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Abstract. Let X be one of the 28 Atkin-Lehner quotients of a curve X0(N ) such that X has genus 2 and
its Jacobian variety J is absolutely simple. We show that the Shafarevich-Tate group X(J/Q) is trivial. This
verifies the strong BSD conjecture for J .

Résumé. Soit X un des 28 quotients d’Atkin-Lehner d’une courbe X0(N ) tel que X est de genre 2 et sa
jacobienne J est absolument simple. On démontre que le groupe de Shafarevich-Tate X(J/Q) est trivial. Ceci
vérifie la conjecture BSD forte pour J .
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1. Introduction

Let A be an abelian variety over Q and assume that its L-series L(A, s) admits an analytic
continuation to the whole complex plane. The weak BSD conjecture (or BSD rank conjecture)
predicts that the Mordell-Weil rank r = rk A(Q) of A equals the analytic rank ran = ords=1 L(A, s).
The strong BSD conjecture asserts that the Shafarevich-Tate group X(A/Q) is finite and that its
order equals the “analytic order of Sha”,

#X(A/Q)an := #A(Q)tors ·#A∨(Q)tors∏
v cv

· L∗(A,1)

ΩA RegA/Q
. (1)

Here A∨ is the dual abelian variety, A(Q)tors denotes the torsion subgroup of A(Q), the product∏
v cv runs over all finite places of Q and cv is the Tamagawa number of A at v , L∗(A,1) is the
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leading coefficient of the Taylor expansion of L(A, s) at s = 1, and ΩA and RegA/Q denote the
volume of A(R) and the regulator of A(Q), respectively.

If A is modular in the sense that A is an isogeny factor of the Jacobian J0(N ) of the modular
curve X0(N ) for some N , then the analytic continuation of L(A, s) is known. If A is in addition
absolutely simple, then A is associated (up to isogeny) to a Galois orbit of size dim(A) of newforms
of weight 2 and level N , such that L(A, s) is the product of L( f , s) with f running through these
newforms. Such an abelian variety has real multiplication: its endomorphism ring over Q is an
order in a totally real number field of degree dim(A). If, furthermore, ords=1 L( f , s) ∈ {0,1} for one
(equivalently, all) such f , then the weak BSD conjecture holds for A; see [13].

All elliptic curves over Q arise as one-dimensional modular abelian varieties [3, 21, 25] such
that N is the conductor of A. For all elliptic curves of (analytic) rank ≤ 1 and N < 5000, the strong
BSD conjecture has been verified [7, 10, 15].

In this note, we consider certain absolutely simple abelian surfaces and show that strong BSD
holds for them. One class of such surfaces arises as the Jacobians of quotients X of X0(N ) by a
group of Atkin-Lehner operators. Hasegawa [12] has determined the complete list of such X of
genus 2; 28 of them have absolutely simple Jacobian J . For most of these Jacobians (and those of
further curves taken from [24]), it has been numerically verified in [1, 9] that #X(J/Q)an is very
close to an integer, which equals #X(J/Q)[2] (= 1 in the cases considered here). We complete the
verification of strong BSD for these Jacobians by showing that #X(J/Q)an is indeed an integer
and X(J/Q) is trivial.

2. Methods and algorithms

In the following, we denote the abelian surface under consideration by A; it is an absolutely
simple isogeny quotient of J0(N ), defined over Q. We frequently use the fact that A can be
obtained as the Jacobian variety of a curve X of genus 2. The algorithms described below have
been implemented in Magma [2].

Recall that a Heegner discriminant for A is a fundamental discriminant D < 0 such that for
K = Q(

p
D), the analytic rank of A/K equals dim A = 2 and all prime divisors of N split in K .

Heegner discriminants exist by [4, 23]. Since Magma can determine whether ords=1 L( f , s) is 0,
1, or larger (for a newform f as considered here), we can easily find one or several Heegner
discriminants for A.

Associated to each Heegner discriminant D is a Heegner point yD ∈ A(K ), unique up to sign
and adding a torsion point. In particular, the Heegner index ID = (A(K ) : End(A) · yD ) is well-
defined.

Recall that O = End(A) = EndQ(A) is an order in a real quadratic field. In all cases consid-
ered here, O equals the geometric endomorphism ring End

Q
(A) and is a maximal order and a

principal ideal domain. For each prime ideal p of O , we have the residual Galois representation
ρp : Gal(Q|Q) → Aut(A[p]) ' GL2(Fp), where Fp =O/p denotes the residue class field.

We can use Magma’s functionality for 2-descent on hyperelliptic Jacobians based on [20]
to determine X(A/Q)[2]. In all cases considered here, this group is trivial, which implies that
X(A/Q)[2∞] = 0. (In fact, this had already been done in [9] for most of the curves.) It is therefore
sufficient to consider the p-primary parts of X(A/Q) for odd p.

Theorem 1. Let A be an abelian variety of GL2-type over Q. Assume that ords=1 L( f , s) ∈ {0,1} for
one (equivalently, all) newform associated to A.

(1) If the level N of A is square-free, then ordp (#X(A/Q)an) = ordp (#X(A/Q)) for all rational
primes p 6= 2 such that ρp is irreducible for all p | p.

(2) If there exists a polarization λ : A → A∨, then X(A/Q)[p] = 0 for all prime ideals p | p 6= 2
such that ρp is irreducible and p does not divide degλ, and, for some Heegner field K with
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Heegner discriminant D, ID and the order of the groups H1(K nr
v |Kv , A) with v running

through the places of K .

Proof. (1) is [5, Theorems C and D]. (2) is an explicit version of [13]. �

We have implemented the following algorithms.

(1) Image of the residual Galois representations. Extending the algorithm described in [8],
which determines a finite small superset of the primes p with ρp reducible in the case
that End

Q
(A) = Z, we obtain a finite small superset of the prime ideals p of O such that

ρp is reducible. Building upon this and [6], we can also check whether ρp has maximal
possible image GL2(Fp)det∈F×p .

The irreducibility of ρp for all p | p is the crucial hypothesis in [5, Theorems C and D],
and in [13].

(2) Computation of the Heegner index. We can compute the height of a Heegner point us-
ing the main theorem of [11]. By enumerating all points of that approximate height us-
ing [16], we can identify the Heegner point yD ∈ A(K ) as a Q-point on A, or on the
quadratic twist AK , depending on the analytic rank of A/Q. An alternative implemen-
tation uses the j -invariant morphism X0(N ) → X0(1) and takes the preimages of the j -
invariants belonging to elliptic curves with CM by the order of discriminant D . A variant
of this is based on approximating q-expansions of cusp forms analytically and finding
the Heegner point as an algebraic approximation.

(3) Determination of the (geometric) endomorphism ring of A/Q and its action on the
Mordell-Weil group A(Q). Given the Heegner point yD , this can be used to compute the
Heegner index ID . The endomorphism rings over Q and Q agree for our examples; this
can be seen by inspecting the LMFDB. The geometric endomorphism ring together with
its action on the Mordell-Weil group is computed approximately from the analytic Jaco-
bian, and we can verify the correctness of the result because we know that it equals the
coefficient ring of f .

We can also compute the kernel of a given endomorphism as an abstract Gal(Q|Q)-
module together with explicit generators in A(Q). We apply this to find the characters
corresponding to the constituents of ρp when the representation is reducible.

(4) Analytic order of X. If the L-rank ords=1 L( f , s) of A/Q is zero, then we can compute
#X(A/Q)an exactly as a rational number using modular symbols via Magma’s LRatio
function, which gives L(A,1)/Ω−1

A ∈ Q>0, together with (1), since #A(Q)tors = #A∨(Q)tors

and the Tamagawa numbers cv are known.
When the L-rank is 1, we can compute the analytic order of X from #X(A/K )an =

#X(A/Q)an ·#X(AK /Q)an ·2(bounded exponent) and the formula

#X(A/K )an = #A(K )tors#A∨(K )tors

c2
πu4

K

∏
p cp (A/Q)2

· ‖ω f ‖2‖ω f σ‖2

ΩA/K
· ĥ(yD, f )ĥ(yD, f σ )discO

RegA/K

deduced from [11]; here, the last two factors are integral. In the computation of
#X(AK /Q)an, we use van Bommel’s code to compute the Tamagawa numbers of A/Q
and AK /Q and the real period of AK /Q. In the one case where his code did not succeed,
we used another Heegner discriminant.

(5) Isogeny descent. In the cases when p is odd and ρp is reducible, we determined characters
χ1 and χ2 such that

ρp ∼=
(
χ1 ∗
0 χ2

)
;

see (3) above. We then compute upper bounds for the Fp -dimensions of the two Selmer
groups associated to the corresponding two isogenies of degree p whose composition is
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X r O #Xan ρp red. c (D, ID ) #X

X0(23) 0
p

5 1 111 11 (−7,11) 110

X0(29) 0
p

2 1 71 7 (−7,7) 70

X0(31) 0
p

5 1
p

5 5 (−11,5) 50

X0(35)/w7 0
p

17 1 21 1 (−19,1) 1
X0(39)/w13 0

p
2 1

p
2, 71 7 (−23,7) 70

X0(67)+ 2
p

5 1 1 (−7,1) 1
X0(73)+ 2

p
5 1 1 (−19,1) 1

X0(85)∗ 2
p

2 1
p

2 1 (−19,1) 1
X0(87)/w29 0

p
5 1

p
5 5 (−23,5) 50

X0(93)∗ 2
p

5 1 1 (−11,1) 1
X0(103)+ 2

p
5 1 1 (−11,1) 1

X0(107)+ 2
p

5 1 1 (−7,1) 1
X0(115)∗ 2

p
5 1 1 (−11,1) 1

X0(125)+ 2
p

5 1
p

5 1 (−11,1) 50

X0(133)∗ 2
p

5 1 1 (−31,1) 1
X0(147)∗ 2

p
2 1

p
2, 71 1 (−47,1) 70

X0(161)∗ 2
p

5 1 1 (−19,1) 1
X0(165)∗ 2

p
2 1

p
2 1 (−131,1) 1

X0(167)+ 2
p

5 1 1 (−15,1) 1
X0(177)∗ 2

p
5 1 1 (−11,1) 1

X0(191)+ 2
p

5 1 1 (−7,1) 1
X0(205)∗ 2

p
5 1 1 (−31,1) 1

X0(209)∗ 2
p

2 1 1 (−51,1) 1
X0(213)∗ 2

p
5 1 1 (−11,1) 1

X0(221)∗ 2
p

5 1 1 (−35,1) 1
X0(287)∗ 2

p
5 1 1 (−31,1) 1

X0(299)∗ 2
p

5 1 1 (−43,1) 1
X0(357)∗ 2

p
2 1 1 (−47,1) 1

Figure 1. BSD data for the absolutely simple modular Jacobians of Atkin-Lehner quotients
of X0(N ).

multiplication by a generator π of p on A; see [17]. From this, we deduce an upper bound
for the dimension of the π-Selmer group of A, which, in the cases considered here, is
always ≤ 1. Using the known finiteness of X(A/Q), which implies that X(A/Q)[p] has
even dimension, this shows that X(A/Q)[p] = 0.

(6) Computation of the p-adic L-function. We can also compute the p-adic L-functions
of newforms of weight 2, trivial character and arbitrary coefficient ring for p2 - N .
Computing ordpL ∗

p ( f ,0) and using the known results [18, 19] about the GL2 Iwasawa
Main Conjecture (IMC) with the hypotheses that ρp is irreducible and there is a q‖N
with ρp ramified at q 6= p gives us information about the p∞-Selmer group.

3. Results

Our results are summarized in Figure 1. The first column gives the genus 2 curve X as a quotient
of X0(N ) by a subgroup of the Atkin-Lehner involutions. We denote the Atkin-Lehner involution
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X DK #X(AK /Q)an #X(A/K )an #X(A/Q)an

X0(67)+ −7 4 1 1
X0(73)+ −19 4 1 1
X0(85)∗ −19 4 1 1
X0(93)∗ −11 1 1 1
X0(103)+ −11 4 1 1
X0(107)+ −7 4 1 1
X0(115)∗ −11 1 1 1
X0(125)+ −11 4 1 1
X0(133)∗ −31 4 1 1
X0(147)∗ −47 4 1 1
X0(161)∗ −19 1 1 1
X0(165)∗ −131 16 4 1
X0(167)+ −15 4 1 1
X0(177)∗ −11 4 1 1
X0(191)+ −7 4 1 1
X0(205)∗ −31 4 1 1
X0(209)∗ −79∗ 2 1 1
X0(213)∗ −11 4 1 1
X0(221)∗ −35 4 1 1
X0(287)∗ −21 4 1 1
X0(299)∗ −43 4 1 1
X0(357)∗ −47 2 1 1

Figure 2. Analytic order ofX for the curves of L-rank 1. (A ∗ means that we used a different
Heegner discriminant than in Figure 1 in the case where van Bommel’s TamagawaNumber
did not succeed.)

associated to a divisor d of N such that d and N /d are coprime by wd . We write X0(N )+ for
X0(N )/wN and X0(N )∗ for the quotient of X0(N ) by the full group of Atkin-Lehner operators. We
are considering the Jacobian A of X .

The second column gives the algebraic rank of A/Q, which is equal to its analytic rank by the
combination of the main results of [11] and [13].

The third column specifies O as the maximal order in the number field obtained by adjoining
the given square root toQ.

The fourth column gives the analytic order of the Shafarevich-Tate group of A, defined as in
the introduction. For the surfaces of L-rank 1, the intermediate results of our computation are
contained in Figure 2.

The fifth column specifies the prime ideals p of O such that ρp is reducible. The notation p1

means that p is split in O and ρp is reducible for exactly one p | p. If p is ramified in O , we writep
p for the unique prime ideal p | p.

The sixth column gives the odd part of lcmp cp (A/Q), which can be obtained from the
LMFDB [22].

The seventh column gives a Heegner discriminant D for A together with the odd part of the
Heegner index ID . Our computation confirms that the Tamagawa product divides the Heegner
index.

The last column contains the order of the Shafarevich-Tate group of A/Q. An entry 1 means
that it follows immediately from the previous columns, the computation of Sel2(A/Q) and Theo-

C. R. Mathématique—Draft, 5th November 2021



6 Timo Keller and Michael Stoll

rem 1 that all p-primary components of X(A/Q) vanish.
Otherwise, the order of X(A/Q) is given as a product of powers of the odd primes p such that

some ρp with p | p is reducible or p divides c · ID . (In each of these cases, there is exactly one
such p.) We have to justify that the exponents are all zero. In the first three rows we use [14] to
show that for the reducible odd p on has X(J0(p)/Q)[p] = 0; this is a consequence of these prime
ideals being Eisenstein primes.

In the remaining cases, we used the approach described in item (5) in Section 2. For the rows
with A = Jac(X0(39)/w13) and A = Jac(X0(87)/w29), one has non-split short exact sequences of
Galois modules

0 →Z/p → A[p] →µp → 1

with p = 7 and 5, respectively. For the only two non-semistable abelian surfaces we found the
following isomorphism and exact sequence.

J0(125)+[
p

5] ∼=µ⊗2
5 ⊕µ⊗3

5

1 →µ⊗4
7 → Jac(X0(147)∗)[p] →µ⊗3

7 → 1

In all cases, we find that X(A/Q)[p] = 0. Note that for the p | 7 for which ρp is irreducible,
Jac(X0(147)∗)[p] = 0 follows from [13] because I−43 is not divisible by 7. In the case of the square-
free levels N = 23,29,39, we computed that the p-adic L-function is a unit for the p | p with ρp
irreducible, so we can conclude that Selp(A/Q) = 0 and hence #X(A/Q)[p] = 0 from the known
cases of the GL2 IMC. Note that our computation shows that in these cases, the image of ρp∞ is
maximal, so it contains SL2(Zp ). This implies that the IMC holds integrally.

Details will be presented in a forthcoming article, where plan also to extend our computations
to cover some two-dimensional absolutely simple isogeny factors of J0(N ) that are not Jacobians
of quotients of X0(N ) by Atkin-Lehner involutions.
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