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Abstract. We give an overview over recent results concerning rational points

on hyperelliptic curves. One result says that ‘most’ hyperelliptic curves of

high genus have very few rational points. Another result gives a bound on the
number of rational points in terms of the genus and the Mordell-Weil rank,

provided the latter is sufficiently small. The first result relies on work by

Bhargava and Gross on Selmer groups of hyperelliptic Jacobians, and both
results use Chabauty’s method.

1. Introduction

A hyperelliptic curve C of genus g ≥ 2 over Q is given by an equation of the form

C ∶ y2 = f(x) = f2g+2x2g+2 + f2g+1x2g+1 + . . . + f1x + f0 ,
where f(x) ∈ Z[x] is of degree at least 2g + 1 and squarefree. This equation defines
a smooth irreducible algebraic curve in the affine plane. We usually consider its
smooth projective model, which is obtained by adding one or two points at infinity,
corresponding to the square roots of f2g+2 (so there is one such point when f2g+2 = 0
and two points otherwise). The rational points on C are the affine points (ξ, η) ∈
Q ×Q satisfying the curve equation, together with the points at infinity if f2g+2 is
a square in Q. The set of rational points on C is denoted C(Q).

In particular, for odd degree hyperelliptic curves, meaning that deg(f) = 2g + 1,
we always have a unique rational point at infinity, which we denote ∞.

Faltings’ [Fal83] famous proof of the Mordell Conjecture [Mor22] implies that
C(Q) is always finite (recall that we assume g ≥ 2 throughout). This raises the
following question:

What can we say about #C(Q)?

2. Chabauty’s method

For a given individual curve C, Chabauty’s method [Cha41, Col85] can be used
to produce a bound on #C(Q), under a technical condition. To explain this,
we have to introduce the Jacobian variety J of C. This is an abelian variety
(a projective algebraic variety that carries a group structure compatible with the
geometric structure; the group is then necessarily abelian) of dimension g defined
over Q, and if P0 ∈ C(Q) is a rational point, then there is an embedding ι∶C → J
defined over Q that sends P0 to the origin of the group law on J . Weil [Wei29]
proved (generalizing a result of Mordell’s on elliptic curves that appeared in the
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paper [Mor22] mentioned above containing the conjecture) that the group J(Q) of
rational points on J is a finitely generated abelian group. In particular, it has a
well-defined rank r = dimQ J(Q) ⊗Z Q, which is called the Mordell-Weil rank of J
or of C. The technical condition mentioned above is that r < g.

We fix a ‘base-point’ P0 ∈ C(Q) (if there is no such point, we have #C(Q) = 0).
Chabauty’s method works p-adically, so we now fix a prime p. We write ΩJ(Qp)
for the space of regular (or invariant, this is here the same) 1-forms on J defined
over Qp and ΩC(Qp) for the space of regular 1-forms on C defined over Qp. Then
ι∗∶ΩJ(Qp)→ ΩC(Qp) is an isomorphism, which in fact is independent of the choice
of the base-point, and both sides are vector spaces over Qp of dimension g. The
group J(Qp) of p-adic points on J carries a natural p-adic topology and forms a
p-adic Lie group. There is a unique logarithm

log∶J(Qp)→ TOJ(Qp) ≅ Qgp
(where TOJ(Qp) denotes the tangent space of J(Qp) at the origin), which is a
local diffeomorphism and a group homomorphism with finite kernel J(Qp)tors. The
space ΩJ(Qp) of differentials can be canonically identified with the cotangent space
(TOJ(Qp))∗. Putting these ingredients together, we obtain a pairing

J(Qp) ×ΩJ(Qp)→ Qp , (P,ω)↦ ⟨ω, logP ⟩ ,
which is additive in the first component and Qp-linear in the second. If r < g, then
there will be a linear subspace V of ΩJ(Qp) of dimension at least g − r > 0 such
that ⟨ω, logP ⟩ = 0 for all ω ∈ V and all P ∈ J(Q).

Now we observe that the embedding ι maps C(Q) into J(Q), so we have for all
P ∈ C(Q) and all ω ∈ V that ⟨ω, log ι(P )⟩ = 0. Fixing some 0 ≠ ω ∈ V , we define a
function

λω ∶C(Qp)→ Qp , P ↦ ⟨ω, log ι(P )⟩ .
Then C(Q) is contained in the zero set of λω. Now locally C(Qp) looks like a subset
of Qp, and C(Qp) is compact (recall that we work with the smooth projective model
of the curve), so we can write C(Qp) as a (disjoint) union of finitely many residue
disks, subsets that are p-adically analytically isomorphic to the p-adic unit disk.
Pulling back λω to the parametrizing disk, we obtain a power series converging
on the disk, and using the Newton polygon obtained from the valuations of the
coefficients, we can deduce bounds for the number of zeros of λω on the residue
disk under consideration. If one takes care to pick the ‘best’ ω on each residue disk,
this leads to the following general bound [Sto06].

Theorem 1. If C is a hyperelliptic curve over Q of genus g and with Mordell-Weil
rank r < g, then for each prime p ≥ 3, we have

#C(Q) ≤ d(p) + 2r + ⌊ 2r

p − 2
⌋ ,

where d(p) denotes the number of p-adic residue disks in C(Qp). We also have the
bound

#C(Q) ≤ 2d(2) + 3r .

3. The 2-Selmer group

Now the question is, how to determine or at least bound the Mordell-Weil rank r.
The most useful tool for this in practice as well as in theory is the 2-Selmer group
Sel2 J . It is defined in terms of Galois cohomology, but for us the only important
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properties are that it is computable (see [Sto01] for how to compute it) and that it
fits into a commutative diagram

Sel2 J

$$
J(Q)
2J(Q)

- 

<<

//∏
v

J(Qv)
2J(Qv)

(where v runs through all places of Q, so that Qv runs through all p-adic fields Qp
and R). Since

dimF2

J(Q)
2J(Q)

= dimF2 J(Q)[2] + r ,

where J(Q)[2] denotes the 2-torsion subgroup of J(Q), we have

r ≤ dimF2 Sel2 J − dimF2 J(Q)[2] .

The dimension of J(Q)[2] can easily be determined from the factorization of the
polynomial f(x) over Q.

We will now focus on odd degree hyperelliptic curves. Because the degree of f(x)
is coprime to the degree of y2 in this case, we can always scale x and y so that f(x)
becomes monic. For a ring R of characteristic zero, we write Fg(R) for the set of
all monic polynomials f ∈ R[x] of degree 2g + 1 with non-vanishing discriminant,
and we just write Fg for Fg(Z). For f = x2g+1 + f2gx2g + . . . + f1x + f0 ∈ Fg, we
define the height of f to be

H(f) = max{∣fj ∣1/(2g+1−j) ∶ 0 ≤ j ≤ 2g} .

(This definition has the advantage that scaling x and y while keeping the polynomial
monic has the effect of scaling the height.) We can then order the polynomials f
or equivalently, the curves y2 = f(x), by increasing height, which allows us to talk
about the (lower) density of a set of odd degree hyperelliptic curves. First, for
X ∈ R we set

Fg,X = {f ∈ Fg ∶H(f) ≤X} .
Now let S ⊂ Fg. Then the lower density of S is

δ(S) = lim inf
X→∞

#(Fg,X ∩ S)
#Fg,X

.

In a similar way, we define the upper density δ(S). If both coincide, their common
value is the density δ(S). If φ∶Fg → R is a function, we can define the average of φ
as

A(φ) = lim
X→∞

∑f∈Fg,X
φ(f)

#Fg,X
,

provided the limit exists. Now Bhargava and Gross [BG13], extending previous
results by Bhargava and collaborators on Selmer groups of elliptic curves, have
shown the following.

Theorem 2. The average size of Sel2 J , as J runs through the Jacobian varieties
of odd degree hyperelliptic curves of genus g, is 3.
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This implies that the average of 2r is at most 3, and so r is mostly small.
Actually, Bhargava and Gross prove a bit more. Recall that there is a natu-

ral homomorphism Sel2 J → J(Qp)/2J(Qp). The latter group is locally constant
on Fg(Zp): over sufficiently small subsets, it can be identified with a fixed group G.
Then there is the following equidistribution property.

Theorem 3. Let U ⊂ Fg(Zp) be such that for all f ∈ U , J(Qp)/2J(Qp) ≅ G as
above. Then the average number of nonzero preimages in Sel2 J under the map
Sel2 J → J(Qp)/2J(Qp) → G, when f ranges through U ∩Fg, is the same for each
γ ∈ G.

4. Most curves have few rational points

We continue to consider odd degree hyperelliptic curves. Each such curve has at
least one rational point, namely the point at infinity. Heuristic considerations lead
to the expectation that most curves actually have only this one rational point, in
the sense that the subset of f ∈ Fg such that C(Q) = {∞} has density 1.

Now if we want to show that even a subset of positive (lower) density of odd
degree hyperelliptic curves of some fixed genus g has this property, then the general
Chabauty bound of Theorem 1 is not sufficient: we would need d(p) = 1 (which
is true for a subset of positive density) and r = 0, but the results of Bhargava
and Gross are not strong enough to imply this for a positive proportion of the
curves. The reason why the bound of Theorem 1 is too weak is that it does not
look at how J(Q) lies inside J(Qp); it just takes its ‘size’ (as measured by r) into
account. If we know something about the position of J(Q) inside J(Qp), then this
can be used to obtain more precise bounds. If we know the 2-Selmer group together
with the map Sel2 J → J(Qp)/2J(Qp), this will at least provide us with an upper
bound for the image of J(Q)/2J(Q) inside J(Qp)/2J(Qp). For odd p the latter
group is mostly small and does not give enough information on the image of J(Q)
in J(Qp). For p = 2, however, the situation is different, and we get some sort of
‘first approximation’ to J(Q) inside J(Q2), which can be used in the Chabauty
setup. This idea goes back to McCallum [McC94], who used it to prove results on
the second case of Fermat’s last theorem.

In our case, we obtain the following criterion. We first pick an isomorphism
of TOJ(Qp) with Qgp so that the image of log is Zgp. Then we have the following
commutative diagram.

C(Q2)
ι // J(Q2)

log // //

��

Zg2 //

��

ρ

!!

Pg−1(Q2)

��
Sel2 J //

σ

77
J(Q2)
2J(Q2)

log⊗F2// // Fg2 // Pg−1(F2)

The maps represented by dashed arrows are only partially defined (on all non-
zero elements). We denote the two partially defined maps C(Q2) ⇢ Pg−1(F2) and
Sel2 J ⇢ Pg−1(F2) by ρ log and Pσ, respectively. If we speak of their images, we
mean the images of the maps restricted to their maximal domain of definition.

Lemma 4. For a subset of density 1 of the curves in Fg, if σ∶Sel2 J → Fg2 is
injective and the images of ρ log and Pσ are disjoint, then C(Q) = {∞}.
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The condition that σ is injective guarantees that no information is lost when
mapping to Fg2, whereas the disjointness condition can be used to show that on each
residue disk, there is a suitable function λω that vanishes only at the Weierstrass
point (if present). The Weierstrass points are the points with y = 0, together with
the point at infinity (in the odd degree case). For almost all curves in the sense of
density 1, ∞ is the only Weierstrass point.

The equidistribution property of Theorem 3 tells us that the average number of
nonzero preimages under σ of an element v ∈ Fg2 is 2−(g−1). Applying this to v = 0

shows that σ is injective for a set of curves of density 1 − 2−(g−1). Also, the image
of Pσ is usually small and varies rather randomly. It remains to show that the
image of ρ log is sufficiently small on average, so that it is likely to miss the image
of Pσ. To achieve this, we bound the size of the image of ρ log on each residue
disk, and we prove a bound on the average number of residue disks. We obtain the
following.

Lemma 5.

(1) The average number of 2-adic residue disks on curves in Fg is less than 3.
(2) The average size of the image of ρ log is at most 6g + 9.

Combining the two lemmas leads to the following result [PS13].

Theorem 6. Fix g ≥ 2. Then the lower density of odd degree hyperelliptic curves C
over Q of genus g such that C(Q) = {∞} is at least 1 − (12g + 20)2−g.

So the proportion of such curves tends to 1 rather quickly as g tends to infinity.
In that sense, ‘most’ odd degree hyperelliptic curves have the point at infinity as
their only rational point.

By looking at certain special subfamilies of curves, we can also show that for all
g ≥ 3, the set of curves with C(Q) = {∞} has strictly positive lower density.

Extending the results of Bhargava and Gross and our method sketched above,
Shankar and Wang [SW14] have shown that for curves y2 = f(x) with f(x) monic
and of even degree, a proportion tending to 1 as g → ∞ in a similar way as in
Theorem 6 above have the two points at infinity as the only rational points. For
general hyperelliptic curves of genus g (such that f has even degree and does not
have to be monic), Bhargava, Gross and Wang [BGW13] have shown that, as g →∞,
only a proportion of o(2−g) of all curves have rational points at all.

5. Bounds for the number of rational points
in terms of the rank and the genus

Now we consider general hyperelliptic curves again. Heuristic considerations lead
to the expectation that there should be a bound in terms of g and r for the number
of points P ∈ C(C) such that ι(P ) is contained in any fixed finitely generated
subgroup Γ ⊂ J(C) of rank r. This is an open conjecture. It would imply that
#C(Q) is bounded in terms of g and the Mordell-Weil rank r (taking Γ = J(Q)).
We will now sketch how this weaker statement can be obtained in the case that
r ≤ g−3. For this, we will again use Chabauty’s approach. Theorem 1 gives bounds
for #C(Q) in terms of the rank r and the number d(p) of p-adic residue disks,
assuming that r < g. The problem with that in view of obtaining uniform bounds
is that the number of residue disks is unbounded. In the previous section, this was
not an issue, since we can show that the average number of residue disks is small,
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which is enough for density results. But now we want a bound for all curves (with
fixed Mordell-Weil rank r).

The main idea for circumventing this problem is to consider a more general
decomposition of C(Qp). Instead of just writing it as a disjoint union of disks,
we allow ourselves to use disks and p-adic ‘annuli’ (subsets that are analytically
isomorphic to an open disk minus a closed subdisk). Then one can show that it is
possible to cover C(Qp) by a number of disks and a number of annuli that both
can be bounded in terms of g only.

The other main ingredient is to obtain a bound for the number of rational points
in a given annulus. It turns out that for any given annulus A, there is a subspace VA
of ΩJ(Qp) of codimension at most 2 such that we can prove a bound for the number
of zeros of λω on A as long as ω ∈ VA. So if r ≤ g − 3 and V is the subspace of
differentials killing the Mordell-Weil group, then V ∩VA will be nontrivial for every
annulus A. Combining the bounds for disks and the new bounds for annuli, we
then obtain the following result [Sto13].

Theorem 7. Let C be a hyperelliptic curve over Q of genus g and with Mordell-
Weil rank r ≤ g − 3. Then

#C(Q) ≤ 8(r + 4)(g − 1) +max{1,4r} ⋅ g .

More generally, there is a bound R(d, g, r) depending on the degree [K ∶ Q],
the genus g and the Mordell-Weil rank r such that for every hyperelliptic curve C
of genus g over a number field K such that J(K) has rank r, we have #C(K) ≤
R(d, g, r).
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73 (1983), no. 3, 349–366 (German); English transl., Finiteness theorems for abelian
varieties over number fields (1986), 9–27. Erratum in: Invent. Math. 75 (1984), 381.

[McC94] William G. McCallum, On the method of Coleman and Chabauty, Math. Ann. 299
(1994), no. 3, 565–596.

[Mor22] L. J. Mordell, On the rational solutions of the indeterminate equations of the third and

fourth degrees, Cambr. Phil. Soc. Proc. 21 (1922), 179–192.
[PS13] Bjorn Poonen and Michael Stoll, Most odd degree hyperelliptic curves have only one

rational point, May 22, 2013. Preprint, arXiv:1302.0061.

[SW14] Arul Shankar and Xiaoheng Wang, Average size of the 2-Selmer group of Jacobians of
monic even hyperelliptic curves, February 17, 2014. Preprint, arXiv:1307.3531v2.

[Sto01] Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith.

98 (2001), no. 3, 245–277, DOI 10.4064/aa98-3-4.
[Sto06] , Independence of rational points on twists of a given curve, Compos. Math.

142 (2006), no. 5, 1201–1214.
[Sto13] , Uniform bounds for the number of rational points on hyperelliptic curves of

small Mordell-Weil rank, November 10, 2013. Preprint, arXiv:1307.1773.
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