N(p) ≤ B}
#{p : N(p) ≤ B}

,

where N(p) is the norm of the ideal p and S is the set of primes p in the ring of integers OK of
K that divide gi(f

n−1
r (t)) for at least one value of i ∈ {1, 2} and at least one n ≥ 2.

If we exclude the finite set of ramified primes, then the primes p in OK come in two flavors:
those with norm p, where necessarily p splits in OK ; and those with norm p2, where necessarily
p is inert in OK . Note that #{n ≤ B : n = p2 for some prime p} has asymptotic density zero
relative to #{n ≤ B : n = p for some prime p}, and so (6.1) is equivalent to

(6.2) 0 = lim
B→∞

#{p ∈ S : N(p) = p ≤ B}
#{p : N(p) = p ≤ B}

.

Suppose p in S, and say p | gi(fn−1r (t)) for n ≥ 2. Then N(p) | NK/Q(gi(f
n−1
r (t))) = fnr (t),

where NK/Q is the usual field norm. Let p = Z ∩ OK be the prime lying below p. Note that

N(p) = p if p splits inOK , i.e. if−r is a quadratic residue modulo p, andN(p) = p2 otherwise. But
0 ≡ fr(fn−1r (t)) ≡ (fn−1r (t))2+r mod p and hence −r must be a quadratic residue modulo p. Thus
N(p) = p. It follows that the numerator of (6.2) is 2#{p : p ≤ B and p divides Of (t)}. Clearly
the denominator is 2#{p : p ≤ B and −r is a quadratic residue modulo p}. But by quadratic
reciprocity and Dirichlet’s theorem on primes in arithmetic progressions, the latter is asymptotic
to #{p : p ≤ B}. It follows that D({p : p divides Of (t)}) = 0, as desired. �
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