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May 2, 1995

1 Introduction

Let C be a (smooth projective connected) algebraic curve (over some field
k). A vector bundle (always on C if not otherwise specified) is a locally free
sheaf &.

Goal: Construct a moduli space of vector bundles over C.

There are two invariants associated to &:
e The rank 1k & = dim€ @ k() (for any = € C);

o We have the determinant (bundle) of £, det & = A™ € (see below for the
construction); it is a line bundle. The degree of £ is deg & = degdet £
(this is the degree of a divisor corresponding to det & — e.g. the divisor
of a global section (if it exists)).

Construction of det &

Let r = 1tk & and consider more generally a representation p : GL(r) —

GL(r") (for det & this is det : GL(r) - GL(1) = Gy,). Choose an open
v — Of.

cover C = ;1 U; of C such that there are isomorphisms o; : €

On U, NU;, we have
Bij = a0 € GL(r,[(U; N U;,0)),
and on UimUijk, we have ﬁijﬁjk = ﬁ,k Then ,O(ﬁ,]) € GL(T’, I‘(U,ﬂUj, O))

defines a vector bundle p(&). As another example, we have the dual bundle
E" given by the contragredient representation p(3) = (8*)~*.
There exist vector bundles of any degree and rank: OTC_l @ L with a line

bundle £ has rank r and degree deg L.

Theorem 1 (RIEMANN-ROCH)
(0, &) = dim H*(C, &) — dim H'(C,€) = (1 — g)1k € + deg &,

where g is the genus of C and y(C, &) is the EULER characteristic of &.
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EXAMPLE: Let k be algebraically closed and look at the case g = 0, i.e.

C = P! There is an exact sequence:
0— O(-1) — O* — O(1) — 0;

O(—1) is the universal line and O(1) is the universal quotient; O(1) has rank
1 and degree 1 (we have a global section coming from the global section (1,0)

of O?, which has a unique and simple zero at the line & - (1,0)).
We let O(n) = O(1)%" for n € Z.

Theorem 2 On P!, cvery vector bundle £ is isomorphic to a direct sum of
O(n)’s:
E=ZO0(my) & O(my)@d - O(m,).

(And this is essentially unique.)

PROOF: Coherent sheaves on P! essentially correspond to finitely generated
graded modules over R = k[to,t1]: To a graded R-module M = @,z M,
we associate the coherent sheaf F that is defined by

F(D(to)vf) = M(t0)7 F(D(tl)af) = M(t1)7

where D(t;) is the open subvariety of P! defined by t; # 0, and M, is
the homogeneous localization, i.e. the elements of degree zero in the usual
localization M;;. We get a trivial F iff M,, = 0 for n sufficiently big (since

mth
then 7 = ﬁ% = 0 for h > 0), and M;, M, have the same image iff there is
a common submodule M5 of M; and M, coinciding with both in sufficiently
high degrees.

Given a coherent sheaf F, a suitable M is
M= M,= @ I'(P',F(n))
n>ng n>ng

(where F(n) = F @ O(n)) with some (arbitrary) ng € Z. (M is finitely
generated by SERRE’s Theorem [H II1.5.27]). For F = O(m), we may take

M = R(m), defined by M, = R,,4n; this is a free R—module, generated by
le M_,,.



Now let £ be a vector bundle. We claim that there are mq,...,m, € Z

such that
M =@T(P,En) = R(mi) & - & Rim,).
neZ

Im particular, (P, E(n)) = 0 for n <« 0. We first show this. By SERRE,
£%(m) is globally generated for m >> 0, hence we have a surjection O —» £%(m).
Then, dually, there is an injection £(—m) < O, which by tensoring with
O(—1) gives E(—m — 1) < Opi (—=1)", and the latter has no non-trivial
global sections.

Next, we show that M is a projective R—module. R is regular of dimension
2; thus projective is equivalent to reflezive, i.e. M = () My, where p runs
through the prime ideals of height one in R (see below) [cK]. Consider

A 5 A\{0}=U = P!
(to,tl) — (to : tl)

Then 7.0y = @,z O(m):

Spec k[to, ;'] X Spec k[i—;] = Speckl[to,t5',t1] —+ Spec k[i—;] = D(to)

U U
Spec k[to, tg ', t1,t7'] Speck[i—;,i—f]
N N

Spec k[t1, '] x Spec k[i—f] = Speck[to, t1,t7'] —+ Spec k[i—f] = D(t1)

Now,

klto.to ' @ k[iH] = €D k]
meZ
this corresponds to @,,c7 O(m) (it is glued over D(tg) N D(¢;) with the

corresponding expression obtained by exchanging to and ;). We then have

(7€) = 100 Qo,, £= P E(m).

meZ

Taking global sections T'(P!,—), we get

T(U, 7€) = D(P', 7.7°€) = &y (P &(m)) =M.

meZ



Here, 7*€ is a vector bundle on U C A? = Spec R. Let p C R be a prime
ideal of height 1; it corresponds to a curve in A, A y € M @ Quot (R) is
in M, iff the corresponding section is regular on an open subset of [CK] this
curve. If y € (N, My, the singular set can contain only (discrete) points, but
then the section must be regular, hence y € M.

Now, since M is finitely generated, there is a surjection @, R(m, ) —» M.
Because M is projective, it is a direct summand (with the graded structures),
hence M = R(my)&- - -& R(m,) with suitable m,. To get the graded splitting,
take a splitting s : M — @, R(m,) as R—modules (not necessarily respecting
the grading). Let pr,, : M — M,, be the projection of M onto its degree-m-—
part and define

s: M — @ R(my) by $(a) = > prm (S(prm(a))) .

meZ

Then 5 is a homomorphism of graded R-modules identifying M with a direct
summand of @, R(m,). [CK]

Since M/(to,t1)M = k(my) & --- & k(m,) (where k(m) denotes a one—
dimensional graded k—vector space in degree m), this representation of M is
unique.

Going back to sheaves finishes the proof. O

On the equivalence of ‘projective’ and ‘reflexive’ used in the proof above:

(1) Let A be a regular NOETHERian ring, and let M be a finitely generated
A-module. Let A = Quot (A) be the quotient field of A.

Claim: The following two properties of M are equivalent:
(i) M =5 M** (where M* = Hom 4(M, A));
(i) M =N, M, C M ®4 K, where the intersection is over all prime ideals p of
height 1 in A.
If M has these properties, M is called reflezive.

PROOF: (i) and (ii) both imply that M is torsion free, i.e., M — M @4 K.
Since M @4 K oM @4 I canonically, we have inclusions

Mc(\MyCM®sK and MCM*CM®4K,
P



hence it is sufficient to show (N, M, = M.

11 7

D": Let p be a prime ideal of height 1, then A, is a discrete valuation
ring. Since M, is torsion free, we have M, =, Mg*, whence M™* C Ny Mg* =
Np Mp.

“‘C": Let x € Ny M,. Consider [ € M*, ie,l: M — A [ extends to

Ik : M @4 K — K. Since x € N, My, Ix(x) € Ny Ap = A, whence 2 € M™.

O

(2) (SERRE) If A is a regular NOETHERian ring of dimension 2, and M is a
finitely generated reflexive A-module, then M is projective.

Proor: Without loss of generality, we may assume A to be local. Then we have
to show that M is a free A—-module, which is equivalent to M being flat over A,
which in turn is equivalent to Torf(M,k) =0forall j >0, where k = A/my4 is
the residue field of A.

Let & = Quot (A). Let n = dimy M @4 K, then (since M is torsion free),
there is an injection i : M — A". Let Y = A"/M and consider the long exact
Tor—sequence for

0 — M —A"—Y —0.

Since Tor’'(A, k) = 0 for j > 0, it suffices to show Tor’'(Y, k) = 0 for j > 1.

Since M s reflexive, all zero divisors of Y belong to some prime ideal p of
A of height 1; therefore the set of associated prime ideals of Y (i.e., maximal
elements in the set of annihilators of elements of Y') consists of finitely many
prime ideals of height 1. In particular, m4 does not belong to this set. Hence
there is some = € m4 such that we have a short exact sequence

0—Y-5Y —Y/2Y —0.

Looking again at the long exact Tor—sequence, we see that we only need to
show Torf(Y/:z;Y,k) = 0 for ;7 > 2. (Note that multiplication by x is zero on
Tor? (Y, k) since it is zero on k.) But this follows from the fact that A is regular
of dimension 2. O

[oK]



2 General Observations

Suppose a moduli space M exists. Let S be some ‘parameter space’ and

consider vector bundles on C x §. The isomorphism classes of these objects

should be given by Map (5, M).

M 1s smooth

Lift over infinitesimals: Let R be a ring, I C R an ideal with I? = 0, and let
S = Spec R, Sy = Spec R/I. We have to show that any morphism Sy — M
extends to S. This means that any vector bundle & on C x Sy comes from
a vector bundle £ on C x S. (It will be important that C' has dimension 1.)
(This criterion looks a bit like [H I11.10.4 (iii)].)

Choose an open affine cover C' x Sy = U; U, ¢ such that we have isomor-
phisms
5:’,0 : &
(Since S = Sy as spaces, the U,  also give an open affine cover C'x S = |J,; U;.)
As usual, we then have 3,0 € I'(U; o N Uj o, GL(r)) with

Bijoliko = Biko - (1)
It is always possible to lift §;;0 to 5;; € I'(U; N U;, GL(r)), but we have to
preserve (1). So take any lifting 3;; and write
BiiBiBit = 1+ vijn
with Yijk € F(Ul N U]‘ N Uk,IOTCXXTS) = F(Ul N U]‘ N Uk,f & Snd (5)), this

identification is given by the trivialization via f3;. (Question: £ is not yet

= r
Uio —* OUi,o :

constructed — can we use End (£) and f3; here?). Because of I? = 0, we get
on U; NU; N U N U, the relation (by calculating (3, 6;181 in two ways) [CK]

Vijk — Yijt T Yikt — Ykt = 0. (2)

We may change our lifts 3;; by some 1403;; with 63;; € I'(U;NU;, I€nd (£)).
Then ~;;i changes by 03;; — 083 + 65,,. We have

0= H*(C x §,1&nd (€)) = {7iju | (2) holds}/{68:; — 0B + 6B}
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(H? = 0 since C is a curve—[H II1.2.7] and [H II1.3.7] (remember S is affine)
+ KUNNETH-formula), hence we can achieve v, = 0.

We see that H?> = 0 means that M is smooth. H' also has a meaning:
its dimension is that of the tangent space of M.

Let Speck = © € M be a (rational) point. It corresponds to a vector
bundle & on C x {z} ( = C). Try to extend Speck - M to S — M with
S = Spec k[e], e2 = 0. The following objects correspond to each other:

m2—0
OMJ — k[@]
(Spec S — M) +— N L e | T Hom x(m,/m2, k - &)
k

and the dimension of the Hom j, is that of the tangent space of M in .

By the discussion above, the possible lifts correspond to changes by 63;;’s
with 003;;—dBi+98r = 0; different lifts are isomorphic (with an isomorphism
that is the identity mod I = (¢)) iff the §3;;’s differ by §3; — §3;. Hence the

different lifts are parametrized by
HY(C x S,I&nd (£)) = HY(C, End (&),

and the dimension of the tangent space is given by dim H'(C, End (&)).
And what is H°? Well, it can be interpreted as

H°(C,IEnd (€)) = ker(Aut () — Aut (&)) = {1+da | §a € T(C,IEnd (€))}.

(Shouldn’t it be H°(C x S,I&nd (£)) 7 They are the same, since I kills
I€&nd (€), so that [&End (€) is an O¢ = Ocxs/IOcxs module. [CK])

By RIEMANN—ROCH (use that £nd (&) is a vector bundle of rank r? and
degree 0):

dim H°(C, End (&)) — dim H'(C,End (&)) = r*(1 — g) .

A moduli space for all vector bundles does not exist, but there will be one
for those & with H°(C,End (£)) = k; its dimension then is (by our discussion
above) 1 4 (g — 1)r?.



May 5, 1995
(Raw notes by MICHEL FONTAINE.)

Why do moduli spaces not exist?

There are difficulties with automorphisms:

Let € be a vector bundle on C x S -+ §, let £ be a line bundle on S and
take & = £ @ 7*L. There is an open cover S = |JU; such that L[y, is trivial
for all 7. Hence on C' x U;, we have £ = &', So, if M exists, there are maps
a,f: S — M corresponding to £ and &', resp. Since E|oxy, = E'|eoxu;,
we should have oy, = §|u;, whence o = 3. But it is possible that £ 2 &’
(and so a and 3 should be distinct, a contradiction): Let v : & — &' be a

homomorphism. Then

v € T(C xS, Hom(&E,&@n"L))
= T(S,m(Hom (€,€)) @ L)
=  End¢(€) @I(S,L).

=I'(S,m (End(£)))?

If, e.g., ['(S, £) = 0, v cannot be an isomorphism.
Problem: G, C Aut(€)

Need to consider ‘local’ isomorphism classes, but then the moduli space

will not be very nice.

Solutions:

(a) Consider M as a (moduli) stack (see later lectures);

(b) Restrict the set of vector bundles that are considered, e.g., take only &€
such that End (€) = k, or (semi-)stable bundles.

For a vector bundle &, define its slope to be (&) = driggg.

£ is called semistable (stable) if for every 0 # F C & (with F # &)
F) < (&) (uF) < (&)




REMARK: Any F C £ is torsion free and hence a vector bundle, but £/F
may have torsion. There exists some F C F* C & such that F*/F has finite
support and such that £/F* is torsion free. We have

tk F* =1k F and deg F* = deg F + length (F*/F).

Explanation: For our purposes, a torsion sheaf is a finite sum of (coher-
ent) skyscraper sheaves, i.e., sheaves of finite support with finite-dimensional

stalks. To such a sheaf T corresponds the positive divisor D = Y dim 7T, - x.
zeC
If we want the degree to be additive on exact sequences (which it should be:

0—F —F—F,—0 = detF=2detF @detF,),

then we are forced to define degT = deg D = Y dim T, = length T, since we

have the exact sequence
0— L(—D) — Oc —T —0,

where deg L(—D) = —deg D and deg O¢ = 0.
Over an open affine subset U = Spec A C C, a coherent sheaf corresponds

to a finitely generated A—module M. For suitable A (e.g. principal ideal
domains), M decomposes as

0 — Miys — M — M —0

with M a finitely generated free A-module. This corresponds to
0 —F|F —=&/F —=E&/F—0

in the Remark above. rtk JF means the generic rank of F.

REMARK: We can also consider quotients £ — G. The condition for (semi-)
stability then is u(G) {z}/,c(g)

PRrOOF: For every exact sequence 0 — F — & — G — 0, we have
deg& = deg F 4 degG and tk & =1k F + 1k G.

=" I (@) { S} p(€), then deg G -1k € { S} deg € -1k G, hence
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deg & - rkf{i} deg F -1k &, ie., u(€) {Z}M(F), contradiction.
“e=7: Let F* as above. Then the same argument in reverse direction shows

p(F* { }M . Since p(F) < u(F*), the claim follows. O

REMARK. If & and &, are semistable vector bundles with p(&;) > (&),
then Hom (&, &) = 0:

E—a»F =& =  ul&) <ulF) < p&), contradiction.

If (&) = p(&2), we have F = F*, and the map is strict, i.e. it has constant
rank at each point.
If & and &, are even stable (and (&) = u(&;)), then every non-trivial map

& — & is an isomorphism. In particular, End (£) is a division algebra for

stable £, and for k algebraically closed, we have End (£) = k.

The HARDER—NARASIMHAN Filtration

For a semistable bundle &, this is given by
0Cé€.

If € is not semistable, take 0 # F C & such that F has maximal slope
p(F) and among the sub-vector bundles with maximal slope has maxi-
mal rank tkF. (This exists since the slope is bounded: dim H°(C,€&) >
dim H°(C,F) > deg F — (g — 1)tk F (by RIEMANN-ROCH), hence u(F) <
g—1+4dim H°(C,£&).) We now have

(a) F is semistable (by construction);

(b) Any G/F C E/F has u(G/F) < pu(F) (Otherwise, u(G) > u(F) and
tk G >tk F);

(c) F = F~* (otherwise, u(F*) > u(F)).
We take & = F as the first step in the HARDER—NARASIMHAN filtration

0=&cCé&E C...CcE =€
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of £. The construction is continued with £/F replacing £. We get a filtration
such that &;/&,_; is semistable with slope p;, where puy; > s > ... > p,.
We re-index the filtration as follows. For o € R, let

HNa(g) = gmax{i|i:0 or u;>a} +

Then HN® > HN” if a < 3.

REMARK: If f : £ — F is a homomorphism, then f(HN®(&)) C f(HN“(F))
(for all o). In particular, HN® does not depend on the choices made in the
definition.

PROOF: Let & = HN®(E) and choose 8 maximal (i.e. 7 minimal) such that
f(&) Cc HN?(F) = F;. Then we have maps

L. CELCE —1+-}% —£+‘7}/j2;4 — 0

and the composite m o f is not zero (since j was minimal). Suppose that
HNP(F) ¢ HN®(F), then a > 3. Now F,/F;_; is semistable with slope 3,
and for 1 < v <1, &,/&,-1 is semistable with slope > o > 3, hence 7o f
induces the trivial map on &,/&,_1, for v = 0,1,...,1. Hence mo f =0 on

&;, a contradiction. O

Consider a semistable vector bundle & of slope pu. Then

Z F = @.7:, with [ finite.

FCE el
F stable
w(F)=p

(For Fy stable with slope p, Hom (Fo, > F) tells us how many copies of Fy
occur in the sum.) Continue with this in the quotient. We see that we get
the semistable bundles from the stable ones by direct sums and extensions:

If & and &, are semistable with the same slope g and we have an extension
0—& —SE—& —0,

then £ is also semistable (look at the HN filtration).

Let ¢ be a section of O(1) (on P') which has its (only and simple) zero in
oo. Consider the following bundles on C' x P*:

£ = (pi€a (pri& 0 pr;0(1)) /priés
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(Where pri& — ... by (4,1 ®pr§(—t)))
& = pri& @ pr;O(1)
gz = prfgz

We get an extension of bundles on C' x P!
0—& —E&—&—0.

For € P!, & # oo, we have €|oxiyy = € (from the inclusion of £ as the
first summand), but g|C><{oo} = & €. Looking at the map to moduli space

corresponding to &, we get

P! — moduli space of semistable bundles
U w

Al — (€]

oo — [& D&

so [€] has to be the same class as [ @& &]. Hence we can only expect a

Correspondence

(Points i duli ) e ( Semistable bundles which are )
oints in moduli space

direct sums of stable bundles

Result

Consider £ on C x S; for each s € S look at the HN filtration of £ in C x {s}.

This gives a collection of slopes and ranks.
Claim: This is a constructible function. (That is, S = [[5; with con-

structible S; (‘constructible’ = finite union of intersections of an open and a

closed set) such that the function is constant on each S;.)

ProoF: Inductive criterion: We have to show that if 7' C 9 is irreducible,
the function is constant on a non-empty open subset U C T. Hence we
may assume S = T and, if necessary, replace S by an open subset such that
S = Spec R with an integral domain R. Let € S be the generic point. Over

C x k(n), € has a HN filtration which is defined over a finite extension A

13



of k(n) (in fact, even over k(n)). Replace R C k(n) by its normalization R’
in K, then 8" = Spec R" — S. Assume the assertion holds over S’, then the
HN filtration is constant on R, with some 0 # f' € R’ and hence it is also
constant on R; with f = Norm(f’). Therefore, without loss of generality, we
may assume that the HN filtration is defined over k(n) = U;zo Ry.

We can assume that the &, = HN*(&,) extend to subbundles &; of £ on
C x S. Then it is enough to show that & /&,_ is semistable of constant slope
on each fiber over an (non-empty) open subset of S. Hence we have reduced

to showing

& semistable = €|, 7y semistable for s € open subset. (3)

Tensor with a suitable line bundle £: €& — & @ £ such that u(€) > 2g¢
(where ¢ is the genus of C).
REMARK: Any semistable F with u(F) > 2¢ has H'(C,F) = 0 and is
generated by global sections.
PROOF: 1}, is a line bundle of degree 2g—2, hence semistable with p = 2g—2.
Let V be a semistable vector bundle with (V) > 2g—2. Then Hom (V, Q) =
0. But this is dual to H'(C,V), hence H'(C,V) = 0 as well. Take z € C and
let F(—2)=F @ L(—x) (L(—=x) is a line bundle of degree —1, consisting of
regular functions vanishing in x); then u(F(—x)) = pu(F)—1 > 2¢g—2, hence
HY(C,F(—z)) =0, and therefore, H*(C,F) —» H*(C,F/F(—=x)) = F,, i.e.
F 1s generated by global sections. O

Suppose that €|ox(s) is not semistable. Then there is some F C Eloyig
which is semistable of slope o > (&) > 2¢g. F is generated by

W =T(Cx{s},F) CV=T(C,E) @ k(s).

We therefore have to test all subspaces W C V if they generate a vector
bundle F with u(F) > u(€).

Let G = ][] GRASSMANNians be the projective variety parametrizing all
possible W’s. Over G, we have a universal bundle W C I'(C,€) @ Og.
It generates a subsheaf F C pr*€ on C x G x 5. Find a decomposition
G x S =117, into constructible subsets T; such that Fleoxr, is flat over T;.

14



Then the rank and degree are locally constant on T;, hence (by taking a
finer decomposition) we may assume them constant, in particular we have
constant slope p; on T;.

Consider those T; with g; > w(€): The (by CHEVALLEY) constructible
subset prs(T;) of S does not contain the generic point n of S (because &, is
semistable), hence lies in a proper closed subset of S. Now, if we replace S
by the open complement of these proper closed subsets, then these T; must
disappear, and the proof is complete. a

Semicontinuity

Proposition 1 Take some vector bundle € and look at the pairs (tk F, deg F)
for all subbundles F C £. Then we get the following picture:

deg F
E ...
1
Ha AN
\\

o — |

/ \
/ \
/ \

// \\
M/ all other F in here ——————\
Va &
/

/
/
rk F

Under specialization, the domain may at most become bigger.

PROOF: The picture is clear. To prove the statement about specialization:
Let V' be a discrete valuation ring and S = Spec V. Consider £ on C x S.
Let n € S be the generic point and &, the generic HN filtration (defined
over n7). Extend &, to a subsheaf & C & over C x S. Reflexive (7?), hence
these are vector bundles, and p; = p(&;) coincides on both fibers. Hence on
the special fiber, we have subbundles & ®@ k(s) C € @ k(s) mapping to the

same points as & ,. Hence the region for &, contains that for &,.
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If S is arbitrary with s,¢ € S such that s € {t}, there is a discrete
valuation ring V and a map SpecV — S mapping n to ¢t and the special
point of Spec V' to s. (Is this possible when dim {t} — dim {s} > 2 7 Maybe
one has to break this up into several steps.) Now use the above argument.

By specializing step by step we may assume S to be local and of dimension
1. By pulling € back to the normalization S — S, we may assume S = SpecV/,
with V' a discrete valuation ring. [OK] 0
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May 9, 1995
(Raw notes by BERND STEINERT.)

3 Geometric Invariant Theory

Why do we need this?

Approach to moduli spaces: First, construct moduli space for bundles with
additional structure. Then, eliminate additional structure by taking invari-

ants (see below).

Let &£ be a semistable bundle with deg& = d, k& = r. We may assume
pw=d/r > 2g, then I'(C, &) generates £ and H'(C,E) = 0 (see last lecture).
We have (by RIEMANN—ROCH)

dimI(C, &) =d+r(l—g)=N.

We want to parametrize (&£, (ey,...,en)), where e1,...,exn is a basis of the

global sections I'(C, &).
Proposition 2 This gives a representable functor (GROTHENDIECK ):

PROOF: (or rather, Explanation) £ is a quotient of V @ O with a vector
space V of dimension dim'V' = N. There is an algebraic scheme ‘H (HILBERT
scheme) and a universal quotient sheaf V'@ Ocyxy — F, which is flat over
Oy.
One has
H=T1 Han

(dyr)
where on Hq,), the degree d and the (generic) rank r are fixed.
(The hard part in the proof is to show that Hq,) is of finite type.)
Over a suitable open subset ‘H' of H(q,), we have that

(a) F is a vector bundle;
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(b) F is semistable on fibres (= m.F is a vector bundle of rank N, 7 :
CxH—H);

(¢) V& O — n.F is an isomorphism.

Then H' is representing the functor described above. O
Now, try to get rid of the additional data.

Two different bases of ['(C, &) are related by GL(N). So GL(N) acts on
H'. Our moduli space M should be the quotient GL(N)\'H'. (The scalars act
trivially, whence an action of PGL(N) (this refers to the first formulation,
where bases mod scalars were to be parametrized).)

REMARK: H(q,) is projective, hence H' is quasi-projective.
PROOF: (Sketch) Use some GRASSMANNian.

Take a line bundle £ of degree deg £ >> 0 such that for any V@ O¢c — &
(with deg & = d, vk € = r) with kernel K, K @ L is generated by H°(C,K®@ L),
and H'(C,K @ L) = 0 (bounded family (7).

Note that

H(C,K®L) — VoHYC,L) —» H(C,EQL)
———
has fixed dimension
defines an embedding of H, ) into some GRASSMANNian G, and the ample

line bundle det H°(C, & @ L) on Ha, corresponds to the ample line bundle
on G given by the dual of det(subspace), i.e., det(quotient space). O

How to construct quotients?

In char & = 0, we use Invariant Theory.

Let G be a reductive group (e.g. GLy, SLy, PGLy).

Problem: X C PV quasi-projective, G acts on X via G — GLy. What
is X/G 7

Try: R =@,5,[(X,0(n)) = @,50 Rn- Is X/G = Proj R ?

HILBERT: R is finitely generated over k.
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The key property of G is that for any G-surjection V — W of vector
spaces, the induced map VY — WY is again surjective. (This is equivalent
to H'(G,V) = 0 for every vector space V with G-action: It is equivalent
to H'(G,V) — H'(G,W) being an injection for every G—-injection of vector
spaces V — W. Now embed V into an injective kG-module W (cf. [ BROWN:
Cohomology of Groups]). Then H'(G,W) = 0, whence H'(G,V) = 0.)
(Since G is reductive, GG acts semi-simply on inductive limits of algebraic repre-
sentations. This implies the ‘lifting property’ above.) [CK]

(In characteristic p > 0 the induced map is no longer surjective, but at
least some p—power can always be lifted.)

Let It = @,50 Ry, this is an ideal of R. IfR i1s a homogeneous ideal,
hence I§ R = (fi,..., fr) with homogeneous f; € I. Then the f; generate
If as an R“-module:

Take a homogeneous f € If. There are r; € R with f = Y r; f;, 1.e.
we have a G—surjection R" —» If R. Hence (by the lifting property above)
(RE)" —» (I¢ R)Y = I, which means that the r; can be taken in R¢.

This implies that the f; generate RY (as a k-algebra). We now have an
embedding

Proj R® — PM
defined via all monomials in f; of degree lem {deg f;}.

There are maps

homog. ideals of REY 7 {homog. ideals of R
g — g
I —- IR
IS=INRY «— I

where + o — = id.

Recall: Proj is given by the homogeneous prime ideals except I, =
@®,.>0 Ry,. This means that on the Proj-level, there is (in general) no map
corresponding to < above.

REMARK: (and Definition) One can define a quotient map only on homoge-
neous prime ideals which do not contain @,5o RS. The corresponding points

x are called semistable; they are given by the property that there is some f
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in some RY (n > 0) with f(x) # 0. Sometimes we will also call a point
z* € ANt mapping to € X C PV semistable.
Let X* be the complement in X of the zero-set of all RS for n > 0. This
is an open subset of X.
REMARK:
z semistable <= 0 ¢ Gz~

(for some/any =* — z.)
PROOF: “=": There is a f € RY withn > 0 and fy = f(2*) # 0. Then
f — fo vanishes on Gx*, but not in 0.
“<”": Let J C R be the ideal defining Gz*, then J ¢ I, = @, R, and
hence J —» k = R/I,, where the G-action on the right hand side is trivial.
Hence JY —% k, i.e. thereis a f = fo+ fi +--- € J9 with f; # 0. But then
(since f(x*) = 0) some f;(x*) # 0 for some ¢ > 0. O

We get a map

X — ProjR¢
I — I¢

What are the fibers of this map?

z and y (or z* and y*) lie in the same fiber iff some f € RS for some
n > 0 vanishes at both of them (7—this should read ‘iff for all n > 0 and
all f € RY, f vanishes on z iff f vanishes on y’.). We hope that each fiber
contains precisely one closed (in X®%) G—orbit. This is indeed true.

PROOF:

(a) Any fiber contains a closed orbit (take some 2 with dim G minimal).

(b) We have to show: If Gx and Gy are closed in X* and 2 and y have
the same image in Proj R, then Gz = Gy.

Choose some f € RY with d > 0 such that f(z*) # 0 and f(y*) # 0.
Let S = R(y) be the localization and Y = Spec S the open subset defined by
fin X* C ANt Y projects to X*5. Gz and Gy define G-invariant ideals
I,J C S, resp. Assume Gz # Gy, then Gx N Gy = () and hence [ + J = S.
By the lifting property, I — (S/J)¢ > 1 (...) 7?7

On the other hand, let I, I, C S be the homogeneous ideals correspond-
ing to x and y, resp. Then I¢ = IyG =IlandI=1C1I% JC IyG. This
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implies I +J C I' C I, # S, a contradiction.

Better: Let I, J, I,, J, be the homogeneous ideals in R corresponding to Gz,
Gy, x and y, respectively. Since GeNGy = {0}, we have I+J = I} = @, R,
Hence,

(L9 =194 J9 C (L) + (1) = (L)°.
which contradicts the fact that = is semi-stable. (The first equality comes from
the lifting property, the last one from the fact that (1) = (.J,)¢ by assumption.)
[cx] O

x is called (properly) stable, if it is semistable and dim G, = 0 for all y in
an open neighborhood of . X*® = stable points of X.

EXAMPLE: Let V = kN1 V = @,,cz Vi, operation of G,, on PV = P(V) is
given by A -v = A"v for v € V,,,. Then z* =Y xz,, is

— semistable <= Im >0: 2, #0and 3m <0: z,, # 0;
— stable <= in addition = # .

To test (semi-)stability in general it turns out to be enough to do it for

all G, in G.
Theorem 3 x is semistable for G <= x is semustable for all p : G, — G.

PROOF: “=7: 0 ¢ Ga* = 0 ¢ p(Gy, )z~
“«<”: Use valuative criterion: If 0 € Gz~ then there is a discrete valua-
tion ring V' = k[[t]] with quotient field K such that there is a commutative
diagram
SpecKk — G 3> g
| | |

SpecV — ANtL 3 g

and such that for ¢ € G(K), ga* is integral and goes to 0 as ¢+ — 0. For
G == GLN+1 (S:I—_1]\7_|_17 PGLN+1)§

o 0
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with ¢1,92 € G(V), hence g2(2*) is integral. Write g, =
toN

92(0)+ higher order terms and replace «* by ¢2(0)(2*): We may assume that

g =1 mod t.

g2(2™) = Z o = Z(:pg’n, ce Ny t"

n>0 n>0

The integrality condition implies ;" # 0 = a;+n > 0. For n = 0: 2*° = 2~
(since g2 = 1 mod t), hence for af # 0, we have a; > 0. This means that «*

is not semistable for this 1-parameter subgroup of G. O

Theorem 4 z s stable for G <= x s stable for all non-trivial p : G, —
G.

PROOF: “=": Clear.

“=" 1) G = Gu: G x X°® — X® x X® is a proper map (even finite).
Can cover X® by invariant affines where x, # 0,25 # 0 with ¢ > 0,0 < 0
(or @ > 0,b < 0). Invert z,: Gy, onaffine space, one coordinate is x4/,
(deg < 0), invert this (77)

ii) Consider U C X*® where the stabilizer has dimension 0. U is constructible

and open (stbilizer will jump under specialization). Claim: G x U — U x U
proper. (...) O
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(Raw notes by BERND STEINERT.)
Recall:

z semistable <= 0 ¢ Ga~
— Id>0,feRS: f(x)#0
— Vp:G, — G l-parameter subgroup :
the weights of this G,,—action occurring in x
are neither all > 0 nor all < 0
z stable <= G — ANt g ga*, is proper
<= Gz 1s closed and G, 1s finite
REMARK:

(a) Assume z semistable, f € RS (for some d > 0) with f(z) # 0. If G,
(the stabilizer of y) is finite for all y with f(y) # 0, then all orbits
in there (in where 7 — maybe in X;) have dimension dim G and are
closed. (Gz \ Gx = |J orbits of smaller dimension.)

(b) Assume Gz closed, G, finite. Then (7)) {y | dimG, > 1} is closed,
G-invariant and does not meet Gx = Gx. Hence there is some h €
R\ {0} such that h vanishes on Y = {y | dimG, > 1} but not at
T. (Let Iy and Iz, be the homogeneous ideals corresponding to Y
and Gz, resp. Since Y N Gx = (), we have I, = Iy + Ig,, therefore
(I1)Y = (Iy)° + (Ig.)®. If we had (Iy)“ C (Ig.)“, we would get
(I4)% = (Ig.)“ = (I)Y, contradicting (semi-)stability of z.) [CK] Since
Y is Gy, —invariant, we can take h to be homogeneous. Then change f
to fh. Thus we have the situation of ‘(a)’. This implies that the set of
stable points is open. [CK]

l-parameter subgroup criterion for (semi-)stability:
For all p : G, — G non-trivial, positive as well as negative weights occur
in x. (Le., take a basis by, ...,by of AN+ diagonalizing the G,,-action; the
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weight of b; is w with p(A)b; = Ab;. w occurs inx = (2 : ... : xn) (written

w.r.t. the basis b;) if there is a j such that x; # 0 and b; has weight w.)
Valuative criterion (for what?):

V C K discrete (?) valuation ring with quotient field, g € G(K),

* 0
gr* € AN(V) SN geGV),g=un g2 with g1, 90 € G(V).
really? 0 *

EXAMPLE: V, W vector spaces, G = SL(V) acting on Grass 4(V @W). Here,
Grass 4(V @ W) classifies quotients V @ W —» E with dim F = d.
Criterion: FE is {Seﬁfﬁ?‘l{)le} iff for all non-trivial subspaces V' C V and
E'=im(V'@ W — E), we have
dim £’ {Z} dim V’
dmFE >} dimV

PROOF:
“—=": Write V = V' @ V" with dim V' = a, dim V" = b, and let

p: Gy — SL(V),t — (idy, t™idyn).

We obtain a projective embedding of Grass 4(V@W) from Ad(V®W) —» AE =
det E. (Elements of AY(V @ W) give global sections of det E, which is an
ample line bundle on Grass 4(V @ W) (unique up to powers). We will look
at the weights of E under p in this embedding.)

We choose a basis of V@ W consisting of v ® w with v € basis of V' U
basis of V" and w € basis of W. Then

v1®w1/\.../\vd®wdEAd(V®W)
has weight b- #{i | v, e V'} —a-#{i | v, € V'}.

Since E is semistable, a non-negative weight occurs in E. This means
that there are v;, w; such that (v; @ w;) =, E and such that ba > a3, where
a=H#{i|v,eV'}and f=#{i| v, e V'}.

Now, (v; @ w; | v; € V') — E’  hence dim £’ > dim(im(V' @ W)) > a.
Since ba > af3, we have

dim E’ o a dim V’
- > > = — .
dmFE ~— a4+ " a+b dim V
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“<=": Let p be a 1-parameter subgroup and write V = @,c; Vi such that
p(t) acts as t' on V;. Then Y idimV; = 0 because G = SL(V).

€L
Assume the stability criterion holds. Let 7 : AV @ W) — AYE; then we
have to show that m(v) # 0 for some v of weight > 0. What about weight
< 07 I think both should occur. Take t — ¢t~!. [CK]

Let F*(V) = @;5, Vi- Then

0 = > pdimgrh(V)

UET
= 3 u(dim F*(V) — dim F*Y(V))
UET
= Y pdimFYV)— > (p—1)dim F*(V)
u>—N u>—N
= > dim FHV)— Ndim FN(V)
p>—N —r

for N big enough.

We look for {v; ® w; | 1 <1 < d} such that (v; @ w;) = E, and try to
maximize the weight. We take a, elements v; € F*(V'). The best strategy
obviously is to take a, = dimim(F*(V)® W — FE). This is possible: Start
with F*"(V) @ W (n big), this gives a,, = 0. Then go down step by step,

choosing a,,_1 — a,, @p_3 — @y_1, ..., new basis elements. The weight is then
w= Zﬂ(au — 1) = Z ay— Na_y .
H u>—N
We know:
ay < dim F*(V)
d = dimV
Hence,
dim F*(V) d ) )
>d ———~> —Nd= dim F*(V)—- NdimV) =0.
wzd 3 T dimv(z_: im FA(V) im V)
u>—N u>—N

(For stability, one needs that there are at least two stages in the filtration.)
O

REMARK: This (what?) never happens when dim W = 1. l.e., for dim W =
1, no E is semistable. [CK]
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4 Application to vector bundles on curves

Let C be a smooth projective connected curve with genus g = ¢(C). For
a vector bundle £ on C, let

deg &

(ie. RO(C,E) — RY(C,E) = prk & (RIEMANN-ROCH)). Note that this is a
modification of the slope p used earlier.

Let O(1) be an ample line bundle of degree 1 and define O(n) = O(1)9",
E(n) =& ®@O(n). Then pu(&(n)) = p(&) +n.

M(r, ) will denote the moduli space of (semi-)stable & with tk& = r
and (&) = p.

Since £ — &(a) induces an isomorphism M(r, ) — M(r, 4 a), we may
(without loss of generality) assume that p(&) > 0.

If > 2g (p > g+ 1 will do), then & is globally generated by I'(C, £)

which has dimension N = pr. So,
M(r, 1) = * 0

with a ‘quotient scheme’ ) classifying quotients £& of O with HILBERT
polynomial n — r(p+n) = dimI'(C, E(n)) (n big) (see later lectures).
We shall choose some p > 0 (by shifting 1 — p + ). Once p + a is

chosen, choose b > a such that for any exact sequence
0— K — O 5 £(a) — 0

(where & has the correct HILBERT polynomial), K(b) is generated by global
sections, and H'(C,K(b)) = 0.
This gives an embedding

Q — Grass O SL(r(u+a))
E(a) = 0"+ K = (T(C.K (b)) = T(C, 0(b)) W+ — T(C, E(a + b))

Claim: For a > 0:

(5(semi—)stable vector bundle) = (

corresponding point in Grass )

is (semi-)stable
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To test stability (in Grass ), we have to consider
VI CV =kt = (0, E(a)).

I'(C,F(a))=V' < F(a) C &(a) is generated by V'.
Idea: (For a > 0) F C & nice sub-bundle with 1k F =+, u(F) = ¢/
dimI(F(a)) ~ (¢ + a) (by RR)

N—_—————
_V/

dmT(F(a+0)) ~ »'(¢ +a+b)
N——_———
Dim(VeW)
Condition:
' +a+b < u+a+b
pta T pta

For b > 0: p' < p.
Argument: Either u(F) = u(€) or u(F) < u(E) — ¢ with some fixed e.
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As always, C is a nice curve of genus ¢, and we fix the data r = rk & and
p=pu&) = d:kggg + 1 — g such that 4 > g+ 1. Then H'(C,€&) = 0, and by
R-R, N =dimI(C,€&) = rpu.

(By GROTHENDIECK,) there is a ‘quotient scheme’ @) parametrizing (7)
quotients ON — € with HILBERT polynomial n + r(u+n). (Le., for n > 0,
dimI(C,E(n)) = r(p+n).) Q is of finite type.

Choose b € Z so big that for all K = ker(OX — €), HY(C,K(b)) = 0
and H°(C,K(b)) generates K(b). (For b fixed, the condition defines an open

subset Uy of Q). We have |J, Uy, = () since for every K there is some b satisfying

the condition. Because of quasi-compactness (and U, C Upyy ), there is some
b with U, = Q.)

There is a map

Q — Grass, (.4
(OF =+ &) — (T(C.0(b)N = T(C.E(b)))

(Grass parametrizing quotients). If b is chosen as above, ¢ : ['(C, O(b)) —
[(C,E(b)) is surjective (since HY(C,K(b)) = 0 with K = ker(OF — £))
(hence the map is well-defined), and we recover K(b) (and hence K) as the
sub-bundle of O(b)N generated by the kernel of ¢. Hence the map is an
injection. It is also equivariant with respect to the SLy-action on both

sides.

Let V = k" and W C V a subspace. Consider the following situation:

V@OC = Og — £
U U
0 — Ky — W®O0c - F

W want to choose b in such a way that additionally H'(C, Ky (b)) = 0 for all
these K. This is possible: The pairs (£,W) are parametrized by a quasi-
compact scheme S having a constructible stratification S =[], 5, such that
over every S,, £/F is flat (GROTHENDIECK ). (Then use semi-continuity and

quasi-compactness arguments as above (7).)
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Theorem 5 MUMFORD (semi-)stability of (the image of ) £ (in Grass ) (for
b big) is equivalent to (semi-)stability of € as a vector bundle.

PRrROOF: We use the result of the example in the last lecture. In our situation,
this means that £ is MUMFORD semistable iff for all subspaces W C V,
dimim(W @ I'(C,0(b)) — I'(C,£(b))) < dim(C,E(b))  p+b (4)
dim W - dimV T
“=": Fix a surjection V @ O¢ —» €. We show first that V — I['(C,¢&):
Let W be the kernel of V = TI'(C,V ® O¢) — I'(C,&). Then the image of
W@ T(C,0()) — I'(C,E(b)) is zero, so by (4), W must be zero.

Now we have to show that £ is a vector bundle (i.e., torsion free), and that

it is semistable (in the vector bundle sense) with slope u. For this, let 7 be
the torsion of £ and take F in the HN filtration of £/7 (which is a vector
bundle) such that it contains exactly the portion of slope > pu. Then £/F
is the part of slope < p. Now, £/T is semistable of slope p iff f(E/T) < p
and £/T has no (non-trivial) quotients with slope < u. This is equivalent
to E/F = 0, since £/F is the largest possible quotient of slope < p and
deg(E/T) < deg(€). Since equality in this relation holds only for T = 0, we
also see that £/F = 0 implies that &€ is a semistable vector bundle of slope
p. It suffices to show that p' = p(E/F) > p; this implies E/F = 0. Let
=1k E/F and " =tk F, 1" = p(F).

Let W = ker(V — I'(C,E/F)). Since everything in F has slope > u > g+1,
HY(C,F) =0, and F is globally generated. Hence

0 —ICF)—ICE —T(C,EIF)—0
is exact, and W = VN T(C,F). We get an induced injection
NC,F)W =T(C,E&)/V. (5)

The dimension of I'(C, £)/V is dim H'(C, £), which injects into H*(C,E/F)
(HY(C,F)=0), and we want to bound the dimension of the latter.

Since V@ O¢ — E/F, there are r’ sections which generically generate £/F,
i.e. we have a map ¢ : Of — £/F with finite cokernel. Then

HY(C,0L) = HY(C,im¢) — H'(C,E/F),
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whence h'(C,E/F) = dim HY(C,E/F) < r'g.
By definition of W,

W aTI(C,00)) — I(C,F(b)) C I'(C,E(0)),

hence the dimension of the image (let us call it I) is at most h°(C, F(b)) =
(¢ +b). By (4),
M// + b)

dimW < —H dim7I < 2L
p+b p+b

Y

therefore (using (5))

M// 4 b)

- Al 1" 4 b)
1" //:d FC,F< 1"
' im I['( ) <r P

+ RN C,E)F) < THM(/«L 3 +7r'g. (6)
If h'(C,E)F) is zero, then from u,b > 0, we see that u” < u (or " =0, i.e.,
F = 0). By definition of F, we must have " = i, hence ¢/ = p as well (look at
0 —F —&—E&/F — 0and use p = p(€)). By definition of F again,
this means £/F = 0. [CK]

So assume H'(C,E/F) # 0. Then in the HN filtration of £/F there must
be a quotient of slope < 2¢g — 2 (should be g — 1 — remember we shifted p
by g —1.) Then, since the slopes in the HN filtration of £/ F are all < p, we
get

deg&/F <r'(p+g—1)—(p+1—g),

hence
degF>r"(p+g-1)+(u+1l-9g) = "' >r"p+u+l-g.

Plugging this into (6), we get

f—p
+1—g<y” +r'g.
H g>rp Lt g

Since p’ > 0 (everything is globally generated), u” can be bounded in terms
of pu (specifically, p" < H(n+9g—1)—(g—1) <rp+(r—1)(g—1).) Hence
by choosing p big (¢ — p + a, everything @O(a)) and b even bigger, we get
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a contradiction.

“«=": We are given a semistable vector bundle & of slope u. Let V =
['(C,€), then we have V@ O¢ — €. Let W C V be a subspace and F the
sub-bundle of £ generated by W. We have to check (4). Let I be the image
figuring in the numerator on the right hand side of (4). By our choice of b,
I =T(C,F(b)), and its dimension is the EULER characteristic of F(b). Let
as before " =rk F and p” = p(F). We have to show

dimW < r"M.
< b

Since W C I'(C, F), there is no harm in assuming W = I'(C, F). So we want
to show that

//_I_b)
hO C,F — " //_I_hl C,F < //ILL(ILL ]
(C.F) =" + 1. F) < B2

If ' (C,F) = 0, this follows from " > 0, 1, b > 0 and p” < p. Otherwise, we
have some step of slope < g — 1 in the HN filtration of F, hence (as before)

" <pr” —(p+1-g),

and
/,L”T”—I-hl(c,f) < /ﬂ“” o (M +1 _g) +gr’ < /ﬂ“”

if p is sufficiently big. But then, for b big enough, this is also < pr”(p” +

b)/ (1t +b).
One should check that a single b works for all £ in this proof. One should

also check that the proof for ‘stable’ instead of ‘semistable’ does go through.
O

Now we have

Q <5 Grass
U U
{€ semistable} = Q%= =i"!'(Grass*) < Grass™
U
{€ stable} = @ =:""(Grass®) — Grass®
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where ¢ 1s a closed immersion and we have a G = SLy—action on both sides.
(The correspondence of (semi-)stable points on the left and right hand sides

comes from the fact that suitable powers of G-invariants can be lifted.)

We can form the quootient

Q=/G = M
U U
/G = M

M is our moduli space; its points correspond to the closed G—orbits in ()**.
The points in M® correspond to the isomorphism classes of stable bundles

(their orbits are closed).

Claim: Orbit of £ is closed <= & = @&, is a direct sum of stable
bundles.

PROOF: (Sketch)
“=7: If £ is not semisimple (i.e., not of the form on the right hand side), we

have a non-trivial extension
08 —E&—E& —0
with semistable bundles &', £” of the same slope. Let
Vi=rceYycre g =v=vav”
and define a 1-parameter subgroup of G by
G Dttt 1y @t 1y

(where ¢ = dim V" and b = dimV’). t — oo deforms & into & & £”, hence
E'®E" is in the closure of the orbit of £, hence in the orbit, and the extension
was trivial, contradiction.

“=": Let £ = @ E;. There is a closed orbit within the closure of the orbit of
E; let £ belong to this closed orbit. Then, by “=7, & splits into a direct sum
of stable bundles. Now by semicontinuity, the multiplicity of every specific
& in & is at least that of & in &, hence (since ranks are equal) they must

coincide, and &’ is in the orbit of £, whence this is closed. O

32



May 23, 1995
We have M = @Q*//SL(N), M is projective. (The notation X//G in-
dicates that we take the invariants of the homogeneous coordinate ring to

construct the quotient.)

We get an ample line bundle on M from an ample line bundle on Q:
ON — € gives a quotient T'(C,O(b))Y — T'(C, £(D)),

and the determinant detI'(C,&£(b)) defines an ample line bundle on the
GRASSMANNian which can be pulled back to (). We have to be careful,
however, to get a vector bundle on the quotient—we have to take the SL(N)—

action into account. See below.

Aside: Natural line bundles

Recall our quotient construction R — Proj RY. We obtain coherent sheaves
on the quotient from modules M®, where M is a graded R-module with

G—action.

A point = in the quotient corresponds to a closed semistable orbit ¥ =

G/G,. Then

M generates M at + <= (M|y)“ generates M|y
=  M(x) generates M(z) = M @ k(z)
<= (G, operates trivally on M(x)

(The first equivalence comes from the fact that the action of G commutes

with taking quotients modulo (invariant) ideals.)

In our case, we have x = [£], and G, is the subgroup of Aut & consisting of

elements having determinant 1 on I'(C, £). Hence we have to check whether

detI'(C, £(b)) has trivial SL(N)-action. We have
L(C,0()) @ I'(C, &) = T(C,&(b)),
where GL(N) acts on ['(C, £) = kV. Try to find a linear combination

det T(C, £(b))* @ det T'(C, £)™"
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such that the scalars operate trivially: We may choose
a=dimI(C,E)=rp and [ =dimI[(C,E(0D))=r(p+0).
In this way we get an ample line bundle

det T(C,E(b)¥™ @ detT(C,&)27(++0)

ample _trivial line bundle
with non-trivial action

with a PGL(N)-action, which gives an ample line bundle on the quotient
(7). If € is stable, then Aut & = scalars, whence we have trivial action of G,

and probably get a line bundle on the quotient.

The Theorem of NARASIMHAN—SESHADRI

We are now in the compley-analytic case: k = C, and C is a compact

RIEMANN surface of genus g. Then the fundamental group is
m(C)=(A1,..., Ay, B1,....,By | [A1, B1]---[Ay, By] = 1).
Let C be the universal cover of C. Given a representation
p:m(C)— GL,(C),

we get a locally constant sheaf E on C as E = C x C"/my(C) (diagonal
action). Hence we have a holomorphic (therefore algebraic) vector bundle

E=E®OOc¢.

The representations p are parametrized by an algebraic variety
Rep (m1(C), GL,)

(take coordinates for p(A;), p(B;); the relation between the A; and B; gives
equations for the coeflicients); we get an analytic flat family of vector bundles
(over C) on Rep (m1(C), GL,).

A representation p is unitary if its image p(m1(C)) is contained in U(r)
(the subgroup of unitary matrices in GL,(C)). £ then gets a flat hermitian
metric.
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Claim: p unitary = £ is semistable of degree 0.

PRrROOF: The degree is essentially the integral over C of the curvature, which
is zero here. If F C & is a sub-bundle, it gets an induced metric that has
non-positive curvature. Hence deg F < 0 = deg &, and & 1s semistable.

To make this reasoning a bit more precise: We have the sub-bundle
AR F c AR E where A™ € is associated to the unitary representation
A p on AP C". Hence we may assume that JF is a line bundle (remember
deg F = deg A™ F). Take an open cover C = J, U, such that we have
local generators f, of F on U,. In a unitary basis of £ (which is local on

Ua), fa is given by holomorphic coordinate functions (fa1,..., far). Con-
sider ||fal|> = X |fa;|?- This does not depend on the unitary basis, and
=

log || f+||? is either sub- or super-harmonic, i.e. 991log || fa||* < 0 (this 2-form
should glue over C (!)). The degree of F is (essentially) the integral over C
of d01og || fa||?, hence < 0. O
Claim: TI'(C,¢€) = ((C”)m(c) (the m1(C)-invariants in C").
PROOF: Let f € I'(C,€&). Then ||f||* (defined locally with respect to some
unitary basis) has a maximum somewhere on C (since C is compact). Locally,
If1I> = X |f;]* with holomorphic f;, which then have to be constant (?)
(log || f||* is super-harmonic) [CK], so f is a comstant section, which has to
come from E and then from an invariant in C". O
If we have two representations with spaces F; and F, and associated
vector bundles & and &,, then the vector bundle corresponding to the rep-
resentation on Hom (Ey, Ey) is Hom (&1, &), and

Hom (&,&) = T'(C, Hom (&1, &;)) = Hom () (Er, E3) .

Hence the functor E — & from unitary representations of m(C) to vector
bundles over C is fully faithful.
Theorem 6 The functor we have constructed is an equivalence of categories:

unitary representations semisimple, semistable
of m(C) — \vector bundles of degree 0

E — &
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PRrROOF: We have already shown that the image consists of semistable vector
bundles of degree zero and that the functor is fully faithful. We have to show
that & in the image is semisimple (i.e., direct sum of stable bundles). Since
any unitary representation is semisimple (use orthogonal decomposition), we
can assume F to be irreducible. We must then show & is stable. We induct
on the rank of €. If the rank is zero, nothing has to be shown. So, assume
rk £ > 0 and & not stable. Then there is a proper sub-budle F C £ of degree
0, which we can assume to be simple (i.e., stable) (take one of smallest rank).
By our induction hypothesis, F comes from a representation F' (I don’t see
that) which, by full faithfulness, has to inject into E, which therefore cannot
be irreducible, contradiction. (Maybe one can argue as follows: If F C &
has degree zero, its induced metric must be flat. Then F = O @ F, where
F C E is a subsheaf of the sheaf of constant sections of £. This should then
pull back to a subrepresentation F C E.)
REMARK: We see that irreducible representations correspond to stable bun-
dles.

It remains to show that we get all stable vector bundles of degree zero
(up to isomorphism) from irreducible unitary representations.

Claim: We get a continuous (or even real analytic?) map
Rep (m1(C),U(r)) — M(r,0)c

(M(r,0)c is the space for vector bundles of rank r and degree 0, as a
complex analytic space).

REMARK: This would be clear if we knew already that M(r,0) is a moduli
space in some sense: We have the universal bundle on C x Rep (7m(C), U(r))
whose fiber above C x (p, E) is € as constructed above.

There is an open subset Rep (71(C), U(r)) C U C Rep (m1(C), GL, ) such
that for E and & parametrized by U, H'(C,&(a)) = 0. (This is because
of semi-continuity of dim H'(C,&(a)): H'(C,&E(a)) # 0 is a closed condi-
tion which is never true on Rep (m1(C), U(r)).) Furthermore, we want that
the kernel of I'(C,E(a)) @ O(b) — E(a + b) is globally generated. (Similar

argument. )
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Choose an open cover U = |JU, and over U, a basis of I'(C, E(a)) = CV.
This defines an analytic map U, — Qc. (Qc is the same as the algebraically
defined @, since all quotients are algebraic.) We may assume that the image
is contained in @** (the complement is analytic, hence closed—or recall that
X*® is open in X quite generally). Then these maps glue to give a well-defined

analytic map

U=UUs — QF — M(r,0)c

Now, Rep (m1(C), U(r)) is compact (can be identified with a closed subset
of U(r)%, and U(r) is compact), hence by restricting, we get a real-analytic

(hence continuous), closed and proper map
Rep (m1(C), U(r)) — M(r,0)c.

The pre-image of the stable bundles consists exactly of the irreducible rep-

resentations, hence we get a proper map
& : rRep (m1(C), U(r)) — M(r,0)2

with closed image.

The image is also open: Both sides are manifolds. We show the map
induces a surjection on tangent spaces (then the map has to be open by the
implicit function Thm.). But first show that IrtRep is a manifold:

Claim: GL?» — SL,,(Ay,..., A, By,....B,) v [A1, Bi]---[4,, B,], is
smooth at points coming from irreducible representations of m(C).

It is pertectly clear that this map is smooth everywhere. Does FALTINGS
think of representations modulo conjugation? He said something of cheating
around here. Anyway, I don’t quite understand the following lines:

Tangent map is approx. Y.[0A;, B;| — >[4, 0B;].

Adjoint map <+ components of commutators with A; and B; = (only) scalars
because of irreducibility.

The real dimension of Rep (7, (C), U(r)) is 2gr* — (r* — 1).

As to the dimension of M?*, we have for a stable vector bundle &£ that
Aut (£) = Gy, (so that we have only ‘trivial” action, which implies M*® is
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smooth at £). The tangent space is given by H'(C,End (£)). We know the
EULER characteristic is 7*(1 — g). Since H°(C,&nd (€)) = End () = C, we
get for the (complex) dimension of M*:

dim M(r,0)% = dim H'(C,End (€)) = r*(g — 1) + 1.
Now look at the tangent map of ¢:

H'(m(C),su(E)) — H'(m,(C),Endr(E)) — H'(C,&nd (£))
was C

It should be u(E) instead of su(E). In general, if " is a (discrete) group and
G is a LIE group with LIE algebra g, then H'(T,g) is the tangent space of
Rep (I', G) at p, where the action of I" on g is given by Ad o p. (Deforming
p(v) = p(y)(1+dp(7)) gives a 1—cocycle v — dp(7) € g; coboundaries corre-
spond to conjugation by elements of G.) NB: This holds for representations
modulo conjugation.

By HODGE Theory,

H'(m,(C),sw(E) © C) =T(C,End () © Q") & T(C, End (§) © Q1) .

was C ~ HY(C,End (&)

The real points cannot go into the first summand; they have to map diago-
nally since they are invariant under complex conjugation. Hence they surject
onto H'(C,End (£)), i.e., the tangent map is a surjection, our map ¢ is a
submersion, and the image is open.

(One really should look at representations modulo conjugation; then the
real dimension of IrrRep (71(C), U(r)) is 2gr* — 2(r? — 1), which is the same
as the real dimension of M(r,0)%. Hence we have an isomorphism on tangent
spaces.)

Since the image is open and closed, it must consist of connected compo-
nents. Because M(r,0)% is irreducible (hence connected) (we postpone the
proof of this fact) and the image is non-empty (there are irreducible unitary

representations of dimension r (1)), it must be everything.
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Hence, every stable vector bundle of degree zero is obtained (up to iso-
morphism) from an irreducible unitary representation of m1(C). Of course,
we then also get every semisimple semistable vector bundle of degree zero

from a unitary representation. a

Corollary 1 If & and & are semistable vector bundles of degree zero on C,

then the same holds for & ® &,.

PrOOF: First assume &; and &, are stable. Then & and & come from
(irreducible) unitary representations E; and E; of m(C), and & @ & is
obtained from E; ® F5, which is again unitary. Hence, & ® &; is semisimple
semistable of degree zero.

Now let &£ and &; be arbitrary semistable vector bundles of degree 0. Then
there are filtrations (£7) of & (i € {1,2}) with &7'/&/ stable of degree 0. The
proof for & stable now shows that £ = & ® &, has a similar filtration (Sj). If
& were not semistable, there would be some F C & of positive degree. Then
in the filtration F7 = F N &7, there would occur a quotient of positive degree.
Since F’/*!/F7 injects into £/T1 /&7, we have a contradiction. [CK] O

REMARK: FALTINGS says he doesn’t know a purely algebraic proof of this.

5 Moduli space as stack

Suppose M is a moduli space and suppose further that we have a vector
bundle H on M. If we then have a vector bundle family £ on C' x 5, we get
a classifying map ¢¢ : S — M, which we can use to pull back H to a vector
bundle H(E) = ¢(H) on S.

If f:95 — S i1s a morphism, and £ is a vector bundle on C' x 95, we
have H((1¢ x f)*E) = f*H(E) and all sorts of further nice compatibilities.
We also get an action of Aut (€) on H(E) (How?).

So, even if a moduli space does not exist, we can study vector bundles on
it by defining a vector bundle H on M to be an association £ — H(E) with

suitable properties.

EXAMPLE:
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(a) H(E) = Og. This should correspond to Ou.

(b) Let z € C. Then we may take H(E) = E|(s3xs or—if we want a line
bundle— H(E) = det &|(z}xs-

(c) An important example is the determinant of cohomology: 1f C x § "

S, then locally in S, we can find a complex of sheaves
0—H L H —0

such that m.& = kerd and R'7.E = cokerd (EGA III). For example, take
x € C and N > 0 such that R'7.&(Nz) = 0. Then we can take

HO = T(E(Nz)) — m(E(Nz)/E) = HE

The assertion follows from the long exact cohomolgy sequence for ..

This complex is unique up to a quasi-isomorphism which in turn is de-

termined up to homotopy equivalence:

0 — H' — H' — 0

y

0 — H° — H! — 0

(‘quasi-isomorphism’ means inducing isomorphism on cohomology). The de-

terminant of cohomology is now
det H*(C, &) = det H° @ (det HH)* Y ;

this is a well-defined line bundle, independent of all choices made.

For a fixed vector bundle F on C, det H*(C,E @ F) is an example of a

‘vector bundle on moduli space’.

REMARK: An exact sequence of vector bundles
0 —F —F —F, —0
induces an isomorphism
det H*(C,E @ F1) @ det H(C,E @ F2) = det H(C,E @ F).
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Hence it suffices to consider line bundles £ instead of general vector bundles

F. For a line bundle £ and a point € C, consider
0 — L(—2) — L —k, —0.
This induces an isomorphism

det H*(C,E @ L(—x)) @ det &, Zdet H(C,ER L).
———
this is of type (b)

This means that there is basically only one ‘new’ line bundle det H*(C, )
on M.

If D=}%n;a;, =div(f) is a principal divisor on C, then O(D) is trivial,
hence det H*(C, &) = det H*(C, £ @ O(D)), and therefore (using the consid-
erations above), ®; (det £(z;))®™ is trivial. So there is essentially only one
line bundle of type (b). (This should be made clearer. At this point, we get
a map from divisors on C to line bundles on M factoring over the principal
divisors. Hence we get a map from (isomorphism classes of) line bundles on
C to line bundles on M. FALTINGS said something about JACOBlans and
algebraic equivalence.)

ExaMPLE: Consider our ample line bundle
det T(C, E(a + b))% @ det T(C, E(a))* ).
Since H' = 0, we may replace I' by H*. Then we get something of the form

det H*(C, E(a + b))% @ det H*(C, E(a))?=P
= (something of type (b)) @ (det H*(C, g))@(oz—ﬁ) :

where o — 3 < 0.

This means roughly that we “can expect (some kind of) ampleness” for

(det H*(C, £))°Y,
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May 26, 1995

Counsider the following moduli functor:
S — (Vector bundles on C' x S,isomorphisms)

The pair on the right hand side are the objects and morphisms of a category,
which is a groupoid (i.e., all morphisms are isomorphisms). So we have here
a groupoid functor.

The isomorphism classes of vector bundles (which is what we are inter-
ested in) constitute the mg (set of connected components) of the groupoid.
The corresponding functor is not representable (“moduli space does not ex-
ist”).

But we may consider it represented by a (so-called) (moduli) stack
IM—see below what a stack is.

(I don’t know what the significance of the following remark is at this
place:

We can glue vector bundles: If S = |JU, is an open cover and we are given
vector bundles on C' x U, (for all o) with isomorphisms over C x (U, N Up)
which are compatible on triple intersections, the data glue to give a vector

bundle on C x S.)

When constructing a representing object, we have to face two problems:

e a vector bundle can have automorphisms (other than Gy, ): the action
of SL(N) (or PGL(N)) is not free. This will be OK—this seems to be

what stacks are made for, after all;

e the object will not be of finite type, i.e., not quasi-projective (HN-
filtration can be wild).

To overcome the second problem, we construct ‘open substacks” I,,:

Fix some n. We want to restrict to those & with H'(C,&(n)) = 0 (maybe
this isn’t necessary, but it won’t hurt) and such that H°(C,&(n)) generates
E(n).

Given £ on C x 5, let

S,={se€ S| H(C,En),) =0 and H°(C,E(n),) generates &(n),}
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(where E(n)s = i*E(n) withi : C =2 C x {s} — C x §). Then S, is open
in S: By semi-continuity (GRAUERT), “H* = (” is an open condition, hence
satisfied on an open subset U of S. Then m.E(n)|cxy is a vector bundle on
U (by some Base Change Thm.) which generates a subsheaf of E(n)|cxuv
(fiber-wise, m.E(n) corresponds to global sections of E£(n),, hence generates
a sub-bundle in each fiber). The support of the quotient is closed, and = is
proper, hence the image of the support in U is closed, and the points where
E(n)s is generated by global sections constitute an open subset again.

The substack 9M,, should probably be viewed as consisting of all the im-
ages of S,, under the classifying maps S — 9. Since S, is always open, I,
should be kind-of-open in M.

Clearly, S = U,, S, and so 9 = |J,, M,.

These substacks will be quasi-compact (whatever this will mean).

Let T,, be the moduli space of vector bundles £ on C such that H°(C, E(n))
generates £(n) and H'(C,E(n)) = 0, together with a basis of T'(C,E(n)).
Then ¥,, has an open embedding into the quotient scheme () classifying all
quotients of ON (where N = r(u + n) is the dimension of T'(C, &(n))). (The
conditions defining ¥, are all open: quotient locally free of rank r, H! = 0,
H? generates.) So ¥, is a nice scheme representing the corresponding functor,

and we will identify the two. Then we have a GLy ~torsor
T, — M,

i.e., a kind of bundle with fiber GLy (but beware of automorphisms of £ !).
(On C x M, there is the universal vector bundle £, and) 7.E is a locally
free sheaf on M, of rank n (77 I guess it is m.E(n) and has rank N ).

The stack M, should therefore be ‘the quotient ¥,,/GLy’. This quotient
won’t exist as a scheme, since the GLy—action is not free: the stabilizer of
t € T, corresponding to (€ 4 basis) is given by Aut(£). For example, we
always have G,, C Aut(E).

The idea now is not to worry about the quotient, but to work with T,
and its GLy—action instead: We represent the stack by ‘¥, /GLy’ and argue
as 1if GLy would operate freely.
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EXAMPLE: A coherent sheaf on ¥,,/GLy should correspond to a coherent
sheaf F on %, ‘with GLy-action’: Let GLy X €, — %,, be the action of
GLy on ¥,,. Then we require that for any two maps

GLy <& 5 % %,
we have an isomorphism of sheaves on §:
bap: O"F =5 " F

(where o/ = p(f X «)), which is transitive under multiplication of maps 3.
(I take this to mean the following:

qbﬂ(ﬁl xa),B2 © qboéﬁl = Qboz,ﬁ s

where 3(x) = p1(x)02(x) (multiplication in GLy ).)

(Using GLy 2L GLy x %, 2 Tn, one can also write down explicit
conditions on F.)

These sheaves are the same as ‘sheaves on the moduli functor’ (what-
ever this is) (restricted to & with H'(C,&(n)) = 0 and globally generating
H°(C,&(n))).

Given a family of vector bundles £ on C x S (and such that S = S,),
m.E(n) is locally free of rank N. Hence we can choose an open cover S = J U,
such that m.&(n)|v, = OF . Fixing this isomorphism, we get a classifying
map ¢a : Us = Tn(— Q). Further, we have transition maps 7.5 : Usp =
Uy NUs — GLy, given by the matrices changing the one basis into the
other: g = p(Tap X @a) on Uap. The transition maps are compatible on
triple intersections. An equivariant sheaf F on ¥, now induces sheaves F,
on U, by pull-back. Looking at GLy e U, NUs AN Tn, we see that
we get isomorphisms F|v, =, Fslv,, compatible on triple intersections.
Hence the F, glue to give a sheaf on S. This shows that we get for each £ on
C x S a sheaf F(E) on S (with some properties) as discussed in the previous
lecture. Is this meant by a ‘sheaf on the moduli functor’?

If we have two isomorphic families £ and & on C x S, we get maps

Uy, — GLy giving the isomorphism

(m&(n)|u, + basis) = (7.£'(n)|v, + basis).
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This in turn yields isomorphisms F, = F!, which are compatible with those
induced by the respective transition maps. Hence they glue to give an iso-
morphism F(&) = F(&'). In particular, we get an action of Aut(E) on
F(E).

It should be easy now to see the existence of the sheaf m.E(n) on M, : It
certainly exists on %,, (we have the universal sheaf € on C' X%, %, which
has H'(C,&(n);) = 0 and H°(C,E(n),) generating, so m.£(n) will be locally
free of rank N = dim H°(C, E(n);)), so we have to check equivariance. Let
¢:S —=%,and 3 : S — GLy be maps. Then (1 x¢)*E and (1 x pu(Fx¢))*E
are isomorphic sheaves over C x S (we only change the basis of H*(C,—)),

hence

el =m(l X o) &=l x p(B x )&= (u(Bx @) mE.
Transitivity is equally clear.
If we want to consider 91 as a limit of 9,,, we have a problem: Increasing
n will also increase dim%¥,, and N, so we don’t get anything like open im-
mersions on the T, level. We must introduce a suitable equivalence relation

of (representations of) stacks.

Definition of stacks

REMARK: “The notion of stack came up in the sixties. But to swallow
schemes was already enough for one generation of mathematicians.”
(FALTINGS)

Definition 1 An algebraic groupoid is a pair of schemes (S, R) together

with maps
R (dom, ran) xS
N U diag and RxsR=¥R
id
S

(where Rx s R is constructed using ran : R — S for the left and dom : R — S
for the right factor) such that

T—s (Hom(T, S),Hom (T, R))
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is a groupoid functor on schemes. Hom (T, S) are to be the objects of the
groupoid and Hom (T, R) the morphisms. Domain and range of a morphism
are given by (dom, ran), the identity morphism is given by id, and composi-
tion of morphisms is given by comp.

If (S, R) is an algebraic groupoid, then ‘S/R’ is a stack.

EXAMPLE:
(a) Let S be a scheme and G a group acting on S via . Then we can take R =
G x S with dom = pry, ran = g, id(s) = (1,s) and comp((g, s),(¢’,9s)) =
(¢'g, s). The resulting stack corresponds to the quotient S/G.

(b) R C S x S (closed immersion) is an equivalence relation. The stack
S/ R represents the quotient of S by this equivalence relation.

Definition 2 A sheaf on a stack S/R is a sheaf F on S, together with an
isomorphism between the two pull-backs of F to R (i.e., dom™F = ran*F),
satisfying the following condition: Every map p: T — S gives rise to a sheaf
F,=p*F onT. For every map p: T — R (which should be interpreted as
giving an isomorphism between the ‘objects’ p; = domo p and py = rano u)
we get an isomorphism ¢, + F, = Fp, such that ¢iq., = 1dx, and such
that for piy, 1o with ran o ;= dom o iz, we get Geompo(us xus) = Pus © Puy -
To put this into abstract nonsensical language: A sheaf on S/R is a
natural transformation from the groupoid functor represented by (S, R) to
the groupoid functor T + (sheaves onT, isomorphisms). The corresponding
sheaf on S is obtained as the image of ids € Hom (.5, S) in the sheaves on S.

To get a nice (abelian) category, we will only consider smooth stacks.

Definition 3 A stack S/R is smooth if S and dom,ran : R — S are
smooth.

Since a stack is meant to represent isomorphism classes of something,
which can be obtained in a multitude of different ways (looking at objects
with additional structure and modding the additional data out, for example),

we need a notion of when two stacks represent ‘the same thing’.
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Definition 4 Two (smooth) stacks S1/ Ry and Sy/ Ry are equivalent (vulgo
‘the same stack’) if there is a third stack Si2/Ri2 such that we have smooth
and surjective maps

Sy ¢ S12 —» 59

such that
Ry X 8 x5 (512 X 512) =~ R = Ry X S5 % Sy (512 X 512)-

(This means that we can check ‘equivalence’ of objects in S12 by sending them
to Sy or equally well to Sy. Heuristically this means that we get ‘the same’
equivalence classes.)

Another way to define this is to say that we take the equivalence relation

generated by pairs (S’/R', S/ R) such that S" — S and R’ = RXgxs(S5' x5").

As an example, we get ‘the same’ coherent sheaves on equivalent stacks:
Let S’ % S as in the definition above. Then F — ao*F = F' should induce
an equivalence of categories between coherent sheaves on S/R and coherent
sheaves on S’/ R'. By descent, a sheaf on S corresponds to a sheaf on S’ such
that the two possible pull-backs to S’ x g 5" are isomorphic plus a transitivity

condition. Now we have
§' x5S 28 Xsxs (9% 5) 2id(S) Xsxs (S X S") = Rxsxs(S'xS) =R

(S — S x S by the diagonal embedding), which implies that a sheaf on S’/ R’
descends to a sheaf on S/R. The converse is clear. (Exercise: Write this out

in terms of groupoid functors!)

Back to our moduli problem

Let m < n. Then we have two smooth stacks M, = %,,/GLy and 9M,, =
%,/ GLx which we want to relate.

We can assume that £ € M, = & € M,,. Then we get an open subset
%! C %, defined by ‘H'(C,E(m)) = 0 and H°(C,E(m)) generates E(m)’. T,
1s stable under the GLy—action.
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Claim: ¥%,,/GLy and T/ /GLy define equivalent stacks.

(Hence we get some kind of open immersion ¥,,/GLy = ¥ /GLy C
%./GLN.)
PROOF: Let ¥ — %,, X T/ represent isomorphisms pri&, = pri&, (I take
this to mean the following functor: S w isomorphisms &, = &, of vector
bundles on C x S such that S = S,, with respect to &,, and S = 5, = S,, with
respect to &,, plus bases of m.E,(m) and of m.E,(n)) (this is representable
by the HILBERT scheme formalism). The projections &, (&€, = &) — &,
are surjective by definition. They are also smooth: We use the infinitesimal
criterion. Let T' = Spec A with a local algebra A, I C A an ideal such that
I? =0, and let Ty = Spec A/I. We must show that we can lift « to 3:

T, 2
B

n -~ |1

T =g,

(and similarly for ¥). « corresponds to a vector bundle £ on C x T together
with a basis of 7.E(m). Modulo I, we have an isomorphism £ & F, where F
is a vector bundle on C x Ty for which we also have given a basis of m.F(n).
We use the isomorphism to identify € and F. We lift the resulting identity
on & to the identity on £. The basis of m.£(n) can also be lifted because of
local freeness. So we have defined 3 as the classifiying map of & = £ with the
two bases. We still have to check that the pull-backs of R,, = GLj; x X,
and R, = GLy x ¥/, are isomorphic. This says that for two isomorphisms
Em =& and &), = &, &y, and &), are isomorphiciff €, and & are isomorphic.
This is of course clear.

Hence by our definition, the two stacks are equivalent, and the &’s corre-

spond (does this mean the universal sheaves are ‘the same’?). a

Naturally, one wants to have a stack which is not ‘bigger’ than necessary,
i.e., a stack §/R with minimal possible dimension of 5.

So, let S/R = 9M,,. We will get a lower bound on dim S from the fact that
S will be a versal deformation: For s € §, we have a KODAIRA-SPENCER
map Tss — H'(C,End (&;)) which is surjective. (This should be so, since
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H'(...) is the ‘tangent space at &, of the moduli space’—see first lecture. Ts
is the tangent bundle of S.) Hence any &£ gives a lower bound on dim .S =
dim 7gs.

Let s € S be a k—valued point. Let ¢ = 0 and consider k[¢]. Then Ts, is
given by all morphisms Spec k[z] — S extending Spec k — S. Each element
of Tss defines a vector bundle on C X Spec k[e], which can be compared to
the constant bundle £ (obtained from k[e] —» k — k[¢]). The ‘difference’
lies in H'(C,End (€)): Choose an open affine cover C = |JU, such that
Elv, & O, . Write the transition maps into GL,(Ovy,nv,[e]) as gap+-gas.
Then §gas defines a cocycle in HY(C,&End (£)). This defines the KODAIRA—
SPENCER map.

This map is surjective: We first show that surjectivity is invariant under
going over to an equivalent stack. Let §" — S induce an equivalence of stacks.
Let s € §’ map to s € §. Every map Speck[c] — S (extending s') maps
to a map Spec k[¢] — S (extending s), and their images in H*(C, End (£))
coincide. On the other hand, every map Speck[c] — S (extending s) can be
lifted to a map Speck[c] — S’ (extending s') because of smoothness. Hence
Ts.¢ and Tss have the same image in H'(C, End (£)).

From this we see that it suffices to show surjectivity for ¥,,. An element
of H'(C,End (£)) corresponds to a deformation of £ to C' x Spec k[e]. Since
we can lift the given basis of m.£(n) to a basis over k[e], we see that our
deformation of £ comes from a deformation in %,,.

There is a kind of converse:

Proposition 3 Given S smooth, & on C xS such that Ts, — H*(C,End (E;))
is surjective for all s € S and such that for all s € S, H'(C,E(n)s) = 0 and
H°(C,E(n)s) generates E(n)s, then there is an open subset X!, C %, such
that for s € X!, &, is isomorphic to a vector bundle parametrized by S, and
X /GLy = S/R as stacks, where R — S x S represents Isom(pri&, pr3€).

PRrROOF: R is smooth: Take as usual a local algebra A with an ideal I C A
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such that I? = 0 and let T = Spec A, Ty = Spec A/I. We have to lift:

T — R
n 72 |
T — S

The lower map corresponds to a vector bundle £ on C' x T. Since Ty —»
R — 5 x S5, we have another vector bundle & and an isomorphism & & g
on C' x Ty. Since S is smooth, we can lift & to some & on C x T. Then &
and & differ by a class in H*(C, End (€) @ I), and two extensions of Ty — S
differ by something in 7s ® I. Now,

Ts @I — H'(C,End (£)) @ I —» H'(C,End () @ I)

(the first by versality, the second because H' is right exact here). This means
that we can adjust £ to become isomorphic to £, whence the lift T — R.
Now let T — T, x 5 classify isomorphisms. Then the projections are
smooth (use a similar argument as above), hence the image ¥/ in ¥, is open.
Thus we get an equivalence of stacks ¥/, /GLy = S/R. O
There is a construction of ARTIN: Given a vector bundle £ on C = C x
Spec k, construct a smooth scheme S of dimension dim § = dim H*(C, énd (£))
(and a vector bundle on C x S extending £, probably). In this way, one can

construct parts of the moduli stack directly.
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May 30, 1995

We have our moduli stacks 9 = |J,, M,,, where M, = S,/ R,, with smooth
schemes S,, and groupoid structures R,, on 5,,. The inclusions 9,, C M, 14
can be represented by open immersions S, < 5,11 on suitable representa-

tives. The §,, are versal deformations, 1.e., the tangent map
Ts, —» R'7.End (€)

1s surjective.

There is a method of M. ARTIN to construct neighborhoods in S,, of a
given point E:

Given £/k, we can construct a versal deformation of £ over C' x Speck|[ty, ...

such that any other deformation can be obtained by base-change from it (we
can choose d = dim H'(C,End (£)) —in general, it has to be >).

By the ARTIN Approximation Theorem, there is a subring k[ty,...,tq] C
A C E[[t1,...,t4]], étale and of finite type over k[tq,..., 4], such that the
versal deformation of £ can be defined over A, and we get a versal family

over Spec A, which constitutes a neighborhood of £.
Choose S, = [I Spec A (with various A’s) (we can take the union to be

finite
finite because of quasi-compactness) and R,, = isomorphisms. This gives a

kind of direct construction of 9N,,.

Moduli stack is connectd

As promised:

Theorem 7 The moduli stack (for fized rank and degree) is connected,
i.e., each S, (for n > 0) can be chosen connected, or alternatively, there is
no open and closed non-trivial subset S;, C S, that is stable under R, (i.e.,

ran(dom™'(5")) = S’ ).

PRrRoOOF: The idea is to use the known result for line bundles and reduce the

general case to it by filtering vector bundles by line bundles.

o1
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Claim: Let £ have rank > 1. Then for N > 0, £(N) has a section s with
s(x) # 0 for all v € C.

PROOF: Let T = {(s,2) € ['(C,E(N)) x C | s(x) = 0}; this is a closed sub-
variety of ['(C,E(N)) x C. Its fiber over x € C under pry is I'(C, E(N)(—x)).
If N is sufficiently big, then H'(C,E(N)(—=x)) = 0, hence by RR, applied to
E(N) and E(N)(—ux),

dim(fiber) = dimI'(C,E(N)) — 1k &€,
and therefore,
dimT < dimI['(C,E(N)) —tk€E+ 1 < dimI'(C,E(N)).

Hence pr(T') is a proper subset of I'(C,E(N)), and an element in the com-

plement is the section claimed to exist. a

We get £ as an extension
0 — O(-N) —€&—F—0

(with deg F = deg & + N). Since H' is right exact on a curve, we have
0=H'(C,E(M))—» H'(C, F(M))
(and analogously for E(M)(—z) and F(M)(—z)) for M > 0. Hence we can
repeat the construction to obtain a filtration
0=&CéaE C...CE =€
(where r = 1tk &) such that &/&_1 = O(=N;) for i = 1,...,r — 1 and
/61 = det £ ® O(’fill N,). Since we can always increase N in the con-

struction above, we may assume Ny > Ny > ... > N,_; > 0.
Claim: Such extensions (with fixed r, N; and deg&) are classified by an

irreducible variety.

PROOF: For line bundles, we get a copy of the JACOBIan (which is irre-
ducible). So suppose we know the assertion for r — 1 and bundles F. We

have to classify extensions

0— O(-N) — & — F —0.
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We have Ext!(F,O(—=N)) = HY(C,Hom (F,O(—N))). Since
H°(C,Hom (F,O(—N))) = Hom (F,O(—N)) =0

(induction on filtration of F, use that degrees in there are > —N), H'
defines a vector bundle. (Let F' be the variety classifying F’s and F the
universal bundle on C x F = F. Then H = Hom (F,O(—N)) is a bundle
on C x F with 7,H = 0, whence R'n,H is locally free (by RR).) Its total

space classifies extensions &. O

So we have an irreducible variety T' classifying filtrations as above. The
conditions for S, define an open subvariety 7" C T, which ‘maps’ onto S,,/R,,.
Since T" is irreducible, S,/ R, is connected (or also irreducible, if this notion
were defined). (By choosing a connected component of S,,, we see that we
may take S, connected.) O
REMARK: This argument also works for semistable bundles (where we have
used the result).

Theorem 8 Assume g > 1.

(a) The closed subset of non-semistable £ has codimension > 2 in S,.

(b) Suppose chark = 0. Then the closed subset of non-stable £ has al-
ways codimension > 1 in S,. Unless g = 2 and the rank r = 2, the

codimension s > 2.

In particular, the stable bundles are dense, hence they exist for any degree

and rank.

PROOF: To estimate the dimension, we use versality: Ts, —» R'm.End (&).
But in case of singularities, the tangent space may be ‘too big’. To overcome
this, we look at a generic point.

Let S = S, and T = {€ | € not semistable}, and let i be the generic
point of an irreducible component of T. Then over C x k(n), £ has a non-
trivial HN-filtration. This HN-filtration is already defined over k(n): It is
defined over a finite extension M of K" = k(n), which is a purely inseparable
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extension of a GALOIS extension L of K. Since the HN-filtration is invariant
under the GALOIS group, it will be defined over K, if it is defined over L.
If chark = 0, we are done. Otherwise, let p = chark. Consider a purely
inseparable extension K C K’ = K(¥/t). There exists a derivation d on K’
such that (¥/t) = 1 and (K')° = K (i.e., K = {u € K' | u = 0}). 3 acts
on Ocxspecir = Oc @ K’ via its action on the second factor. We claim that
the HN-filtration on & = £ @k K’ is invariant under 0 (and hence defined
over K'). Let 0 C F' C & be the first step in the HN-filtration and consider

F 28 g

(how is this map defined? It seems to require F' = F @ K', which probably
is what we want to prove!) This map is O¢ @ K'-linear (1), and must be 0

because of the different slopes.

We can now replace T by a non-empty open T’ C T and find a filtration
Ex on Elexr by vector bundles &, which induce the HN-filtration on each
fiber. Consider the following diagram:

7’T’ — Rlﬂ'*(gIldHN(g))

N |
Ts  —» R'7.(End (€))
N l
Rlﬁ*(gnd (5)/5Ild HN(g))

where &nd gy denotes endomorphisms respecting the HN-filtration. The
map on the lower right is surjective because R'm, is right exact. The map

Tr — R'm.(End (€)/End gy (E)) is zero, hence at a point £ € T’, we have
codimy Tr1 ¢ > dim H'(C,&nd (£)/End gn(E)) .

Now, £nd (£)/End gy (&) has a filtration with subquotients Hom (gra(E), grs(E))
where o > 3 (gro(€) has slope a). Because of the slopes and semistability,
H°(C,&nd (€)/End un(E)) = 0. Hence the dimension of H' is given by
RIEMANN-ROCH:
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= (9—1pkénd(£)/End un(E) — > deg Hom (gra(€), gr5(E))
a<f3
> 92

Y

since g > 2, tk > 1 and

deg Hom (gra(€), grs(&)) = 1k (g97a(E))1k (975(E))(3 — a) < 0

(with the old definition of slope = deg /rk ) (and at least one of these occurs,

since the filtration is non-trivial). This proves part (a).

To prove part (b), we show that the non-stable bundles have the claimed
codimension in the semistable ones. Let now T be the set of non-stable
semistable bundles, and let again n denote a generic point of a component of
T. Let £ on C xn be semistable, but not stable. We get a filtration of £ whose
subquotients are direct sums of stable bundles (£, = Y F C &, where the
sum is over stable sub-bundles with the same slope as &, continue with £/&;).
By analogous arguments for the GALOIS case as used for part (a), we see that
this filtration is defined over k(n) (since we assume char k = 0, we need not
worry about inseparable extensions). By the same reasoning as above, we get
the estimate (g—1)rk (.. .) for the codimension. (Why is in this case H® = 07
We might have isomorphic stable bundles in different subquotients ... Maybe
this is because the filtration is canonical (image of stable bundle is stable?),
hence has to be respected by global endomorphisms.) If the filtration has at
least two steps, the rank is > 1, so the comdimension must be > 1 (and can
be 1 only if ¢ = 2 and the rank is 1, which implies that the filtration has two

steps with line bundles as subquotients, i.e., £ has rank 2).

We therefore may assume that the rank is zero, i.e., that EQk(n) is a direct
sum of stable bundles. This splitting is defined over a separable extension L
of K = k(n) (this is true even in characteristic p). Spec L — Spec K is an

étale cover which extends to
e A

hence Trng — Trie — Tse, and we can estimate the codimension by the
dimension of the cokernel of the map from T7» to R'm.(End (€)/End 4(£)),
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where End ¢ means endomorphisms respecting the direct sum. Then our old
argument finishes the proof. (Really? It seems there are difficulties with
vector bundles of the form E" (n—tfold direct sum of a stable bundle £): how
can the global endomorphisms be restricted to make the argument work?) O
ExXAMPLE: For ¢ = 2 and rk = 2, codimension 1 does indeed occur: Consider

non-trivial extensions with all degrees zero
0 —= L —&— L, —0

with line bundles £y, £5. Then H°(C,&nd(€)) = k. S, can be chosen
to have dimension 1 +4(¢g — 1) = 5. £y and £y depend on 2 prame-
ters each, which gives a subspace of deimension 4, hence codimension 1.
(dim HY(C, Hom (L2, L1)) = 1, since H® = 0 generically, i.e., the non-trivial
extension is unique.)

The GIT-quotient again

We try to construct again the GIT-quotient (GIT = Geometric Invariant
Theory): Let S C S, the open subset of semistable bundles and R the
induced groupoid structure. We want a projective quotient.

The determinant of cohomology defines a line bundle £ on 5, and on
S%. Suppose L is generated by its RP-invariant global sections (on S3°).
Then we get a map S3° EEIN PV, which is R®-invariant (meaning f o dom =
foran : R — PV). Is the image closed? (whence projective) Suppose so
(?). Then take the ‘R*-invariant normalization’ S — M Il PN and
check the fibers and analyze curves in them (to see if we have the quotient

we want?).

By LANGTON’s Ph.D. Thesis (Harvard; MUMFORD), the image 4s closed.

Theorem 9 Let V' be a discrete valuation ring with fraction field K, and let
Ex be a semistable bundle on C x Spec K.

Then & extends to a bundle £ on C x Spec V' with semistable spectal fiber.

PrROOF: We may assume V to be complete: Given & on C x Specv (V the
completion of V'), choose a fixed extension & on C X SpecV. Let 7 be a
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uniformizer of V. Then for some n, we have
&y c €.

Since the sub-bundles of W_”éo/wnéo are the same over V and over V, £ can
be defined over V.

Now let € be any extension of £k and &, its special fiber. Let &, be
the HNfiltration of &, and let F be its first step. If & is not semistable,
we have p(F) > p(&;). Under the assumption that the Thm. is false, choose
& such that y(F) is minimal and among those such that rk (F) is minimal.
F lives on the special fiber. Extend it by zero to all of C' x Spec V. Define
E C & C n7'& such that 7€' /7€ is the image of F C &/7E. (I have changed

this from my notes which didn’t quite make sense.) Then we have
0 — (E/mE)|F — &n& T F —0

(F and &/ F ‘change places’). Let F’ be the first step in the HN-filtration
of &/n&. Then p(F') < u(F) by the exact sequence above. By minimality
of W(F), W(F') = u(F) (note Ex = & ). We get a strict map F' — F, whose
kernel must be zero (since rk F is minimal) (this doesn’t seem to be the right
justification). Hence F' — F, and then F’' = F because rk F was minimal
(here this is OK). (So the sequence splits by F — F'.)

We have found a new extension 7€ C £ such that

g I &,
U U
Fo=F

Continuing in this way, we obtain a decreasing sequence
E=ED&' D...0&" D¢

such that the first step F™ in the HN-filtration of £ is the image of £"T!
and is & Ft

On the formal scheme C®V, consider £* = N & C &:
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Let Spec A C C be an open affine subscheme, then over A2V, we have
a decreasing sequence of projective modules (E") with E" C E; let E* be
their intersection.
Claim: rk £~ =1k F, and we have a surjection E* — F'. (F correspond-
ing to F.)
PROOF: Let p = m(A®;V) be the prime ideal induced by the maximal ideal
of V. Then

length (E/E"), = n(tk & —tk F).

By commutative algebra, there is a basis eq,..., €4, €411, ., €qrp of E such
that « = tkF and E" is generated by e,...,e, (which generate F') and
T"€at1y .., T €qrp. We can choose this basis to be independent of n (use
completeness of V). Then we see that E™ is generated by ay,..., €4, hence
equals F'. a
This gives us a formal sub-bundle G C Ewith G, = F. By GROTHENDIECK,

G is algebraic, hence comes from a sub-bundle G C £. Now,

wGr) = p(Gs) = p(F) > p(&s) = p(Ex),

contradicting the semistability of Ex. O
REMARK: We see that the construction in the proof (when starting with an

arbitrary extension &£ of &) eventually must lead to a semistable bundle.
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June 2, 1995
(Raw notes by BERND STEINERT.)
Recall S. LANGSTON’s Theorem from the last lecture:

Theorem: Let V be a discrete valuation ring with fraction field K, let C be
defined over V, and let Ex be a semistable bundle on C @y K.

Then Ex extends to a bundle £ on C with semistable special fiber.

The argument fot its proof was as follows:

Take & ‘best possible’ and look at the HN-filtration
E=E"DE' 28 D...

The inclusions 7™ C E"! give rise to isomorphisms £t /7 E™ = F, where

F is the first step in the HNfiltration of £"/n&".
Let £ = N &™; this is a formal vector bundle.
Claim: ¢&" :né'oo + "€
PrROOF: Write C = |Jp Spec R as a union of open affine subschemes. £/7€
and F correspond to free modules over R @y V/7V:

EF* — E° — E°/7E°

U
F
Choose a basis e1,...,¢€q, €at1,...,Ccarp of E® such that ¢1,..., ¢, are in E"
and induce a basis of F. Then e1,...,€4,m"€q41,...,T €qrp € E™ form a
basis of E” (look at index).
This can be done indenpendently of n: Chosen e(ln), ..., el good for B,

modify them by something in 7"FE to get elements good for E"*' (this is
possible because E" = E"t1 4 mFE). Then ¢, = lim e(n) exists in F®@ V

and 1s good for all n. A O
We had the following picture:

Let V' be a complete discrete valuation (?) ring with field of fractions K.
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Let K € L and W the normalization of V in L. Then

S D 5% s PV
4 I
SpecV < SpecK
/!

Spec W Spec L

where the map « is defined via global sections of (det H*)™" (this will be
shown today).

Using LANGTON’s Theorem, we see that &£ extends to & on C @r W,

hence

SpecL —» Isom % S original map
pr2

N\
S map extends to SpecV

Replace lifting by equivalent one = can extend.

In this way one sees that the image is closed.

Construction of global sections of (det H*)*=*) on §

that are invariant under Isom

REMARK: If £ is not semistable, any such section vanishes at &.

PROOF: Assume p(€) = g — 1 (for general u(€), see below) and let F C &

be a sub-bundle violating the semistability property (i.e., u(F) > u(€)).
Consider the following family over P! of vector bundles: E=¢€0a F()F:

0— F(1) — E—E/F —0

What is the determinant of cohomology? Let C'xP! "+ P! be the projection.
Then

det(Rm.&) = det(Rm.JF)®@ O(x(H*(C,F))) @ det(Rr.E/F)

= O(something > 0).
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Hence deg(det™) < 0, and all global sections must vanish. O

How to construct sections:

Choose some fixed F such that u(F)+u(€) = g—1. det H*(C, 5@.7:)@(_1)
has global section ¥; ¥ = 0 < H°(C,£ @ F) # 0.
Observation: If tk 7| = rk F, and det F; = det F;, then

det H*(C,£ @ Fy) = det H*(C, £ @ F)

as line bundles on the moduli stack of £’s.
Proor: This is OK if tk F; = 1. Otherwise, use induction: Write

0— O(-N) —F, — G, —0;
then det G; = (det F;)(N) and
det H*(C,E @ F;) 2 det H*(C,£ @ O(—N)) @ det H*(C,E @ G;)

a

Fix some Fy. Consider F with tk F = N1k Fy and det F = (det .7:0)®N.
Then

det H*(C,E£ @ F) = det H*(C,€ @ (FJN)) = (det H*(C, € @ F))®N

Theorem 10 If £ is semistable, and N 1is sufficiently big, then there exists
an F as above such that H*(C,€ @ F) = 0.

PROOF: This condition defines an open subset in the moduli stack of F’s.

We may assume that & is stable: Write
0= C&ECEC...CE=E

with &/&41 stable. If all (&;/&4+1) @ F have no cohomology, then £ @ F has

no cohomology as well.

Look at S = local deformation space of F.
(REMARK: Replace F by F & (F* @ L): HY(E @ F* @ L) is dual to
HYF @ Hom (£ @ L,w¢)), hence we need not worry about det F.)
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S is smooth, F extends to a bundle F on C' x S, and there is an epimor-
phism Ts — R'm.End (F).

Study R’ﬁr*(f; @ F).

Replace S by an open subset such that m.(€ @ F) is a vector bundle there.
Claim: The cup product 7. (€ @ F) x R'm.End (F) — R'7m.(E @ F) is
identically zero.

PROOF: The tangent vectors are given by Spec (k[¢]) — S.
Let Fo be the constant deformation. F differs from Fy by a cocycle 1+ca,

where o has values in End (Fp).

Let sp € I'(C,E @ Fy) be a global section, then s = 5o+ ¢ ds extends (for
some 1-CECH-cocycle ds).

We get ¢ a(sg) + e d(ds) = 0, where d is the CEcH differential. But this
is just what we get by the cup product pairing. a

Choose a closed point s € §. There is a map
I[(C,€ @ F) x Hom ¢(End (F),we)* — Hom (€ @ Fowe)™,  (7)
and this map vanishes. To get the map, look at
I(C,€® F) x Hom (€ @ F,we) — T(C, End (F) @ we)

which is given by ‘contracting’ &.

Let G C & be the sub-bundle generically generated by the image of

INC,&E @ F)® F — & This is the smallest sub-bundle G such that all
sections lie in G ® F:

I(C,& @ F)=T(C,G o F).

The vanishing of the pairing (7) is equivalent to Hom (€ ® F,we) =
Hom¢(£/G @ F,we).

Stability of £ implies u(G) < u(€) — ¢ (with some € > 1/1k E).

Replacing S by an open subset, we may assume that the G’s define a
sub-bundle of £ on C x §.

Idea: Estimate the variation of G.
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Deformations of sub-bundles G C &€ have tangent space Hom (G, E/G).
This gives a map Ts — Hom (G, £/G), which can be described in the fol-
lowing way (¢ comes from k[¢] with e? = 0):

Let Go C £ be constant, and let ¢ be a local section of Gy. Let g 4+ ¢ ¢ be
a local section of G. (...7)

Upper bound for Hom ¢(G,£/G):

(F*)*9 — G is generically surjective (enough to estimate Hom ¢ (F*, £/G)),
so we get a lower bound for deg G (may assume F* semistable). We then get
bounds for h°(Hom (G,E/G)) — h'(Hom (G,£/G)). Since
H'(End (€)) —» H'(Hom (G,E/G)) (H' is right exact), we get a fixed bound
for dim Hom ¢(G,£/G).

Replacing S by an open subset, we get a sub-bundle 7§ C 7Ts with
tk (7s/T4) < const. such that

Ts C ker(Tg — 1, Hom (g,S/g)) )
The pairing
(GO F) x T& — R'7.(G@F)

|

R'm.End (F)
vanishes. Consider
INMC,Gg®F)x Hom (G @ F,w) — ['(C,End (F) @ w).

The image is contained in a subspace of dimension < ec.

Key observation:

RGoF)—h(GaF) = ulGo F)rkGrkF
< —erkGrk F

- —0 for tk F — oo

There exist r < rkG sections ¢i,...,¢, of G such that (F*)" (91,097) g is

generically surjective. This gives an injection

Hom (G @ F,w) — I(C,&nd (F) @ w)",
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and the image is contained in (above subspace)”, hence h'(G @ F) < re, a

contradiction. O
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June 6, 1995
(Raw notes by BERND STEINERT.)

In the last lecture, we have seen that
£ semistable «— JF: H(C,E@ F)=10.

In particular, 4(&) 4+ u(F) = g — 1. (One can prescribe rk F > 0 and det F

to some extent.)

Corollary 2 -functions generate det H*(C, EQF)®=N) over the semistable

locus.

Today, we will show the following:

Assume given a complete curve B and a vector bundle £ on B x C such
that deg det R*prq (€ @ F) = 0 and such that £|pxc is semistable for at least
one b € B.

Claim:  All restrictions & = E|pxc are semistable and have the same

JORDAN-HOLDER series.

REMARK 1: All fibers & are semistable.

ProOOF: Find F’ with tk F' = MrkF and det F' = (det F)®M such that

H*(C, &, @ F') = 0 (where &, is semistable). Then
det(R*pri(E @ F)) = (det(R*prL*(S ® .7:)))®M

has degree zero.

Let ¥ € T(B, (det(R*pri (& @ F')))®1)) with 9(bg) # 0. Then J(b) # 0
for all b, hence & @ F has trivial cohomology, and &, is semistable for all
be B. 0
REMARK 2: Replace £ by &€ @ F' (which is semistable and has trivial
cohomology).

REMARK 3: We may assume B = P1,

PRrROOF: Choose a finite map B — P! and consider m.& on P! x C. Let
x € P! Then

(7*5)|{x}x0 = W*((OB/meB)(@g)
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= W*(OB/meB) ® &

~ @gb

ber—1 (=)

where “~” means “JORDAN-HOLDER equivalent” and the b are taken with
their multiplicities in the last line. Since we are free to vary 7 as we like, the

claim for P! implies that for B.
Note that all fibers of 7.€ have trivial cohomology, hence the ¥—function

vanishes nowhere, and our assumptions are valid for P! and 7.£. O

Claim: All restrictions &£|py s are isomorphic.

PROOF: Choose finite subsets S, S’ C C such that O(S) =2 O(S’). Look at

R'pri (€@ pr;O(S)) = 0
pri(E@pr;0(8)) = PElpxisy

sES

This follows essentially from the exact sequence

0—0—0(5) —@Pk—0.
sES
Also:
pri (€@ pr;O(9) 2 B Elrxisy = D Elpxsn

sES s'es!
There is much freedom to choose S and S’. Check multiplicity of indecom-

posables (which is semi-continuous). = Claim. O

Corollary 3 There exists an open cover C = |J, Uy such that E|pxy, =
Pri(€lexieo)-

PROOF: Use semi-continuity: Consider R'pry.(Hom (pri€|pxic},E)). The
restrictions to each fiber B x {c¢} are isomorphic. By GRAUERT’s semi-
continuity, these are vector bundles and commute with base-change.

Apply to + = 0 and lift isomorphisms on fibers. a

Now look at the HNfiltration: HN, (&) (slopes > r). They glue together
to form global sub-bundles HN,(£) C £ on B x C.
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Also: HN,(€)/HN,11(E) = priO(r) @ pr;G, for vector bundles G, on C.
(This is as canonical as things can be here.)

We know: HN,(€)|@)xc has slope < g — 1, so EULER characteristic < 0.
Claim: We have equality.
Proor:

det R*pry . = ®det R*pri.(O(r) ® G,)
- S—_—

exterior tensor prod.

= O(Xrx(HY(C.G,)

= O X ((HN,) = \(HN 1))

= (’)(Z X(HN,) — TOX(%))

- O(Z X(HN,))

Hence Y x(HN,) > 0 (because det R*prq .E has global sections?), and since
all X(H;VT) < 0, they must be = 0. Thus, all HN, are semistable sub-bundles
of the same slope as &, i.e., g — 1. O

This implies that G, is semistable, and & ~ @, G,.

[We now only have to give the argument for REMARK 2.]

We have shown now: £ @ F is JH—constant (if H*(C,& @ F) = 0).
Idea: Let G be stable. We want to check that G occurs with the same
multiplicity in each & = &|pyxc-

We get the JH-series for & @ F by taking the JH-series for & (i.e.,
E & Y. mqy Go with G, stable) plus taking the JH-series for each G, @ F.

Let my;(Ga) be the generic multiplicity, i.e., the multiplicity in the generic
point n of B (5|WX0)’ and let my(Ga) be the multiplicity in b € B.
Claim (?): mp > m,,.
Proor: Consider
SpecV — B
n — "B
e — b
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Pull back on SpecV x C.
[“This is really difficult. Why is this so difficult? Maybe I should give up
. 77]
Take JH—series ((£,) 7) on generic fiber nx C: &, D &,; extend to &, C &
such that £/&, is torsion free.

The &, are bundles. &,|cx (s} have the same slope as €.

Look at Eu|ox{sy = Eloxqsy- Since € is semistable, this map is strict, and
E/E, is a bundle.

In some stage this quotient is my JH—constituent.
= &,/&ut1: If generic fiber = G,, so is special fiber.
So multiplicities can only jump up.

And we have a matrix eq. 77

Always: m,, < myp. Adding these up, we get equality everywhere. a

6 New construction of moduli space

As stack: 9™ = S/ R, where S was a versal deformation and R a groupoid.

Let
S — PN

(det H*)®(=¥) <4 O(1)
be the map defined by ¥(€ @ F).

Factor this as S — M ™% PN where M is the normalization (in par-

Y

ticular, M is normal): M is defined by the normalization of k[d] in

é L(90°, (det H*)*™)).

n=0

We have the scalar automorphisms Gy, x S C R; R/Gy, still acts on S.
The stable locus 5 C S is open and R-invariant.
R?/Gy, < S° x §® eqivalence relation = 9M® = S°/ R® algebraic space.

Claim: 97° — M is an open immersion.
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PROOF: By ZARISKI’s Main Theorem, ‘quasi-finite = finite o open immer-
sion’. (Here, finite does not matter, because we have taken M to be the

normalization.)
Hence we have to show that the map has finite (i.e., 0—dimensional) fibers.

If not, there is a (not necessarily complete) curve B° contained in some
fiber, whence a family £ of stable vector bundles on B° x C. By LANGSTON’s
Theorem, this extends to a semistable family over B, the completion of BP.
Ratios /1 /1), are constant on it, hence det H* is trivial, and & is JH-constant.
Then all fibers are isomorphic (and stable), hence B — % maps to a point in
me.

Hence

open imm. finit,
o= M M

then M’ = M, and we are done. O

Comparison with what we get from GIT

Finally:
Prm, (det H(C,£ @ F)*") =P A, = A

n>0 n>0
is a graded ring.

One has:

A D k[e]norm.
A D T(Q)“ (subring from GIT)

with 9 = Q'/G, G = PGLy.
Claim: All are equal.

(subring from GIT) = sections on moduli space from GIT.

M — moduli space
U U open

o~

ms — M*
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Next time: Hicas bundles.

So far:
GL, vector bundles of rank r

U
SL, vector bundles with trivial det
or det a fixed line bundle

There are other reductive groups:

Sp: vector bundles £ with an alternating bilinear map (-,-) : € x & — O
(identifying £ and £%)

O, or SO,: vector bundles £ with a symmetric bilinear map (-, ) : Ex& —

O (identifying £ and &*)

In these cases there is also a notion of (semi-)stability: “parabolic sub-

groups” or subalgebras. Let
G CT&EHC...CE

be isotropic sub-bundles. Semistable means the parabolic subalgebra has
degree < 0.

(...)

This notion coincides with the old notion.

This is not true for stability (one only excludes isotropic sub-bundles).
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June 9, 1995
(Raw notes by BERND STEINERT.)

7 Hicas bundles

Let C be a curve as before.

Definition 5 A HiGcGs bundle is a pair (€,9) such that £ is a vector bundle
on C and ¥ € T(C,End (£) @ we).

Why do we care about these?
Note: T'(C, End (€) @ we) = dual of H'(C,End (£))
Thus:

HiGas bundles ~ ( cotangent bundle to moduli )

space of vector bundles

(Of course there are several difficulties).

Formal computation of the tangent space

We have to look at isomorphism classes over k[e] with e = 0. Let (&, do)

be a HiGas bundle over k. We have to parametrize its extensions to k[e].

Write C' = U, with open affines U, and let £ = &[] (= id mod ) and
9 =y + 250, on U,.

Gluing & gives rise to a 1—cocycle 14+¢ gap with gag € [(UsNUs, End (&)),
and we have §0, — 63 = —[gap, o] (commutator) modulo trivial deforma-
tions, i.e., ug = Ja — g With §¥4 = —[ga, Vo).

The quotient gives the tangent space. It can be written as the hyperco-
homology of the complex

end (&) M%) end (&) @ we
deg 0 comutator deg 1
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One can define H*(C, End (€) 4408 enq (€) @ we). To calculate it, one

has to look at the CECH complex in degree 1:

* — e — o —

wor | ]

*® —> oo —> o —
+—CECH complex—

(Differently from vector bundles, there can be an H? # 0 here.)

There is an exact sequence of complexes

0 — 0 — End (€) — &nd(E) — 0
| L L
0 — &nd(&)@we — &nd (&) Qwe — 0 — 0

It gives rise to a long exact sequence

— H™ ' (End (€) @ we) — H'(End (£) — End (€) @ we)
s Hi(End (€))% Fi(gnd (€) @ we) — ...

K* = H'(End () — €nd (€) @ we) has an inner product that is non-

degenerate.
Hom (K™, we) = K*[1] (i.e., degrees -1 and 0)
Taking SERRE duality:
H'(K") dual to H°(Hom (K*,we)) = H'(K¥)

Check directly: This product is anti-symmetric.

It i1s also the same as the canonical symplectic form on the cotangent
bundle (at least if restricted to stable bundles, as usual).
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Invariants

det(T —9)=T" — a T Y4+ 4 (=1)a,

with a; € ['(C,w"). In particular, a; = trd and a, = det 9.

The characteristic variety is given by

Char = Spec S(é I'(C, W%i)*)

=1
(S: symmetric algebra 7) A HIGGS bundle over C' x § gives a map § —

Char. Look at its fibers.
Conversely: Given a; € I'(C, wgi), we construct a finite flat D — C:

D = Spec (S(*QC (WD) / W1, —ay, ..., :l:ar)) ,

i.e. in local coordinates: If C = |JU, and A, is a generator of we on U,,
write a; = ;0 . Then D =V, where

Op(Va) = Oc(Ua)Ta] [ (Th — araT™ + - £ dra) -

The overlap rule on U, NUp is TyAa = TpAs.

D is a curve, but in general it need not be nonsingular. It is a complete
intersection.

& 1s an Op—module by T\, — 0. It is torsion free, but not necessarily

locally free. I.e.,

(HicGs bundle) — (

coherent torsion free sheaf on C )

(with some conditions)

Definition 6 A HiGas bundle (£,9) is called stable if for any V-stable
sub-bundle 0 G F G €, we have p(F) < p(€).

By GIT (or other methods), there exists a coarse moduli space Higgs™
which is projective over Char. It has an open subset Higgs® which is a

manifold. (The proofs should be similar to the ones before.)
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Why is it a manifold?

Look at H*(C,&nd (£) — &nd (€) @ we); this is dual to H?(End (£) —
End (&) @we) = k.

REMARK: If (£,9) is a HIGGS bundle, then (det&,trd) is also a HiGcas
bundle.

The obstruction for £ is the same as the obstruction for det £. Hence we

are reduced to rank 1. In this case,
Higgs = Pic(C) x I'(C,w¢ ),

and this is smooth.

We have Higgs® O (cotangent bundle to 901°) as a dense open subset (by
estimating dimensions); the complement has codimension at least 2.

A Theorem of LAUMON

We now suppose char k = 0.

Look at the map Higgs® — Char and recall that we have a non-degenerate
inner product on the tangent bundle of Higgs®.

Theorem 11 (LAUMON) If S is smooth and is mapped into a fiber of the
map above, then the image of the tangent bundle Ts is isotropic.

Corollary 4 dim(fiber) < 5 dim(Higgs ).

1
2

(This is not really a theorem about stability.)

PrROOF: (Thm.) Let (£,9) be the familiy of HIGGS bundles on C x S
corresponding to S — Higgs. By assumption, «,(¥) = a; is constant on S.
The tangent bundle is mapped

Ts — R'pry . (End (£) — End (£) @ we)

(End (&) has an inner product). Try to get subcomplexes.
We have the following rules:
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— We may replace S by an open subset or by an étale cover;

— We may replace C by a finite cover C’ — C with C’ smooth (here the
inner product gets multiplied by the degree of the covering).

Now let’s play the game:

Let 1 be the generic point (of C?), K = k(n). We have Ck, the function
field K(C), and & becomes a vector space with an endomorphism . Let
Y =9, + 9, be the JORDAN decomposition of ¥J. Then ker,,, ker 92, and so

on define sub-vector spaces, so that we get J—stable sub-bundles
0c&Ccé&C...cé

over (.
Everything holds over some open subset of S, hence without loss of gen-

erality already over S. Then we get
Ts — H(End (&) % £nd (€)@ we)

HY (@, End (gri(€)) — @, End (gr:(€)) @ we)
The inner product becomes the pull-back.
We may replace € by gr;(£), hence we may assume v,, = 0.
Choose a covering €’ — C such that all eigenvalues of J = 9, lie in
K(C") (we also have to take a covering of §).

Then we get a complete —stable flag of (subspaces in the generic point

and) sub-bundles
0c&E Ccé&EC...ceE =€

This reduces us to the case rk & = 1. In this case,
Higgs = Pic(C') x I'(C',wer)
N—— ——

=Char

and the inner product is given by (€ = £ is a line bundle)

end (£) M end(£) @ we
wo

0
OC —
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The complex splits, whence the assertion. a

Why is this interesting?
We have the following dimensions:

vector bundles: r’(g—1)+1

char. variety: ZT: dim ['(C;w®)
=1
=14+ Y(i(20—2)+1—g)
=1
=1+4+7r*(g—1)
Higgs : 2(r*(g — 1) +1)

Corollary 5 The map Higgs® — Char is flat, and the fibers are mazimal
isotropic (i.e. LAGARANGian).

Fibers over generic points of Char:

Claim: «; generic = D smooth and irreducible.

Corollary 6 Jac(D) (irred.) = fiber <+ line bundle on D (of deg ... ).
PROOF: (Claim) Locally, D C C x A! is given by

P(T)=T —a,T"" +---+a, =0.

P P
Look at points in €' x Al x Char where P = 6_ _ 9

aT—a—§:0(§alocal

coordinate in C').

Check: For a given point in C' x Al, this has codimension 3 in Char.

For r > 3: Have sections with zero-order 0 and 1.
P = 6_5 = 0 gives 2 conditions
oprP
T = 0 gives 1 condition on a,_;.

For r = 2: Hyperelliptic ones cause some problems (WEIERSTRASS points).
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r = 1: never occurs.

D irreducible:
Otherwise D = Dy U D, is a disjoint union. Then P = P; - P, with
polynomials Py, P, of degrees r; and ry, resp., and cofficients in ['(C,w®).

We get for the dimension:
(L4rilg =)+ @ +r3g=1) -1 =1+ (r{+r3)g—1),

but r2 = rf 4+ 2riry + r% > rf + r%, a contradiction. O
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June 30, 1995
Last time we have obtained the HiGGs fibration

Tone C Higgs™ -1 Char = @ T(C,w®) = AV
i=1
(N is the dimension of moduli space), where the complement of the cotangent
bundle of M in Higgs™ has codimension > 2.

Higgs classifies pairs (€,9) with ¢ € I'(C,&End (£) @ we), and (semi-)
stability of HIGGS bundles is defined with respect to ¥-invariant sub-bundles.

For some fixed degree, the generic fiber of f is a connected ABELian variety
(= Pic(D), where D — C is some covering).

From now on, we will assume that det £ = O (i.e., trivial), so that we can

replace GL, by SL, (which simplifies things, since there is no G, —factor).
Correspondingly we restrict to ¢ € I'(C,sl(€) @ w¢), i.e., trd = 0. (This
implies that we must drop the summand I'(C,w) in Char—the dimension
goes down by g¢.)
REMARK: We may replace SL, by any semi-simple group G, e.g. SO, or Sp,
(bundles with a non-degenerate symmetric or symplectic inner product). We
then have to take ¥ € I'(C,g(€) ® w¢ ), where g is the LIE algebra of G.

(The proof that D is irreducible can be difficult for G # SL,.)

f 1is proper, hence f.Onigees = Ochar, s0 that we get the same global

functions:

D D (M, S"Ton-) = I(Higgs ™, Onigge+) = I'(Char, Ocnar) = P S" (D T(C,wi)") .

n>0 n>0 1=2

This is an isomorphism of graded vector spaces if we give T'(C,w$')* degree
.

Corollary 7 I'(9, Ogn:) = 0.

It is difficult to determine the higher cohomology, because we don’t know
much about R! in this situation. But we can show that certain classes in H'

are 1o1-zero.
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How do we get classes in H' ?

We have an ample line bundle
£ = (det B (C.8 0 7))

on M and on Higgs. (This depends only on rk F, since det & is trivial.)
L has a first CHERN class ¢;(£) € H' (9, Qiy), and we get a map

cl(L)U - DO, 5™ Tom) — H' (DM, Qo @ S Tom) — H' (M, "~ Tom)

where the second arrow is some kind of derivative (use that 2 is dual to T

and contract once).

Claim: If n > 0, this map is injective.

PROOF: The idea is to restrict to the generic fiber:
Recall the HiGGs fibration:

Ty C Higgs —Ls Char

|

m

We lift £ from 9M to Tgy and push it to Higgs. Since the complement has
codimension > 2, we get an injection on H!. We claim that there is a map

« such that the following diagram commutes:

H'(Higgs , Oniggs) — D.>o H' (M, S"Ton)

e T T a (L)U-

['(Higgs , Oniggs) = D0 LM, 5" Tom)

Let ¢ € T'(Char, Ochar) be of positive degree. Then ¢;(L)Uy is some class
in H'(9M, S*Tom). To show that this is non-zero, restrict to generic fibers of
f.

Restrict £ to generic fiber (= Pic’(D)): There, (det H*(C, &)%Y =
(det H*(D, &)=Y is known to give an ample line bundle (f-divisor) on
Pic’(D).
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Aside: Higgs is a symplectic manifold (Tiiges = H*(5((E) fﬂ) sl(&) Qwe),

and the form induced by this restricts to the canonical symplectic form on
Ton)- This gives a canonical identification Q%ﬁggs = Tiiges- Thus for a local
function ¢ € Oniges, We have dp € Q%ﬁggs = Thiggs, 1.€., we get a vector field
H, from ¢ (the HAMILTONian vector field of ¢).

If ¢ is induced from Ocpar, we have dp = 0 on the fibers (since ¢ is
constant along fibers), and H, is tangential to the (generic) fibers (since the
tangent spaces of the fibers are maximal isotropic).

Claim: The map a is given by ¢ — ¢;(£) U H, € H'(Higgs , Otiges)-
PROOF: Later. O
To see that a(y) # 0: Take ‘generic fiber’ f~'(n) = A (an ABELian

variety). Since £ is ample on A, one knows that
ci(£) € H'(A, Q) = H'(A4,04) @1

induces a perfect duality between H'(A,O4) and ta. (Ists = T'(A,Ta) ?)
Hence if ¢;(£) U H, = 0, then H, = 0 on f~'(n). Since H, is tangential to
f~%(n), this means that H, = 0 everywhere, hence dp = 0, and ¢ is constant,
contradicting our choice of ¢.
REMARK: Looking at functions and H' doesn’t note removal of bits of codi-
mension > 2. Hence it doesn’t matter whether we look at Higgs, Higgs*,
Higgs®, Tons Tones OF T

O

What is ¢, (L) ?

Facts on CHERN classes and the CHERN character can be found, for example,
in chapter 1 of [HIRZEBRUCH, BERGER, JUNG: Manifolds and Modular
Forms].

We take a base space (or stack) S and let 7 be the projection 7 : C xS —»
S. Let € be a vector bundle on C x S. (E.g. § = 9 or S = Higgs with
universal bundle.) Then £ = det R*7.£ is a line bundle on S and we have

(L) = e1(R*7.E). [HBJ, p. 11].
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If £ is an SL,—bundle, which we will assume, then ¢;(€) = 0.
Recall the CHERN character of a (virtual) vector bundle F:

ch(F) =1tk F 4 e1(F) + LHer(F)?) = eo(F) + - -

2

and the total ToDD class of F:
Td(F) =1+ e1(F) + f(ci(F)* + o F) + - -

By GROTHENDIECK—HIRZEBRUCH-RIEMANN—ROCH, we have (using ¢;(£) =
0)

T4+ ce(L)+- = ch(R'm.E)
= 7m(ch(E)UTd(C))
= (1= &)+ ) Ul +1et(Te))
= ?T—mca(E) -1,

hence (since 7, shifts degrees down by one)
(L) = —m(ex€)

In what cohomology theory do the CHERN classes live?
¢, can be defined in H? (-, 72PQ) (hyper-cohomology), where

PO =0—0—>...— 0 — O Ly el 4y

is the truncated DE RHAM—complex.

For example, ¢;(£) € H*(0 — Q! L0 ...) is the obstruction to
have an integrable connection on L.

A connection on L is a map V : L — L @ Q' such that V(e 1) =
eVIi+ 1@ de (for p € O, 1 € L) (i.e. a prescription how vector fields act on
L).

V is called integrable if the ‘ curvature’ V? vanishes, or equivalently, if the
action of vector fields preserves commutators.

Connections always exist locally. Cover your space by open affines U,

such that there is a connection V; on £ over U;. Then V, —V; = ¢;; 1s a
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1-form on U; NU;, and V? = R; A - for some R; (also called curvature) with
dR; = 0. On U;NUj, we then have R, — R; = «;;V;+ Vj;; = tda;; (one of
the signs is correct). This gives us a CECH-2-cocycle in the CECH complex
associated to 0 —» Q' —Ls 02 —» .. vanishing iff there is an integrable

connection on L globally.

We have a sequence
H(Q)*=" — H* (0 — Q' — Q? — ..)) — HY(QY,

where the quotient measures the existence of a global connection (the image
of ¢;(£) in H'(Q') is called the HODGE class of £) and where the subspace

measures 1f the global connection can be made integrable.

An important property of the first CHERN class of line bundles is that
c1(Ly @ Ly) = e1(Ly) + e1(L2). This means that in chracteristic zero, it
doesn’t matter if we look at £ or at L™ (with n # 0) when we want to know
if ¢1(L) vanishes.

Knowing ¢; for line bundles, we can define ¢; for vector bundles (by the
splitting principle).

For ¢1(&): Locally define connections V,, then V, -V, = «a,; € End (€)@
Q! and so on. A similar construction as for line bundles gives us a class
(‘ATIYAH class’) in H'(End (€) @ Q') that is the obstruction to having a

global connection on &.

0 —&nd( )20 —7— 0 —0

The fiber over 1 € O is a homogeneous space under End () @ Q'; it is the

space of connections on £. Look at the long exact cohomology sequence:
0 —T(End (&) @) — T(?) — k — H'(End (&) @ Q1)

The ATIYAH class &€ is the image of 1 € k in Hl(Snd (&)@ Ql). Hence I'(7)

has an element mapping to 1 (i.e. a global connection) iff this class is zero.
In general, we get the projection of ¢,(€) to HP(2*) by applying sym-

metric polynomials (i.e., the coefficients of the characteristic polynomial

£nd (£) — O[X]).
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Let € be an SL,~bundle. Then
0—sl(&) — End() =5 0 —0

We have ¢;(€) = 0 and ¢,(E) = ¢,(£%) cf. [HBJ p. 11], hence

c2(s1(E)) = e2(End (£)) = &(E" @ &) = 2rey(E)

(Look at the CHERN character ch(€) =r —cy(E) + ... and use ch(E* R E) =
ch(E*)ch(E), cf. [HBI, p. 9]. For the first equality, note that the sequence
above splits (at least if r is prime to the characteristic) by O — &nd (€), x —
(1/r)xide.)

This means that for many purposes, we can use s[(&) in place of €. (This
is related to the fact that different representations of SL, give CHERN classes
differing by a constant factor.)

ExaAMPLE: Consider a stable vector bundle £ on a curve C. Then its ATIYAH
class lives in

HY(C,&nd (€) @ we) = HY(C,End (£))* = k

and is proportional to deg&. Hence stable SL,—bundles always have a
(global) connection. (Over C, the Theorem of NARASIMHAN—SESHADRI tells

us that there is even a unitary one.)

Now look at the universal bundle £ on C x 9 i> M and its ATIYAH
class

o =ac+agm€ Hl(C X M, sl(E) @ (Qe B Qo)) -

Since a¢ restricted to a fiber of f is trivial, we see that
oo € Hl(gﬁ, f*(ﬁ[(g) @ Qc)) = Hl(gﬁ, ng)

(Look at R'f.). As to ag, we have
HY(C x M, sl(E) @ Qo)
L(M, R f.(sU(E)) @ Qam)
Hom (7Ton, R' f.(s1(£)))
= Hom (7Tom, Ton)

am

R-m
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Claim: agp = +id € Hom (Tan, Ton) (with some choice of sign).

PROOF: Choose an open cover C = JU; such that &y, is trivial. On
U;; = U; N U;, we have transition functions g;; (parametrized by 9t). Take
the trivial connection V; on U; x 9. Then (taking the derivative in -

direction)
Vi—V; = dgjog;
= Hom (Ton, End (€wy;)) -
Now follow the definitions. O
Claim: «ac € H'(OM, Qo) is proportional to ¢ (L).

m

L is the determinant of cohomology or its inverse.
PROOF: (?) c3(&) = tr ((ac + am) U (ac + agm)) = tr (ac U age) mod Q3 in
HY(C x M, Qe @ Qon) (maybe it’s H? 7) which maps to H' (9, Qo) (SERRE
duality H'(C,Q¢) = H°(C,Oc)* =k 7)

Hence (by RIEMANN—ROCH), ¢1(L) ~ f.c2(E) = *ace. I cannot say that
this is particularly clear to me. a

This class in H'(9M, Qon) classifies an extension of Oy by Qon, which
dually is given by

0 — O — Diff 1L — Ton — 0,

where Diff <; £ are the differential operators of order < 1 on £ and where Ogy
is embedded in Diff <; £ as the differential operators of order 0. (Differential

operators of order 1 correspond to connections.)

This is equal to the obstruction to defining a connection on & (on C x 9)
relative MM (i.e. V : &€ —» £ ® Q¢). By a Theorem of A. WEIL, V exists
locally in 91, and two such V’s differ by an element of f.(s((€) ® Q) = Qon.

Another formulation is the following: Consider the moduli space 9V of
stable (SL,—)bundles £ together with a connection V : & — £ @ Q¢. Then
the canonical (forgetful) map 9MY — M gives a homogeneous space under
Qop with class ¢;(£). Hence

MY = Spec (S*Diff, £ / “1 =1")
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where the relation “1 = 1”7 means that one has to identify 1 € S°Diff £ = k
with 1 € S'Diff¢; £ = Diff ;£ (identity operator).
A reference for these things is

G. FALTINGS: Stable G-bundles ..., J. Alg. Geom. 2 (1993), 507-586
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July 4, 1995

First, a correction/explanation of some arguments from the last lecture.

Ton — Higgs L Char

m

Higgs is symplectic. For ¢,?¥ € Omiggs, we have the POISSON bracket
{o, v} = (dp,dy) = H,(¢) (where (-, -) is the symplectic form on Tiggs). It
satisfies the JACOBI identity. If ¢ and 1 are pull-backs from Char, we have

{r 91 =0
We have the map

T'(Char, Ocpar) — T'(Higgs , Ottiggs) — [(Higgs , Titiges) — H ' (Higgs , Ohiggs)
© — w = f*p — H, — (L) UH,

and we have shown that its kernel are the constants.

Let MY be the moduli space of stable SL,~bundles with connection intro-
duced at the end of last lecture. We have the canonical map f : 9V — M.

MY = Conn, = Spec om(S°*Diffc1£/“1 =17) classifies connections on L.
Claim: T(OMY, Ogyv) = k.

We have T(IMY, Ognv) = DM, £.Ogyv), and f.Ogyv is a twisted version
of S*Ton. It is still filtered (F,) with graded pieces gr, = F,,/F,_1 = S™"Ton.

Try to lift and look at obstructions.

0— F,_y/Fo_y — F,/F_y — F,/F,_y — 0
Show that
F(SnTm) = F(Fn/Fn—l) — Hl(Fn—l/Fn—Z) = Hl(Sn_le)

is injective (for n > 0). Then a section of F,/F,_, must already come from

a section of F,_1/F,_5. Induction then shows that all sections must come

from Fy = k.
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Claim: This map is given by

c1 (ﬁ)U

Do LM, $"Tom) = TD(Higegs, Oniges) — n>1 HY(S" ')
e (£)U N\ U
Hl (nggs ) OHiggs)

(The injection on the far right comes from the fact that the complement

of Ty in Higgs has codimension > 2.)
EXAMPLE: n = 1:

0 — O — Diff 4L — Ton — 0

Lift sections of Ton locally to Diff <, £; differences on overlaps (in O)

determine a class in H'(O).

Y of degree 1 in Tg corresponds to v € I'(IM, Ton). Form dv and use
duality to obtain a vector field on T4y (total space of cotangent bundle).

Let 91 = UU; be a local cover trivializing £, with transition functions

gij- Then ¢1(L) is represented by d log g;; = dgi; gl»;l. We have
(dV,dgi; 9;5') = 9;; {9, 95} = 9550 (9i5)
(where g,; is to be considered as a funtion ‘upstairs’ (i.e. on Ty 7)). This is
the obstruction to lifting ¥ to Diff <, L.
For n > 1, we can write locally ¢ = > aj¥;; - - - ¥;,. By similar computa-
T

tions using the appropriate variant of LEIBNIZ’s rule and the case n = 1, we
get the result.

Varying the curve

We want to vary the curve C. (The curves of genus ¢ are parametrized by a
moduli space of dimension 3g — 3.)

Assume we have a family C — B of curves of genus g over a base B.
Then we get a family M Iy Bof corresponding moduli spaces (or stacks)
and a line bundle £ = det H* on M (everything considered is assumed to be

smooth).
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We want a ‘projective connection’ on f,L®":

Given a vector field Z on B, find a second-order differential operator Dy
on M acting on L. Dy should be first-order ‘along B’, and ‘D — Z’ should
be ‘Op-linear’ (meaning: we get the same result from commuting functions
in Op with Dy or Z).

(A differential operator has order zero if it commutes with functions; it
has order n if commuting with functions gives differential operators of order
n—1.)

Our construction will work for L™ = Kt/ witho # 1 (K is the canonical

bundle).

First, we want to solve the related problem obtained by replacing Diff <, £
by S?*(Diff <1 £) (here the exceptional value is o = 0).

We have a family of moduli spaces MY — B as well, and MY is ‘in-
finitesimally constant’: Let Z be a vector field on B.

Claim: Z lifts canonically to L; on MY, respecting commutators.

ARGUMENT: We assume that C is over R = E[[t,...,tq]]: Cis a formal

scheme over R, with a formal Q1.

Claim: Restriction induces an eqivalence
(€ + integrable V on Cy) <+— (5 + integrable V : & — £ @ Q¢i, on C)

(Co is the special fiber (¢t; — 0) of C).
PrROOF: We show that this even holds on any open affine U C C, where
U= U x Spf R. The claim is then obtained by gluing.

‘" above is the restriction, for ‘—’, we use the trivialization U = U xy

Spf R to lift.
Let (£,V) on U be given. Then

D(U,Elw) = T(U, €)7o

and & is generated by the right hand side.

E.g. for d = 1: Start with some eg. If e is constructed and is o.k. mod
t"~1 then V(%)(e) = t""1.7. Replace ¢ by ¢ — %-? (we are in characteristic
zero, obviously), then e is o.k. mod t".
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For d > 1, use a similar argument (- commute).

That is: Let b € B <Z- MY. Then l\//l\v, the formal completion of MY

along f~!(b), is canonically isomorphic to f~1(b) X B (hence tangent vectors
of B lift to MY ~» action).

Or better: Consider B < B x B the diagonal embedding, B X B the
formal completion along the diagonal. Then priMY = priMY. O
We have the map MY —s M, where the latter varies with C. The map

T = Hip(s(E)) = H'(sI(€) S sl(€) @ Q') — H'(sI(E)) = Twys

is its tangent map (fiber-wise?).
A vector field Z € Tg — H'(C,7¢) (the latter is the tangent space of
the moduli space of curves at C; the map is the tangent map of B — moduli

space) now induces
I(C,sl(E) @ Q) 25 H, — H'(sI(E))

Claim: This is the cup product.

We get the image of Z in H'(C,T¢) as follows:

Write C = JU,; and take C/k[e] with U; = U; x k[e]. The gluings of the
constant deformation and of the deformation given by Z differ by ¢ - 9,;; with
V., € T(U; NU;, Te); this gives a 1—cocycle representing the image of Z.

We work in B, i.e. over k[[ty,...,t4)]. Then MY = MY x B (MY is the
fiber over 0), and we can extend by a constant V on B.

Write C = JU; with U; 2 U; x B and where (U, =U,) is (U; 2U;)
> t;¥; + - --. Additonally, the universal bundle £ on M is trivialized: &|y,
Elu, x B.

Then

R+

T € Tyv mapping to 0 € Ty
+— family of vector bundles + V on C[¢]
+— family on Cy[e] + constant (w.r.t. £) extension
«— given by (&, Vo + ca) with o € T'(C,sl(£))
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Now apply vector field Z.

Compute the commutator [Lz, 7]: The original & is given by a 1-cocycle
gi; on U;NUj; o is given by «; on U; such that a; — a; = dlogg;;. Ex-
tend to a 2-parameter family over k[[s,t]], where 7 corresponds to % and
Z corresponds to %: (E,V)(s,t) is a vector bundle with integrable connec-
tion. Take the formal completion in the origin; then £ becomes constant,
= & X E[[s,t]]. For the transition functions g;;(s,t) on U; N Uj;, this means
9ij(5,0) = gi(s)g;(s)™"
s—derivative ¢<— change connection <— change the trivialization of £.

(...)

A plausibility argument is as follows:

. Take the t—derivative: %log gij(s,t) = Z,'j(g,'j)g;.

MY parametrizes locally constant sheaves (sheaves that are parametrized
by locally constant transition fucntions g;; on U; N U; (which are therefore

insensitive to changes of the gluing)). If we change the connection by «, the

1

transition fucntions now satisty ¢7 o Vg = a. To compute the commutator

[Lz, 7], we compare: Changing the gluing first, then the connection does

nothing, but changing the connection first and then the gluing gives us (o, Z).
O

We want to apply RIEMANN—ROCH to the universal bundle £ on
CxpM¥ LMY,
Locally, £ has an (integrable) connection V; lifting its universal connec-
tion (mapping to sl(£) @ QF). We have
V,»—Vj . 5[(5) —>5[(5)®f*ﬂllvlv
Vi € sl(&) @ (e A F Qe mod f*Q7 )

This defines a class in
H'(sI(E) 5 sU(E) @ QL) @ Qe = Tyv 5 @ F Qe

Claim: This is the canonical map Tyv/Ts = Tyv,5-
(We have a splitting Tyv = T & TMV/B.)

Complex topology argument:

90



MY parametrizes locally constant (in C—direction) transition functions
¢ij- The obstruction for a global connection (on £ ?) is given by the derva-
tives of g;; in MY —direction. By locally picking canonical connections (with
V% = 0), we can represent this object by (d loggi;,0), giving a class in
HY(C,sl,(C)) (sl,(C) is constant).

Then ¢3(€) is represented by a class which mod f*Q,zvlv is represented
by + the square of this class. Hence f.(c2(E)) € F(MV,Q,ZVIV) is a class

corresponding to the inner product on Tyv,p.

Result: The pull-back of £ to MY has a connection with curvature given by
the inner product on Tyv induced by Tyv — Tyv,p and the inner product
o1 TI\/IV/B'
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