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May 2, 19951 IntroductionLet C be a (smooth projective connected) algebraic curve (over some �eldk). A vector bundle (always on C if not otherwise speci�ed) is a locally freesheaf E.Goal: Construct a moduli space of vector bundles over C.There are two invariants associated to E:� The rank rk E = dimE 
 k(x) (for any x 2 C);� We have the determinant (bundle) of E, det E = �rkEE (see below for theconstruction); it is a line bundle. The degree of E is deg E = deg det E(this is the degree of a divisor corresponding to det E | e.g. the divisorof a global section (if it exists)).Construction of det ELet r = rk E and consider more generally a representation � : GL(r) !GL(r0) (for det E this is det : GL(r) ! GL(1) = Gm). Choose an opencover C = Si2I Ui of C such that there are isomorphisms �i : EjUi �=�! OrUi.On Ui \ Uj, we have�ij = �i � ��1j 2 GL(r;�(Ui \ Uj ;O)) ;and on Ui\Uj\Uk, we have �ij�jk = �ik. Then �(�ij) 2 GL(r0;�(Ui\Uj;O))de�nes a vector bundle �(E). As another example, we have the dual bundleE t given by the contragredient representation �(�) = (� t)�1.There exist vector bundles of any degree and rank: Or�1C �L with a linebundle L has rank r and degree degL.Theorem 1 (Riemann{Roch)�(C; E) = dimH0(C; E)� dimH1(C; E) = (1 � g) rk E + deg E ;where g is the genus of C and �(C; E) is the Euler characteristic of E.2



Example: Let k be algebraically closed and look at the case g = 0, i.e.C = P1. There is an exact sequence:0 �! O(�1) �! O2 �! O(1) �! 0 ;O(�1) is the universal line and O(1) is the universal quotient; O(1) has rank1 and degree 1 (we have a global section coming from the global section (1; 0)of O2, which has a unique and simple zero at the line k � (1; 0)).We let O(n) = O(1)
n for n 2Z.Theorem 2 On P1, every vector bundle E is isomorphic to a direct sum ofO(n)'s: E �= O(m1)�O(m2)� � � � � O(mr) :(And this is essentially unique.)Proof: Coherent sheaves on P1 essentially correspond to �nitely generatedgraded modules over R = k[t0; t1]: To a graded R{module M = Ln2Z Mn,we associate the coherent sheaf F that is de�ned by�(D(t0);F) =M(t0) ; �(D(t1);F) =M(t1) ;where D(tj) is the open subvariety of P1 de�ned by tj 6= 0, and M(tj) isthe homogeneous localization, i.e. the elements of degree zero in the usuallocalization Mtj . We get a trivial F i� Mn = 0 for n su�ciently big (sincethen mtdj = mthjtd+hj = 0 for h� 0), and M1, M2 have the same image i� there isa common submoduleM12 of M1 and M2 coinciding with both in su�cientlyhigh degrees.Given a coherent sheaf F , a suitable M isM = Mn�n0 Mn = Mn�n0 �(P1;F(n))(where F(n) = F 
 O(n)) with some (arbitrary) n0 2 Z. (M is �nitelygenerated by Serre's Theorem [H III.5.2?]). For F = O(m), we may takeM = R(m), de�ned by Mn = Rm+n; this is a free R{module, generated by1 2M�m. 3



Now let E be a vector bundle. We claim that there are m1; : : : ;mr 2 Zsuch that M = Mn2Z �(P1; E(n)) �= R(m1)� � � � �R(mr) :Im particular, �(P1; E(n)) = 0 for n � 0. We �rst show this. By Serre,E t(m) is globally generated form� 0, hence we have a surjectionONP 1 !!E t(m).Then, dually, there is an injection E(�m) ,! ONP 1 , which by tensoring withO(�1) gives E(�m � 1) ,! OP 1 (�1)N , and the latter has no non-trivialglobal sections.Next, we show thatM is a projectiveR{module. R is regular of dimension2; thus projective is equivalent to re
exive, i.e. M = TMp, where p runsthrough the prime ideals of height one in R (see below) [ck]. ConsiderA 2 � A 2 n f0g = U ��! P1(t0; t1) 7! (t0 : t1)Then ��OU =Lm2Z O(m):Spec k[t0; t�10 ]� Spec k[ t1t0 ] = Spec k[t0; t�10 ; t1] ��! Spec k[ t1t0 ] = D(t0)[ [Spec k[t0; t�10 ; t1; t�11 ] ��! Spec k[ t1t0 ; t0t1 ]\ \Spec k[t1; t�11 ]� Spec k[ t0t1 ] = Spec k[t0; t1; t�11 ] ��! Spec k[ t0t1 ] = D(t1)Now, k[t0; t�10 ]
 k[ t1t0 ] = Mm2Z k[ t1t0 ] tm0 ;this corresponds to Lm2Z O(m) (it is glued over D(t0) \ D(t1) with thecorresponding expression obtained by exchanging t0 and t1). We then have��(��E) = ��OU 
OP1 E �= Mm2Z E(m) :Taking global sections �(P1;|), we get�(U; ��E) = �(P1; ����E) = Mm2Z �(P1; E(m)) =M :4



Here, ��E is a vector bundle on U � A 2 = SpecR. Let p � R be a primeideal of height 1; it corresponds to a curve in A 2 . A y 2 M 
 Quot (R) isin Mp i� the corresponding section is regular on an open subset of [ck] thiscurve. If y 2 TpMp, the singular set can contain only (discrete) points, butthen the section must be regular, hence y 2M .Now, sinceM is �nitely generated, there is a surjection L� R(m�)!!M .BecauseM is projective, it is a direct summand (with the graded structures),henceM = R(m1)�� � ��R(mr) with suitablemi. To get the graded splitting,take a splitting s : M ! L� R(m�) as R{modules (not necessarily respectingthe grading). Let prm : M !!Mm be the projection of M onto its degree{m{part and de�ne~s :M !M� R(m�) by ~s(a) = Xm2Z prm�s(prm(a))� :Then ~s is a homomorphism of graded R{modules identifying M with a directsummand of L� R(m�). [ck]Since M=(t0; t1)M = k(m1) � � � � � k(mr) (where k(m) denotes a one{dimensional graded k{vector space in degree m), this representation of M isunique.Going back to sheaves �nishes the proof. 2On the equivalence of `projective' and `re
exive' used in the proof above:(1) Let A be a regular noetherian ring, and let M be a �nitely generatedA{module. Let K = Quot (A) be the quotient �eld of A.Claim: The following two properties of M are equivalent:(i) M �=�!M�� (where M� = HomA(M;A));(ii) M = TpMp �M 
A K, where the intersection is over all prime ideals p ofheight 1 in A.If M has these properties, M is called re
exive.Proof: (i) and (ii) both imply that M is torsion free, i.e., M ,! M 
A K.Since M 
A K �=�!M 
A K canonically, we have inclusionsM � \p Mp �M 
A K and M �M�� �M 
A K ;5



hence it is su�cient to show TpMp =M��.\�": Let p be a prime ideal of height 1, then Ap is a discrete valuationring. Since Mp is torsion free, we have Mp �=�!M��p , whence M�� � TpM��p =TpMp.\�": Let x 2 TpMp. Consider l 2 M�, i.e., l : M ! A. l extends tolK : M 
A K ! K. Since x 2 TpMp, lK(x) 2 TpAp = A, whence x 2 M��.2(2) (Serre) If A is a regular noetherian ring of dimension 2, and M is a�nitely generated re
exive A{module, then M is projective.Proof: Without loss of generality, we may assume A to be local. Then we haveto show that M is a free A{module, which is equivalent to M being 
at over A,which in turn is equivalent to TorAj (M;k) = 0 for all j > 0, where k = A=mA isthe residue �eld of A.Let K = Quot (A). Let n = dimKM 
A K, then (since M is torsion free),there is an injection i : M ,! An. Let Y = An=M and consider the long exactTor{sequence for 0 �!M �! An �! Y �! 0 :Since TorAj (A; k) = 0 for j > 0, it su�ces to show TorAj (Y; k) = 0 for j > 1.Since M is re
exive, all zero divisors of Y belong to some prime ideal p ofA of height 1; therefore the set of associated prime ideals of Y (i.e., maximalelements in the set of annihilators of elements of Y ) consists of �nitely manyprime ideals of height 1. In particular, mA does not belong to this set. Hencethere is some x 2 mA such that we have a short exact sequence0 �! Y �x�! Y �! Y=xY �! 0 :Looking again at the long exact Tor{sequence, we see that we only need toshow TorAj (Y=xY; k) = 0 for j > 2. (Note that multiplication by x is zero onTorAj (Y; k) since it is zero on k.) But this follows from the fact that A is regularof dimension 2. 2[ck] 6



2 General ObservationsSuppose a moduli space M exists. Let S be some `parameter space' andconsider vector bundles on C � S. The isomorphism classes of these objectsshould be given by Map (S;M).M is smoothLift over in�nitesimals: Let R be a ring, I � R an ideal with I2 = 0, and letS = SpecR, S0 = SpecR=I. We have to show that any morphism S0 !Mextends to S. This means that any vector bundle E0 on C � S0 comes froma vector bundle E on C � S. (It will be important that C has dimension 1.)(This criterion looks a bit like [H III.10.4 (iii)].)Choose an open a�ne cover C � S0 = Si Ui;0 such that we have isomor-phisms �i;0 : E0jUi;0 �=�! OrUi;0 :(Since S = S0 as spaces, the Ui;0 also give an open a�ne cover C�S = Si Ui.)As usual, we then have �ij;0 2 �(Ui;0 \ Uj;0;GL(r)) with�ij;0�jk;0 = �ik;0 : (1)It is always possible to lift �ij;0 to �ij 2 �(Ui \ Uj;GL(r)), but we have topreserve (1). So take any lifting �ij and write�ij�jk��1ik = 1 + 
ijkwith 
ijk 2 �(Ui \ Uj \ Uk; IOr�rC�S) = �(Ui \ Uj \ Uk; I 
 End (E)); thisidenti�cation is given by the trivialization via �i. (Question: E is not yetconstructed | can we use End (E) and �i here?). Because of I2 = 0, we geton Ui \ Uj \ Uk \ Ul the relation (by calculating �ij�jk�kl in two ways) [ck]
ijk � 
ijl + 
ikl � 
jkl = 0 : (2)We may change our lifts �ij by some 1+��ij with ��ij 2 �(Ui\Uj ; IEnd (E)).Then 
ijk changes by ��ij � ��ik + ��jk. We have0 = H2(C � S; IEnd (E)) = f
ijk j (2) holdsg=f��ij � ��ik + ��jkg7



(H2 = 0 since C is a curve|[H III.2.7] and [H III.3.7] (remember S is a�ne)+ K�unneth{formula), hence we can achieve 
ijk = 0.We see that H2 = 0 means that M is smooth. H1 also has a meaning:its dimension is that of the tangent space ofM.Let Spec k = x 2 M be a (rational) point. It corresponds to a vectorbundle E0 on C � fxg ( = C). Try to extend Spec k !M to S !M withS = Spec k["], "2 = 0. The following objects correspond to each other:(SpecS !M) ! 0BBBBB@ m2x 7!0OM;x �! k["]&x # "7!0k 1CCCCCA ! Hom k(mx=m2x; k � ")and the dimension of the Hom k is that of the tangent space ofM in x.By the discussion above, the possible lifts correspond to changes by ��ij'swith ��ij���ik+��jk = 0; di�erent lifts are isomorphic (with an isomorphismthat is the identity mod I = (")) i� the ��ij's di�er by ��i� ��j. Hence thedi�erent lifts are parametrized byH1(C � S; IEnd (E)) = H1(C; End (E0)) ;and the dimension of the tangent space is given by dimH1(C; End (E0)).And what is H0? Well, it can be interpreted asH0(C; IEnd (E)) = ker(Aut (E) ! Aut (E0)) = f1+�� j �� 2 �(C; IEnd (E))g:(Shouldn't it be H0(C � S; IEnd (E)) ? They are the same, since I killsIEnd (E), so that IEnd (E) is an OC = OC�S=IOC�S module. [ck])By Riemann{Roch (use that End (E0) is a vector bundle of rank r2 anddegree 0):dimH0(C; End (E0))� dimH1(C; End (E0)) = r2(1 � g) :A moduli space for all vector bundles does not exist, but there will be onefor those E with H0(C; End (E)) = k; its dimension then is (by our discussionabove) 1 + (g � 1)r2. 8



May 5, 1995(Raw notes by Michel Fontaine.)Why do moduli spaces not exist?There are di�culties with automorphisms:Let E be a vector bundle on C�S ��! S, let L be a line bundle on S andtake E 0 = E 
 ��L. There is an open cover S = SUi such that LjUi is trivialfor all i. Hence on C � Ui, we have E �= E 0. So, ifM exists, there are maps�; � : S �! M corresponding to E and E 0, resp. Since EjC�Ui �= E 0jC�Ui ,we should have �jUi = �jUi, whence � = �. But it is possible that E 6�= E 0(and so � and � should be distinct, a contradiction): Let 
 : E �! E 0 be ahomomorphism. Then
 2 �(C � S;Hom (E; E 
 ��L))= �(S; ��(Hom (E; E)) 
 L)= End C(E)| {z }=�(S;��(End(E)))?
�(S;L) :If, e.g., �(S;L) = 0, 
 cannot be an isomorphism.Problem: Gm � Aut (E)Need to consider `local' isomorphism classes, but then the moduli spacewill not be very nice.Solutions:(a) ConsiderM as a (moduli) stack (see later lectures);(b) Restrict the set of vector bundles that are considered, e.g., take only Esuch that End (E) = k, or (semi-)stable bundles.For a vector bundle E, de�ne its slope to be �(E) = degErkE .E is called semistable (stable) if for every 0 6= F � E (with F 6= E)�(F) � �(E) (�(F) < �(E)). 9



Remark: Any F � E is torsion free and hence a vector bundle, but E=Fmay have torsion. There exists some F � F� � E such that F�=F has �nitesupport and such that E=F� is torsion free. We haverkF� = rkF and degF� = degF + length (F�=F) :Explanation: For our purposes, a torsion sheaf is a �nite sum of (coher-ent) skyscraper sheaves, i.e., sheaves of �nite support with �nite-dimensionalstalks. To such a sheaf T corresponds the positive divisor D = Px2C dimTx �x.If we want the degree to be additive on exact sequences (which it should be:0 �! F1 �! F �! F2 �! 0 =) detF �= detF1 
 detF2 );then we are forced to de�ne deg T = degD = Px dimTx = length T , since wehave the exact sequence0 �! L(�D) �! OC �! T �! 0 ;where degL(�D) = �degD and degOC = 0.Over an open a�ne subset U = SpecA � C, a coherent sheaf correspondsto a �nitely generated A{module M . For suitable A (e.g. principal idealdomains), M decomposes as0 �!Mtors �!M �!M �! 0with M a �nitely generated free A{module. This corresponds to0 �! F�=F �! E=F �! E=F� �! 0in the Remark above. rkF means the generic rank of F .Remark: We can also consider quotients E !!G. The condition for (semi-)stability then is �(G)n�>o�(E).Proof: For every exact sequence 0 �! F �! E �! G �! 0, we havedeg E = degF + deg G and rk E = rkF + rkG.\=)": If �(G)n<�o�(E), then deg G � rk E n<�odeg E � rkG, hence10



deg E � rkF n<�odegF � rk E, i.e., �(E)n<�o�(F), contradiction.\(=": Let F� as above. Then the same argument in reverse direction shows�(F�)n<�o�(E). Since �(F) � �(F�), the claim follows. 2Remark: If E1 and E2 are semistable vector bundles with �(E1) > �(E2),then Hom(E1; E2) = 0:E1!!F ,! E2 =) �(E1) � �(F) � �(E2) ; contradiction.If �(E1) = �(E2), we have F = F�, and the map is strict, i.e. it has constantrank at each point.If E1 and E2 are even stable (and �(E1) = �(E2)), then every non-trivial mapE1 ! E2 is an isomorphism. In particular, End (E) is a division algebra forstable E, and for k algebraically closed, we have End (E) = k.The Harder{Narasimhan FiltrationFor a semistable bundle E, this is given by0 � E :If E is not semistable, take 0 6= F � E such that F has maximal slope�(F) and among the sub-vector bundles with maximal slope has maxi-mal rank rkF . (This exists since the slope is bounded: dimH0(C; E) �dimH0(C;F) � degF � (g � 1)rkF (by Riemann{Roch), hence �(F) �g � 1 + dimH0(C; E).) We now have(a) F is semistable (by construction);(b) Any G=F � E=F has �(G=F) < �(F) (Otherwise, �(G) � �(F) andrkG > rkF);(c) F = F� (otherwise, �(F�) > �(F)).We take E1 = F as the �rst step in the Harder{Narasimhan �ltration0 = E0 � E1 � : : : � Er = E11



of E. The construction is continued with E=F replacing E. We get a �ltrationsuch that Ei=Ei�1 is semistable with slope �i, where �1 > �2 > : : : > �r.We re-index the �ltration as follows. For � 2 R, letHN�(E) = Emaxfiji=0 or �i��g :Then HN� � HN� if � � �.Remark: If f : E �! F is a homomorphism, then f(HN�(E)) � f(HN�(F))(for all �). In particular, HN� does not depend on the choices made in thede�nition.Proof: Let Ei = HN�(E) and choose � maximal (i.e. j minimal) such thatf(Ei) � HN�(F) = Fj. Then we have maps: : : � Ei�1 � Ei f�! Fj ��! Fj=Fj�1 �! 0and the composite � � f is not zero (since j was minimal). Suppose thatHN�(F) 6� HN�(F), then � > �. Now Fj=Fj�1 is semistable with slope �,and for 1 � � � i, E�=E��1 is semistable with slope � � > �, hence � � finduces the trivial map on E�=E��1, for � = 0; 1; : : : ; i. Hence � � f = 0 onEi, a contradiction. 2Consider a semistable vector bundle E of slope �. ThenXF�EF stable�(F)=�F =Mi2I Fi with I �nite.(For F0 stable with slope �, Hom(F0;PF) tells us how many copies of F0occur in the sum.) Continue with this in the quotient. We see that we getthe semistable bundles from the stable ones by direct sums and extensions:If E1 and E2 are semistable with the same slope � and we have an extension0 �! E1 ��! E �! E2 �! 0 ;then E is also semistable (look at the HN �ltration).Let t be a section of O(1) (on P1) which has its (only and simple) zero in1. Consider the following bundles on C �P1:~E = �pr�1E � (pr�1E1 
 pr�2O(1))�.pr�1E112



�where pr�1E1 ,! : : : by (�; 1 
 pr�2(�t))�~E1 = pr�1E1 
 pr�2O(1)~E2 = pr�1E2We get an extension of bundles on C �P1:0 �! ~E1 �! ~E �! ~E2 �! 0 :For x 2 P1, x 6= 1, we have ~EjC�fxg �= E (from the inclusion of E as the�rst summand), but ~EjC�f1g �= E2�E1. Looking at the map to moduli spacecorresponding to ~E , we getP1 �! moduli space of semistable bundles[ [jA 1 �! [E]1 7�! [E1 � E2]so [E] has to be the same class as [E1 � E2]. Hence we can only expect acorrespondence(Points in moduli space)  !  Semistable bundles which aredirect sums of stable bundles !ResultConsider E on C�S; for each s 2 S look at the HN �ltration of E in C�fsg.This gives a collection of slopes and ranks.Claim: This is a constructible function. (That is, S = `Si with con-structible Si (`constructible' = �nite union of intersections of an open and aclosed set) such that the function is constant on each Si.)Proof: Inductive criterion: We have to show that if T � S is irreducible,the function is constant on a non-empty open subset U � T . Hence wemay assume S = T and, if necessary, replace S by an open subset such thatS = SpecR with an integral domain R. Let � 2 S be the generic point. OverC � k(�), E has a HN �ltration which is de�ned over a �nite extension K13



of k(�) (in fact, even over k(�)). Replace R � k(�) by its normalization R0in K, then S0 = SpecR0!! S. Assume the assertion holds over S 0, then theHN �ltration is constant on R0f 0 with some 0 6= f 0 2 R0 and hence it is alsoconstant on Rf with f = Norm(f 0). Therefore, without loss of generality, wemay assume that the HN �ltration is de�ned over k(�) = Sf 6=0Rf .We can assume that the Ei;� = HN�(E�) extend to subbundles Ei of E onC�S. Then it is enough to show that Ei=Ei�1 is semistable of constant slopeon each �ber over an (non-empty) open subset of S. Hence we have reducedto showingE� semistable =) EjC�fsg semistable for s 2 open subset. (3)Tensor with a suitable line bundle L: E ! E 
 L such that �(E) � 2g(where g is the genus of C).Remark: Any semistable F with �(F) � 2g has H1(C;F) = 0 and isgenerated by global sections.Proof: 
1C is a line bundle of degree 2g�2, hence semistable with � = 2g�2.Let V be a semistable vector bundle with �(V) > 2g�2. ThenHom(V;
1C) =0. But this is dual to H1(C;V), hence H1(C;V) = 0 as well. Take x 2 C andlet F(�x) = F 
 L(�x) (L(�x) is a line bundle of degree �1, consisting ofregular functions vanishing in x); then �(F(�x)) = �(F)�1 > 2g�2, henceH1(C;F(�x)) = 0, and therefore, H0(C;F)!!H0(C;F=F(�x)) = Fx, i.e.F is generated by global sections. 2Suppose that EjC�fsg is not semistable. Then there is some F � EjC�fsgwhich is semistable of slope � > �(E) � 2g. F is generated byW = �(C � fsg;F) � V = �(C; E) 
 k(s) :We therefore have to test all subspaces W � V if they generate a vectorbundle F with �(F) > �(E).Let G = `Grassmannians be the projective variety parametrizing allpossible W 's. Over G, we have a universal bundle W � �(C; E) 
 OG.It generates a subsheaf F � pr�E on C � G � S. Find a decompositionG � S = ` Ti into constructible subsets Ti such that FjC�Ti is 
at over Ti.14



Then the rank and degree are locally constant on Ti, hence (by taking a�ner decomposition) we may assume them constant, in particular we haveconstant slope �i on Ti.Consider those Ti with �i > �(E): The (by Chevalley) constructiblesubset prS(Ti) of S does not contain the generic point � of S (because E� issemistable), hence lies in a proper closed subset of S. Now, if we replace Sby the open complement of these proper closed subsets, then these Ti mustdisappear, and the proof is complete. 2SemicontinuityProposition 1 Take some vector bundle E and look at the pairs (rkF ;degF)for all subbundles F � E. Then we get the following picture:
- rkF

6degF









��������� @@@AAAAAA� � � � � �EE1 E2�1 �2 : : :all other F in hereUnder specialization, the domain may at most become bigger.Proof: The picture is clear. To prove the statement about specialization:Let V be a discrete valuation ring and S = Spec V . Consider E on C � S.Let � 2 S be the generic point and Ei;� the generic HN �ltration (de�nedover �). Extend Ei;� to a subsheaf Ei � E over C � S. Re
exive (?), hencethese are vector bundles, and �i = �(Ei) coincides on both �bers. Hence onthe special �ber, we have subbundles Ei 
 k(s) � E 
 k(s) mapping to thesame points as Ei;�. Hence the region for Es contains that for E�.15



If S is arbitrary with s; t 2 S such that s 2 ftg, there is a discretevaluation ring V and a map SpecV ! S mapping � to t and the specialpoint of SpecV to s. (Is this possible when dimftg � dimfsg � 2 ? Maybeone has to break this up into several steps.) Now use the above argument.By specializing step by step we may assume S to be local and of dimension1. By pulling E back to the normalization S ! S, we may assume S = SpecV ,with V a discrete valuation ring. [ck] 2
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May 9, 1995(Raw notes by Bernd Steinert.)3 Geometric Invariant TheoryWhy do we need this?Approach to moduli spaces: First, construct moduli space for bundles withadditional structure. Then, eliminate additional structure by taking invari-ants (see below).Let E be a semistable bundle with deg E = d, rk E = r. We may assume� = d=r � 2g, then �(C; E) generates E and H1(C; E) = 0 (see last lecture).We have (by Riemann{Roch)dim�(C; E) = d+ r(1 � g) = N :We want to parametrize (E; (e1; : : : ; eN)), where e1; : : : ; eN is a basis of theglobal sections �(C; E).Proposition 2 This gives a representable functor (Grothendieck):Proof: (or rather, Explanation) E is a quotient of V 
 O with a vectorspace V of dimension dimV = N . There is an algebraic schemeH (Hilbertscheme) and a universal quotient sheaf V 
 OC�H ! F , which is 
at overOH.One has H = a(d;r)H(d;r) ;where on H(d;r), the degree d and the (generic) rank r are �xed.(The hard part in the proof is to show that H(d;r) is of �nite type.)Over a suitable open subset H0 of H(d;r), we have that(a) F is a vector bundle; 17



(b) F is semistable on �bres () ��F is a vector bundle of rank N , � :C �H !H);(c) V 
O ! ��F is an isomorphism.Then H0 is representing the functor described above. 2Now, try to get rid of the additional data.Two di�erent bases of �(C; E) are related by GL(N). So GL(N) acts onH0. Our moduli spaceM should be the quotientGL(N)nH0. (The scalars acttrivially, whence an action of PGL(N) (this refers to the �rst formulation,where bases mod scalars were to be parametrized).)Remark: H(d;r) is projective, hence H0 is quasi-projective.Proof: (Sketch) Use some Grassmannian.Take a line bundle L of degree degL � 0 such that for any V 
OC!!E(with deg E = d, rk E = r) with kernelK, K
L is generated byH0(C;K
L),and H1(C;K
 L) = 0 (bounded family (?)).Note thatH0(C;K 
L) ,! V 
H0(C;L)| {z }has �xed dimension !! H0(C; E 
 L)de�nes an embedding of H(r;d) into some Grassmannian G, and the ampleline bundle detH0(C; E 
 L) on H(d;r) corresponds to the ample line bundleon G given by the dual of det(subspace), i.e., det(quotient space). 2How to construct quotients?In char k = 0, we use Invariant Theory.Let G be a reductive group (e.g. GLN , SLN , PGLN).Problem: X � PN quasi-projective, G acts on X via G ! GLN . Whatis X=G ?Try: R =Ln�0 �(X;O(n)) = Ln�0Rn. Is X=G = ProjRG ?Hilbert: RG is �nitely generated over k.18



The key property of G is that for any G{surjection V !!W of vectorspaces, the induced map V G ! WG is again surjective. (This is equivalentto H1(G;V ) = 0 for every vector space V with G{action: It is equivalentto H1(G;V )! H1(G;W ) being an injection for every G{injection of vectorspaces V ,!W . Now embed V into an injective kG{moduleW (cf. [Brown:Cohomology of Groups]). Then H1(G;W ) = 0, whence H1(G;V ) = 0.)(Since G is reductive, G acts semi-simply on inductive limits of algebraic repre-sentations. This implies the `lifting property' above.) [ck](In characteristic p > 0 the induced map is no longer surjective, but atleast some p{power can always be lifted.)Let I+ = Ln>0Rn, this is an ideal of R. IG+ R is a homogeneous ideal,hence IG+ R = (f1; : : : ; fr) with homogeneous fi 2 IG+ . Then the fi generateIG+ as an RG{module:Take a homogeneous f 2 IG+ . There are ri 2 R with f = P rifi, i.e.we have a G{surjection Rr!! IG+ R. Hence (by the lifting property above)(RG)r!! (IG+ R)G = IG+ , which means that the ri can be taken in RG.This implies that the fi generate RG (as a k{algebra). We now have anembedding ProjRG ,! PMde�ned via all monomials in fi of degree lcmfdeg fig.There are mapsfhomog. ideals of RGg �! � fhomog. ideals of RgI 7! I RIG = I \RG  p Iwhere  �!= id.Recall: Proj is given by the homogeneous prime ideals except I+ =Ln>0Rn. This means that on the Proj {level, there is (in general) no mapcorresponding to  above.Remark: (and De�nition) One can de�ne a quotient map only on homoge-neous prime ideals which do not containLn>0RGn . The corresponding pointsx are called semistable; they are given by the property that there is some f19



in some RGn (n > 0) with f(x) 6= 0. Sometimes we will also call a pointx� 2 A N+1 mapping to x 2 X � PN semistable.Let Xss be the complement in X of the zero-set of all RGn for n > 0. Thisis an open subset of X.Remark: x semistable () 0 =2 Gx�(for some/any x� 7! x.)Proof: \)": There is a f 2 RGn with n > 0 and f0 = f(x�) 6= 0. Thenf � f0 vanishes on Gx�, but not in 0.\(": Let J � R be the ideal de�ning Gx�, then J 6� I+ = Ln>0Rn andhence J !! k = R=I+, where the G{action on the right hand side is trivial.Hence JG!! k, i.e. there is a f = f0 + f1 + � � � 2 JG with f0 6= 0. But then(since f(x�) = 0) some fi(x�) 6= 0 for some i > 0. 2We get a map Xss �! ProjRGI 7! IG :What are the �bers of this map?x and y (or x� and y�) lie in the same �ber i� some f 2 RGn for somen > 0 vanishes at both of them (?|this should read `i� for all n > 0 andall f 2 RGn , f vanishes on x i� f vanishes on y'.). We hope that each �bercontains precisely one closed (in Xss) G{orbit. This is indeed true.Proof:(a) Any �ber contains a closed orbit (take some x with dimGx minimal).(b) We have to show: If Gx and Gy are closed in Xss and x and y havethe same image in ProjRG, then Gx = Gy.Choose some f 2 RGd with d > 0 such that f(x�) 6= 0 and f(y�) 6= 0.Let S = R(f) be the localization and Y = SpecS the open subset de�ned byf in X� � A N+1 . Y projects to Xss. Gx and Gy de�ne G{invariant idealsI; J � S, resp. Assume Gx 6= Gy, then Gx \ Gy = ; and hence I + J = S.By the lifting property, I !! (S=J)G 3 1 (: : : ) ??On the other hand, let Ix, Iy � S be the homogeneous ideals correspond-ing to x and y, resp. Then IGx = IGy = I 0 and I = IG � IGx , J � IGy . This20



implies I + J � I 0 � Ix 6= S, a contradiction.Better: Let I, J , Ix, Jy be the homogeneous ideals in R corresponding to Gx,Gy, x and y, respectively. SinceGx\Gy = f0g, we have I+J = I+ = Ln>0Rn.Hence, (I+)G = IG + JG � (Ix)G + (Jy)G = (Ix)G ;which contradicts the fact that x is semi-stable. (The �rst equality comes fromthe lifting property, the last one from the fact that (Ix)G = (Jy)G by assumption.)[ck] 2x is called (properly) stable, if it is semistable and dimGy = 0 for all y inan open neighborhood of x. Xs = stable points of X.Example: Let V = kN+1, V =Lm2Z Vm, operation of Gm on PN = P(V ) isgiven by � � v = �mv for v 2 Vm. Then x� = Pxm is{ semistable () 9m � 0 : xm 6= 0 and 9m � 0 : xm 6= 0;{ stable () in addition x 6= x0.To test (semi-)stability in general it turns out to be enough to do it forall Gm in G.Theorem 3 x is semistable for G () x is semistable for all � : Gm ! G.Proof: \)": 0 =2 Gx� =) 0 =2 �(Gm)x�.\(": Use valuative criterion: If 0 2 Gx� then there is a discrete valua-tion ring V �= k[[t]] with quotient �eld K such that there is a commutativediagram SpecK �! G 3 g??y ??y ??ySpecV �! A N+1 3 g x�and such that for g 2 G(K), g x� is integral and goes to 0 as t ! 0. ForG = GLN+1 (SLN+1, PGLN+1):g = g1 0BB@ ta0 0. . .0 taN 1CCA g221



with g1; g2 2 G(V ), hence 0BB@ ta0 . . . taN 1CCA g2(x�) is integral. Write g2 =g2(0)+ higher order terms and replace x� by g2(0)(x�): We may assume thatg2 � 1 mod t. g2(x�) = Xn�0 x�;ntn = Xn�0(x�;n0 ; : : : ; x�;nN )tnThe integrality condition implies x�;ni 6= 0 ) ai+n > 0. For n = 0: x�;0 = x�(since g2 � 1 mod t), hence for x�i 6= 0, we have ai > 0. This means that x�is not semistable for this 1{parameter subgroup of G. 2Theorem 4 x is stable for G () x is stable for all non-trivial � : Gm !G.Proof: \)": Clear.\(": i) G = Gm : G � Xs ! Xs � Xs is a proper map (even �nite).Can cover Xs by invariant a�nes where xa 6= 0; xb 6= 0 with a � 0; b < 0(or a > 0; b � 0). Invert xa: Gm ona�ne space, one coordinate is xb=xa(deg < 0), invert this (??)ii) Consider U � Xss where the stabilizer has dimension 0. U is constructibleand open (stbilizer will jump under specialization). Claim: G�U ! U � Uproper. (: : : ) 2
22



May 16, 1995(Raw notes by Bernd Steinert.)Recall:x semistable () 0 =2 Gx�() 9d > 0; f 2 RGd : f(x) 6= 0() 8� : Gm �! G 1{parameter subgroup :the weights of this Gm{action occurring in xare neither all > 0 nor all < 0x stable () G �! A N+1 ; g 7! gx�; is proper() Gx is closed and Gx is �niteRemark:(a) Assume x semistable, f 2 RGd (for some d > 0) with f(x) 6= 0. If Gy(the stabilizer of y) is �nite for all y with f(y) 6= 0, then all orbitsin there (in where ? | maybe in Xf ) have dimension dimG and areclosed. (Gx nGx = S orbits of smaller dimension.)(b) Assume Gx closed, Gx �nite. Then (?) fy j dimGy � 1g is closed,G{invariant and does not meet Gx = Gx. Hence there is some h 2RG n f0g such that h vanishes on Y = fy j dimGy � 1g but not atx. (Let IY and IGx be the homogeneous ideals corresponding to Yand Gx, resp. Since Y \ Gx = ;, we have I+ = IY + IGx, therefore(I+)G = (IY )G + (IGx)G. If we had (IY )G � (IGx)G, we would get(I+)G = (IGx)G = (Ix)G, contradicting (semi-)stability of x.) [ck] SinceY is Gm{invariant, we can take h to be homogeneous. Then change fto fh. Thus we have the situation of `(a)'. This implies that the set ofstable points is open. [ck]1{parameter subgroup criterion for (semi-)stability:For all � : Gm �! G non-trivial, positive as well as negative weights occurin x. (I.e., take a basis b0; : : : ; bN of A N+1 diagonalizing the Gm{action; the23



weight of bj is w with �(�)bj = �wbj. w occurs in x = (x0 : : : : : xN ) (writtenw.r.t. the basis bj) if there is a j such that xj 6= 0 and bj has weight w.)Valuative criterion (for what?):V � K discrete (?) valuation ring with quotient �eld, g 2 G(K);gx� 2 A N (V ) ?=) g 2 G(V )| {z }really? ; g = g10BB@ � 0. . .0 � 1CCA g2 with g1; g2 2 G(V ).Example: V;W vector spaces, G = SL(V ) acting on Grass d(V 
W ). Here,Grass d(V 
W ) classi�es quotients V 
W !! E with dimE = d.Criterion: E is n semistablestable o i� for all non-trivial subspaces V 0 � V andE0 = im(V 0 
W ! E), we havedimE0dimE n�>o dimV 0dimV :Proof:\=)": Write V = V 0 � V 00 with dimV 0 = a, dimV 00 = b, and let� : Gm �! SL(V ); t 7! (tb idV 0; t�a idV 00) :We obtain a projective embedding of Grass d(V
W ) from �d(V 
W )!! �dE =detE. (Elements of �d(V 
W ) give global sections of detE, which is anample line bundle on Grass d(V 
W ) (unique up to powers). We will lookat the weights of E under � in this embedding.)We choose a basis of V 
W consisting of v 
 w with v 2 basis of V 0 [basis of V 00 and w 2 basis of W . Thenv1 
w1 ^ : : : ^ vd 
 wd 2 �d(V 
W )has weight b �#fi j vi 2 V 0g � a �#fi j vi 2 V 00g.Since E is semistable, a non-negative weight occurs in E. This meansthat there are vi; wi such that hvi
wii �=�! E and such that b� � a�, where� = #fi j vi 2 V 0g and � = #fi j vi 2 V 00g.Now, hvi 
 wi j vi 2 V 0i ,! E 0, hence dimE 0 � dim(im(V 0 
W )) � �.Since b� � a�, we havedimE0dimE � ��+ � � aa+ b = dimV 0dimV :24



\(=": Let � be a 1{parameter subgroup and write V = Li2Z Vi such that�(t) acts as ti on Vi. Then Pi2Z idimVi = 0 because G = SL(V ).Assume the stability criterion holds. Let � : �d(V 
W )!! �dE; then wehave to show that �(v) 6= 0 for some v of weight � 0. What about weight� 0? I think both should occur. Take t 7! t�1. [ck]Let F �(V ) = Li�� Vi. Then0 = X�2Z �dimgr�F (V )= X�2Z �(dimF �(V )� dimF �+1(V ))= X���N �dimF �(V )� X�>�N(�� 1) dimF �(V )= X�>�N dimF �(V )�N dimF�N(V )| {z }=Vfor N big enough.We look for fvi 
 wi j 1 � i � dg such that hvi 
 wii �=�! E, and try tomaximize the weight. We take a� elements vi 2 F �(V ). The best strategyobviously is to take a� = dim im(F �(V )
W ! E). This is possible: Startwith F n(V ) 
 W (n big), this gives an = 0. Then go down step by step,choosing an�1� an, an�2� an�1, : : : , new basis elements. The weight is thenw =X� �(a� � a�+1) = X�>�N a� �Na�N :We know: a�d � dimF �(V )dimV :Hence,w � d X�>�N dimF �(V )dimV �Nd = ddimV � X�>�N dimF �(V )�N dimV � = 0 :(For stability, one needs that there are at least two stages in the �ltration.)2Remark: This (what?) never happens when dimW = 1. I.e., for dimW =1, no E is semistable. [ck] 25



4 Application to vector bundles on curvesLet C be a smooth projective connected curve with genus g = g(C). Fora vector bundle E on C, let�(E) = deg Erk E + 1� g(i.e. h0(C; E) � h1(C; E) = � rk E (Riemann{Roch)). Note that this is amodi�cation of the slope � used earlier.Let O(1) be an ample line bundle of degree 1 and de�ne O(n) = O(1)
n,E(n) = E 
 O(n). Then �(E(n)) = �(E) + n.M(r; �) will denote the moduli space of (semi-)stable E with rk E = rand �(E) = �.Since E 7! E(a) induces an isomorphismM(r; �)!M(r; �+a), we may(without loss of generality) assume that �(E) � 0.If � � 2g (� � g + 1 will do), then E is globally generated by �(C; E)which has dimension N = � r. So,M(r; �) ,! � SLN  Qwith a `quotient scheme' Q classifying quotients E of ON with Hilbertpolynomial n 7! r(�+ n) = dim�(C; E(n)) (n big) (see later lectures).We shall choose some � � 0 (by shifting � 7! � + a). Once � + a ischosen, choose b� a such that for any exact sequence0 �! K �! Or(�+a) �! E(a) �! 0(where E has the correct Hilbert polynomial), K(b) is generated by globalsections, and H1(C;K(b)) = 0.This gives an embeddingQ ,! Grass � SL(r(� + a))E(a) = Or(�+a)=K 7! ��(C;K(b)) ,! �(C;O(b))r(�+a)!! �(C; E(a + b))�Claim: For a� 0:�E(semi-)stable vector bundle� ()  corresponding point in Grassis (semi-)stable !26



To test stability (in Grass ), we have to considerV 0 � V = kr(�+a) = �(C; E(a)) :�(C;F(a)) = V 0 () F(a) � E(a) is generated by V 0.Idea: (For a� 0) F � E nice sub-bundle with rkF = r0, �(F) = �0dim�(F(a))| {z }=V 0 � r0(�0 + a) (by RR)dim�(F(a+ b))| {z }�im(V
W ) � r0(�0 + a+ b)Condition: �0 + a+ b�0 + a � � + a+ b�+ aFor b > 0: �0 � �.Argument: Either �(F) = �(E) or �(F) � �(E) � " with some �xed ".
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May 19, 1995As always, C is a nice curve of genus g, and we �x the data r = rk E and� = �(E) = deg ErkE + 1 � g such that � � g + 1. Then H1(C; E) = 0, and byR{R, N = dim�(C; E) = r�.(By Grothendieck,) there is a `quotient scheme' Q parametrizing (?)quotients ONC !!E with Hilbert polynomial n 7! r(�+n). (I.e., for n� 0,dim�(C; E(n)) = r(� + n).) Q is of �nite type.Choose b 2 Z so big that for all K = ker(ONC !!E), H1(C;K(b)) = 0and H0(C;K(b)) generates K(b). (For b �xed, the condition de�nes an opensubset Ub of Q. We have Sb Ub = Q since for everyK there is some b satisfyingthe condition. Because of quasi-compactness (and Ub � Ub+1), there is someb with Ub = Q.)There is a map Q �! Grass r(�+b)(ONC !! E) 7�! ��(C;O(b))N !! �(C; E(b))�(Grass parametrizing quotients). If b is chosen as above, � : �(C;O(b))N !�(C; E(b)) is surjective (since H1(C;K(b)) = 0 with K = ker(ONC !!E))(hence the map is well-de�ned), and we recover K(b) (and hence K) as thesub-bundle of O(b)N generated by the kernel of �. Hence the map is aninjection. It is also equivariant with respect to the SLN{action on bothsides.Let V = kN and W � V a subspace. Consider the following situation:V 
OC = ONC !! E[ [0 �! KW �! W 
OC !! FW want to choose b in such a way that additionally H1(C;KW (b)) = 0 for allthese KW . This is possible: The pairs (E;W ) are parametrized by a quasi-compact scheme S having a constructible strati�cation S = `� S� such thatover every S�, E=F is 
at (Grothendieck). (Then use semi-continuity andquasi-compactness arguments as above (?).)28



Theorem 5 Mumford (semi-)stability of (the image of) E (in Grass ) (forb big) is equivalent to (semi-)stability of E as a vector bundle.Proof: We use the result of the example in the last lecture. In our situation,this means that E is Mumford semistable i� for all subspaces W � V ,dimim(W 
 �(C;O(b))! �(C; E(b)))dimW � dim�(C; E(b))dimV = �+ b� : (4)\=)": Fix a surjection V 
 OC!! E. We show �rst that V ,! �(C; E):Let W be the kernel of V = �(C; V 
 OC) ! �(C; E). Then the image ofW 
 �(C;O(b))! �(C; E(b)) is zero, so by (4), W must be zero.Now we have to show that E is a vector bundle (i.e., torsion free), and thatit is semistable (in the vector bundle sense) with slope �. For this, let T bethe torsion of E and take F in the HN �ltration of E=T (which is a vectorbundle) such that it contains exactly the portion of slope � �. Then E=Fis the part of slope < �. Now, E=T is semistable of slope � i� �(E=T ) � �and E=T has no (non-trivial) quotients with slope < �. This is equivalentto E=F = 0, since E=F is the largest possible quotient of slope < � anddeg(E=T ) � deg(E). Since equality in this relation holds only for T = 0, wealso see that E=F = 0 implies that E is a semistable vector bundle of slope�. It su�ces to show that �0 = �(E=F) � �; this implies E=F = 0. Letr0 = rk E=F and r00 = rkF , �00 = �(F).Let W = ker(V ! �(C; E=F)). Since everything in F has slope � � � g+1,H1(C;F) = 0, and F is globally generated. Hence0 �! �(C;F) �! �(C; E) �! �(C; E=F) �! 0is exact, and W = V \ �(C;F). We get an induced injection�(C;F)=W ,! �(C; E)=V : (5)The dimension of �(C; E)=V is dimH1(C; E), which injects into H1(C; E=F)(H1(C;F) = 0), and we want to bound the dimension of the latter.Since V 
OC!!E=F , there are r0 sections which generically generate E=F ,i.e. we have a map � : Or0C ! E=F with �nite cokernel. ThenH1(C;Or0C)!!H1(C; im�)!!H1(C; E=F) ;29



whence h1(C; E=F) = dimH1(C; E=F) � r0g.By de�nition of W ,W 
 �(C;O(b)) ,! �(C;F(b)) � �(C; E(b)) ;hence the dimension of the image (let us call it I) is at most h0(C;F(b)) =r00(�00 + b). By (4), dimW � �� + b dimI � r00�(�00 + b)�+ b ;therefore (using (5))r00�00 = dim�(C;F) � r00�(�00 + b)�+ b + h1(C; E=F) � r00�(�00 + b)�+ b + r0g : (6)If h1(C; E=F) is zero, then from �; b > 0, we see that �00 � � (or r00 = 0, i.e.,F = 0). By de�nition of F , we must have �00 = �, hence �0 = � as well (look at0 �! F �! E �! E=F �! 0 and use � = �(E)). By de�nition of F again,this means E=F = 0. [ck]So assume H1(C; E=F) 6= 0. Then in the HN �ltration of E=F there mustbe a quotient of slope � 2g � 2 (should be g � 1 | remember we shifted �by g� 1.) Then, since the slopes in the HN �ltration of E=F are all < �, weget deg E=F � r0(�+ g � 1) � (�+ 1 � g) ;hencedegF � r00(�+ g � 1) + (� + 1� g) =) r00�00 � r00�+ � + 1� g :Plugging this into (6), we get�+ 1 � g � r00��00 � �� + b + r0g :Since �0 � 0 (everything is globally generated), �00 can be bounded in termsof � (speci�cally, �00 � rr00 (�+ g � 1)� (g � 1) � r�+ (r� 1)(g � 1).) Henceby choosing � big (� 7! �+ a, everything 
O(a)) and b even bigger, we get30



a contradiction.\(=": We are given a semistable vector bundle E of slope �. Let V =�(C; E), then we have V 
 OC!!E. Let W � V be a subspace and F thesub-bundle of E generated by W . We have to check (4). Let I be the image�guring in the numerator on the right hand side of (4). By our choice of b,I = �(C;F(b)), and its dimension is the Euler characteristic of F(b). Letas before r00 = rkF and �00 = �(F). We have to showdimW � r00�(�00 + b)� + b :SinceW � �(C;F), there is no harm in assuming W = �(C;F). So we wantto show that h0(C;F) = �00r00 + h1(C;F) � r00�(�00 + b)� + b :If h1(C;F) = 0, this follows from r00 � 0, �; b > 0 and �00 � �. Otherwise, wehave some step of slope � g � 1 in the HN �ltration of F , hence (as before)�00r00 � �r00 � (�+ 1 � g) ;and �00r00 + h1(C;F) � �r00 � (� + 1� g) + gr00 < �r00if � is su�ciently big. But then, for b big enough, this is also � �r00(�00 +b)=(�+ b).One should check that a single b works for all E in this proof. One shouldalso check that the proof for `stable' instead of `semistable' does go through.2Now we have Q i,! Grass[ [fE semistableg = Qss = i�1(Grass ss) ,! Grass ss[ [fE stableg = Qs = i�1(Grass s) ,! Grass s31



where i is a closed immersion and we have a G = SLN{action on both sides.(The correspondence of (semi-)stable points on the left and right hand sidescomes from the fact that suitable powers of G{invariants can be lifted.)We can form the quootientQss=G = M[ [Qs=G = MsM is our moduli space; its points correspond to the closed G{orbits in Qss.The points in Ms correspond to the isomorphism classes of stable bundles(their orbits are closed).Claim: Orbit of E is closed () E = L Ei is a direct sum of stablebundles.Proof: (Sketch)\)": If E is not semisimple (i.e., not of the form on the right hand side), wehave a non-trivial extension0! E 0 �! E �! E 00 �! 0with semistable bundles E 0, E 00 of the same slope. LetV 0 = �(C; E 0) � �(C; E) = V = V 0 � V 00and de�ne a 1-parameter subgroup of G byGm 3 t 7! ta � 1V 0 � t�b � 1V 00(where a = dimV 00 and b = dimV 0). t! 1 deforms E into E 0 � E 00, henceE 0�E 00 is in the closure of the orbit of E, hence in the orbit, and the extensionwas trivial, contradiction.\(": Let E =L Ei. There is a closed orbit within the closure of the orbit ofE; let E 0 belong to this closed orbit. Then, by \)", E 0 splits into a direct sumof stable bundles. Now by semicontinuity, the multiplicity of every speci�cEi in E 0 is at least that of Ei in E, hence (since ranks are equal) they mustcoincide, and E 0 is in the orbit of E, whence this is closed. 232



May 23, 1995We have M = Qss==SL(N), M is projective. (The notation X==G in-dicates that we take the invariants of the homogeneous coordinate ring toconstruct the quotient.)We get an ample line bundle onM from an ample line bundle on Q:ON !!E gives a quotient �(C;O(b))N !! �(C; E(b)) ;and the determinant det �(C; E(b)) de�nes an ample line bundle on theGrassmannian which can be pulled back to Q. We have to be careful,however, to get a vector bundle on the quotient|we have to take the SL(N){action into account. See below.Aside: Natural line bundlesRecall our quotient construction R ! ProjRG. We obtain coherent sheaveson the quotient from modules MG, where M is a graded R{module withG{action.A point x in the quotient corresponds to a closed semistable orbit Y �=G=Gx. ThenMG generates M at x () (M jY )G generates M jY() M(x)Gx generates M(x) =M 
 k(x)() Gx operates trivally on M(x)(The �rst equivalence comes from the fact that the action of G commuteswith taking quotients modulo (invariant) ideals.)In our case, we have x = [E], and Gx is the subgroup of Aut E consisting ofelements having determinant 1 on �(C; E). Hence we have to check whetherdet �(C; E(b)) has trivial SL(N){action. We have�(C;O(b))
 �(C; E)!! �(C; E(b)) ;where GL(N) acts on �(C; E) = kN . Try to �nd a linear combinationdet �(C; E(b))� 
 det �(C; E)��33



such that the scalars operate trivially: We may choose� = dim�(C; E) = r� and � = dim�(C; E(b)) = r(� + b) :In this way we get an ample line bundledet �(C; E(b))
r�| {z }ample 
 det �(C; E)
(�r(�+b))| {z }trivial line bundlewith non-trivial actionwith a PGL(N){action, which gives an ample line bundle on the quotient(?). If E is stable, then Aut E = scalars, whence we have trivial action of Gxand probably get a line bundle on the quotient.The Theorem of Narasimhan{SeshadriWe are now in the compley-analytic case: k = C , and C is a compactRiemann surface of genus g. Then the fundamental group is�1(C) = hA1; : : : ; Ag; B1; : : : ; Bg j [A1; B1] � � � [Ag; Bg] = 1i :Let ~C be the universal cover of C. Given a representation� : �1(C) �!GLr(C ) ;we get a locally constant sheaf E on C as E = ~C � C r=�1(C) (diagonalaction). Hence we have a holomorphic (therefore algebraic) vector bundleE = E 
OC.The representations � are parametrized by an algebraic varietyRep (�1(C);GLr)(take coordinates for �(Ai), �(Bi); the relation between the Ai and Bi givesequations for the coe�cients); we get an analytic 
at family of vector bundles(over C) on Rep (�1(C);GLr).A representation � is unitary if its image �(�1(C)) is contained in U(r)(the subgroup of unitary matrices in GLr(C )). E then gets a 
at hermitianmetric. 34



Claim: � unitary =) E is semistable of degree 0.Proof: The degree is essentially the integral over C of the curvature, whichis zero here. If F � E is a sub-bundle, it gets an induced metric that hasnon-positive curvature. Hence degF � 0 = deg E, and E is semistable.To make this reasoning a bit more precise: We have the sub-bundle�rkFF � �rkFE, where �rkFE is associated to the unitary representation�rkF� on �rkFC r . Hence we may assume that F is a line bundle (rememberdegF = deg �rkFF). Take an open cover C = S� U� such that we havelocal generators f� of F on U�. In a unitary basis of E (which is local onU�), f� is given by holomorphic coordinate functions (f�;1; : : : ; f�;r). Con-sider kf�k2 = rPj=1 jf�;jj2. This does not depend on the unitary basis, andlog kf�k2 is either sub- or super-harmonic, i.e. @@ log kf�k2 � 0 (this 2{formshould glue over C (!)). The degree of F is (essentially) the integral over Cof @@ log kf�k2, hence � 0. 2Claim: �(C; E) = (C r )�1(C) (the �1(C){invariants in C r).Proof: Let f 2 �(C; E). Then kfk2 (de�ned locally with respect to someunitary basis) has a maximumsomewhere on C (sinceC is compact). Locally,kfk2 = P jfjj2 with holomorphic fj, which then have to be constant (?)(log kfk2 is super-harmonic) [ck], so f is a constant section, which has tocome from E and then from an invariant in C r . 2If we have two representations with spaces E1 and E2 and associatedvector bundles E1 and E2, then the vector bundle corresponding to the rep-resentation on Hom(E1; E2) is Hom (E1; E2), andHom(E1; E2) = �(C;Hom(E1; E2)) = Hom �1(C)(E1; E2) :Hence the functor E 7! E from unitary representations of �1(C) to vectorbundles over C is fully faithful.Theorem 6 The functor we have constructed is an equivalence of categories:�unitary representationsof �1(C) � �! � semisimple, semistablevector bundles of degree 0�E 7�! E35



Proof: We have already shown that the image consists of semistable vectorbundles of degree zero and that the functor is fully faithful. We have to showthat E in the image is semisimple (i.e., direct sum of stable bundles). Sinceany unitary representation is semisimple (use orthogonal decomposition), wecan assume E to be irreducible. We must then show E is stable. We inducton the rank of E. If the rank is zero, nothing has to be shown. So, assumerk E > 0 and E not stable. Then there is a proper sub-budle F � E of degree0, which we can assume to be simple (i.e., stable) (take one of smallest rank).By our induction hypothesis, F comes from a representation F (I don't seethat) which, by full faithfulness, has to inject into E, which therefore cannotbe irreducible, contradiction. (Maybe one can argue as follows: If F � Ehas degree zero, its induced metric must be 
at. Then F = O 
 F , whereF � E is a subsheaf of the sheaf of constant sections of E. This should thenpull back to a subrepresentation F � E.)Remark: We see that irreducible representations correspond to stable bun-dles.It remains to show that we get all stable vector bundles of degree zero(up to isomorphism) from irreducible unitary representations.Claim: We get a continuous (or even real analytic?) mapRep (�1(C);U(r)) �!M(r; 0)C(M(r; 0)C is the space for vector bundles of rank r and degree 0, as acomplex analytic space).Remark: This would be clear if we knew already thatM(r; 0) is a modulispace in some sense: We have the universal bundle on C�Rep(�1(C);U(r))whose �ber above C � (�;E) is E as constructed above.There is an open subset Rep (�1(C);U(r)) � U � Rep (�1(C);GLr) suchthat for E and E parametrized by U , H1(C; E(a)) = 0. (This is becauseof semi-continuity of dimH1(C; E(a)): H1(C; E(a)) 6= 0 is a closed condi-tion which is never true on Rep (�1(C);U(r)).) Furthermore, we want thatthe kernel of �(C; E(a)) 
 O(b) ! E(a + b) is globally generated. (Similarargument.) 36



Choose an open cover U = SU� and over U� a basis of �(C; E(a)) �= C N .This de�nes an analytic map U� �! QC . (QC is the same as the algebraicallyde�ned Q, since all quotients are algebraic.) We may assume that the imageis contained in Qss (the complement is analytic, hence closed|or recall thatXss is open inX quite generally). Then these maps glue to give a well-de�nedanalytic map U = [� U� �! QssC �!M(r; 0)CNow, Rep (�1(C);U(r)) is compact (can be identi�ed with a closed subsetof U(r)2g, and U(r) is compact), hence by restricting, we get a real-analytic(hence continuous), closed and proper mapRep (�1(C);U(r)) �!M(r; 0)C :The pre-image of the stable bundles consists exactly of the irreducible rep-resentations, hence we get a proper map� : IrrRep (�1(C);U(r)) �!M(r; 0)sCwith closed image.The image is also open: Both sides are manifolds. We show the mapinduces a surjection on tangent spaces (then the map has to be open by theimplicit function Thm.). But �rst show that IrrRep is a manifold:Claim: GL2gr �! SLr; (A1; : : : ; Ag; B1; : : : ; Bg) 7! [A1; B1] � � � [Ag; Bg], issmooth at points coming from irreducible representations of �1(C).It is perfectly clear that this map is smooth everywhere. Does Faltingsthink of representations modulo conjugation? He said something of cheatingaround here. Anyway, I don't quite understand the following lines:Tangent map is approx. P[�Ai; Bi]�P[Ai; �Bi].Adjoint map$ components of commutators with Ai and Bi ) (only) scalarsbecause of irreducibility.The real dimension of Rep (�1(C);U(r)) is 2gr2 � (r2 � 1).As to the dimension of Ms, we have for a stable vector bundle E thatAut (E) = Gm (so that we have only `trivial' action, which implies Ms is37



smooth at E). The tangent space is given by H1(C; End (E)). We know theEuler characteristic is r2(1 � g). Since H0(C; End (E)) = End (E) = C , weget for the (complex) dimension ofMs:dimM(r; 0)sC = dimH1(C; End (E)) = r2(g � 1) + 1 :Now look at the tangent map of �:H1(�1(C); su(E)) �=�! H1(�1(C)| {z }was C;End R (E)) �! H1(C; End (E))It should be u(E) instead of su(E). In general, if � is a (discrete) group andG is a Lie group with Lie algebra g, then H1(�; g) is the tangent space ofRep (�; G) at �, where the action of � on g is given by Ad � �. (Deforming�(
) 7! �(
)(1+��(
)) gives a 1{cocycle 
 7! ��(
) 2 g; coboundaries corre-spond to conjugation by elements of G.) NB: This holds for representationsmodulo conjugation.By Hodge Theory,H1(�1(C)| {z }was C; su(E)
 C ) = �(C; End (E) 
 
1)� �(C; End (E)
 
1)| {z }�= H1(C; End (E)) :The real points cannot go into the �rst summand; they have to map diago-nally since they are invariant under complex conjugation. Hence they surjectonto H1(C; End (E)), i.e., the tangent map is a surjection, our map � is asubmersion, and the image is open.(One really should look at representations modulo conjugation; then thereal dimension of IrrRep (�1(C);U(r)) is 2gr2 � 2(r2 � 1), which is the sameas the real dimension ofM(r; 0)sC . Hence we have an isomorphism on tangentspaces.)Since the image is open and closed, it must consist of connected compo-nents. BecauseM(r; 0)sC is irreducible (hence connected) (we postpone theproof of this fact) and the image is non-empty (there are irreducible unitaryrepresentations of dimension r (!)), it must be everything.38



Hence, every stable vector bundle of degree zero is obtained (up to iso-morphism) from an irreducible unitary representation of �1(C). Of course,we then also get every semisimple semistable vector bundle of degree zerofrom a unitary representation. 2Corollary 1 If E1 and E2 are semistable vector bundles of degree zero on C,then the same holds for E1 
 E2.Proof: First assume E1 and E2 are stable. Then E1 and E2 come from(irreducible) unitary representations E1 and E2 of �1(C), and E1 
 E2 isobtained from E1 
E2, which is again unitary. Hence, E1 
E2 is semisimplesemistable of degree zero.Now let E1 and E2 be arbitrary semistable vector bundles of degree 0. Thenthere are �ltrations (Eji ) of Ei (i 2 f1; 2g) with Ej+1i =Eji stable of degree 0. Theproof for Ei stable now shows that E = E1 
 E2 has a similar �ltration (Ej). IfE were not semistable, there would be some F � E of positive degree. Thenin the �ltration F j = F \ Ej , there would occur a quotient of positive degree.Since F j+1=F j injects into Ej+1=Ej , we have a contradiction. [ck] 2Remark: Faltings says he doesn't know a purely algebraic proof of this.5 Moduli space as stackSuppose M is a moduli space and suppose further that we have a vectorbundle H onM. If we then have a vector bundle family E on C �S, we geta classifying map �E : S �!M, which we can use to pull back H to a vectorbundle H(E) = ��E(H) on S.If f : S1 �! S2 is a morphism, and E is a vector bundle on C � S2, wehave H((1C � f)�E) �= f�H(E) and all sorts of further nice compatibilities.We also get an action of Aut (E) on H(E) (How?).So, even if a moduli space does not exist, we can study vector bundles onit by de�ning a vector bundle H onM to be an association E 7! H(E) withsuitable properties.Example: 39



(a) H(E) = OS. This should correspond to OM.(b) Let x 2 C. Then we may take H(E) = Ejfxg�S or|if we want a linebundle| H(E) = det Ejfxg�S.(c) An important example is the determinant of cohomology: If C�S ��!S, then locally in S, we can �nd a complex of sheaves0 �! H0 d�! H1 �! 0such that ��E = ker d and R1��E = cokerd (EGA III). For example, takex 2 C and N � 0 such that R1��E(Nx) = 0. Then we can takeH0 = ��(E(Nx)) �! ��(E(Nx)=E) = H1 :The assertion follows from the long exact cohomolgy sequence for ��.This complex is unique up to a quasi-isomorphism which in turn is de-termined up to homotopy equivalence:0 �! H0 �! H1 �! 0???y . ???y0 �! ~H0 �! ~H1 �! 0(`quasi-isomorphism' means inducing isomorphism on cohomology). The de-terminant of cohomology is nowdetH�(C; E) = detH0 
 (detH1)
(�1) ;this is a well-de�ned line bundle, independent of all choices made.For a �xed vector bundle F on C, detH�(C; E 
 F) is an example of a`vector bundle on moduli space'.Remark: An exact sequence of vector bundles0 �! F1 �! F �! F2 �! 0induces an isomorphismdetH�(C; E 
F1)
 detH�(C; E 
 F2) �= detH�(C; E 
 F) :40



Hence it su�ces to consider line bundles L instead of general vector bundlesF . For a line bundle L and a point x 2 C, consider0 �! L(�x) �! L �! kx �! 0 :This induces an isomorphismdetH�(C; E 
 L(�x))
 det Ex| {z }this is of type (b) �= detH�(C; E 
 L) :This means that there is basically only one `new' line bundle detH�(C; E)onM.If D = Pni xi = div (f) is a principal divisor on C, then O(D) is trivial,hence detH�(C; E) �= detH�(C; E 
O(D)), and therefore (using the consid-erations above), Ni (det E(xi))
ni is trivial. So there is essentially only oneline bundle of type (b). (This should be made clearer. At this point, we geta map from divisors on C to line bundles onM factoring over the principaldivisors. Hence we get a map from (isomorphism classes of) line bundles onC to line bundles on M. Faltings said something about Jacobians andalgebraic equivalence.)Example: Consider our ample line bundledet �(C; E(a + b))
� 
 det �(C; E(a))
(��) :Since H1 = 0, we may replace � by H�. Then we get something of the formdetH�(C; E(a+ b))
� 
 detH�(C; E(a))
(��)�= (something of type (b))
 (detH�(C; E))
(���) ;where �� � < 0.This means roughly that we \can expect (some kind of) ampleness" for(detH�(C; E))
(�1). 41



May 26, 1995Consider the following moduli functor:S 7�! �vector bundles on C � S; isomorphisms�The pair on the right hand side are the objects and morphisms of a category,which is a groupoid (i.e., all morphisms are isomorphisms). So we have herea groupoid functor.The isomorphism classes of vector bundles (which is what we are inter-ested in) constitute the �0 (set of connected components) of the groupoid.The corresponding functor is not representable (\moduli space does not ex-ist").But we may consider it represented by a (so-called) (moduli) stackM|see below what a stack is.(I don't know what the signi�cance of the following remark is at thisplace:We can glue vector bundles: If S = SU� is an open cover and we are givenvector bundles on C � U� (for all �) with isomorphisms over C � (U� \ U�)which are compatible on triple intersections, the data glue to give a vectorbundle on C � S.)When constructing a representing object, we have to face two problems:� a vector bundle can have automorphisms (other than Gm): the actionof SL(N) (or PGL(N)) is not free. This will be OK|this seems to bewhat stacks are made for, after all;� the object will not be of �nite type, i.e., not quasi-projective (HN{�ltration can be wild).To overcome the second problem, we construct `open substacks' Mn:Fix some n. We want to restrict to those E with H1(C; E(n)) = 0 (maybethis isn't necessary, but it won't hurt) and such that H0(C; E(n)) generatesE(n).Given E on C � S, letSn = fs 2 S j H1(C; E(n)s) = 0 and H0(C; E(n)s) generates E(n)sg42



(where E(n)s = i�E(n) with i : C �= C � fsg ,! C � S). Then Sn is openin S: By semi-continuity (Grauert), \H1 = 0" is an open condition, hencesatis�ed on an open subset U of S. Then ��E(n)jC�U is a vector bundle onU (by some Base Change Thm.) which generates a subsheaf of E(n)jC�U(�ber-wise, ��E(n) corresponds to global sections of E(n)s, hence generatesa sub-bundle in each �ber). The support of the quotient is closed, and � isproper, hence the image of the support in U is closed, and the points whereE(n)s is generated by global sections constitute an open subset again.The substack Mn should probably be viewed as consisting of all the im-ages of Sn under the classifying maps S !M. Since Sn is always open, Mnshould be kind-of-open in M.Clearly, S = Sn Sn and so M = SnMn.These substacks will be quasi-compact (whatever this will mean).Let Tn be the moduli space of vector bundles E on C such thatH0(C; E(n))generates E(n) and H1(C; E(n)) = 0, together with a basis of �(C; E(n)).Then Tn has an open embedding into the quotient scheme Q classifying allquotients of ONC (where N = r(�+ n) is the dimension of �(C; E(n))). (Theconditions de�ning Tn are all open: quotient locally free of rank r, H1 = 0,H0 generates.) So Tn is a nice scheme representing the corresponding functor,and we will identify the two. Then we have a GLN{torsorTn ��!Mn ;i.e., a kind of bundle with �ber GLN (but beware of automorphisms of E !).(On C �Mn, there is the universal vector bundle E, and) ��E is a locallyfree sheaf on Mn of rank n (?? I guess it is ��E(n) and has rank N).The stackMn should therefore be `the quotient Tn=GLN '. This quotientwon't exist as a scheme, since the GLN{action is not free: the stabilizer oft 2 Tn corresponding to (E + basis) is given by Aut (E). For example, wealways have Gm � Aut (E).The idea now is not to worry about the quotient, but to work with Tnand itsGLN{action instead: We represent the stack by `Tn=GLN ' and argueas if GLN would operate freely. 43



Example: A coherent sheaf on Tn=GLN should correspond to a coherentsheaf F on Tn `with GLN{action': Let GLN � Tn ��! Tn be the action ofGLN on Tn. Then we require that for any two mapsGLN � � S ��! Tn ;we have an isomorphism of sheaves on S:��;� : ��F �=�! �0�F(where �0 = �(� � �)), which is transitive under multiplication of maps �.(I take this to mean the following:��(�1��);�2 � ��;�1 = ��;� ;where �(x) = �1(x)�2(x) (multiplication in GLN ).)(Using GLN pr1 � GLN � Tn pr2�! Tn, one can also write down explicitconditions on F .)These sheaves are the same as `sheaves on the moduli functor' (what-ever this is) (restricted to E with H1(C; E(n)) = 0 and globally generatingH0(C; E(n))).Given a family of vector bundles E on C � S (and such that S = Sn),��E(n) is locally free of rank N . Hence we can choose an open cover S = SU�such that ��E(n)jU� �= ONU�. Fixing this isomorphism, we get a classifyingmap '� : U� ! Tn(,! Q). Further, we have transition maps ��� : U�� =U� \ U� ! GLN , given by the matrices changing the one basis into theother: '� = �(��� � '�) on U��. The transition maps are compatible ontriple intersections. An equivariant sheaf F on Tn now induces sheaves F�on U� by pull-back. Looking at GLN ��� � U� \ U� '��! Tn, we see thatwe get isomorphisms F�jU�� �=�! F�jU�� compatible on triple intersections.Hence the F� glue to give a sheaf on S. This shows that we get for each E onC�S a sheaf F(E) on S (with some properties) as discussed in the previouslecture. Is this meant by a `sheaf on the moduli functor'?If we have two isomorphic families E and E 0 on C � S, we get mapsU� !GLN giving the isomorphism(��E(n)jU� + basis) �= (��E 0(n)jU� + basis) :44



This in turn yields isomorphisms F� �= F 0�, which are compatible with thoseinduced by the respective transition maps. Hence they glue to give an iso-morphism F(E) �= F(E 0). In particular, we get an action of Aut (E) onF(E).It should be easy now to see the existence of the sheaf ��E(n) on Mn: Itcertainly exists on Tn (we have the universal sheaf E on C�Tn ��! Tn, whichhas H1(C; E(n)t) = 0 and H0(C; E(n)t) generating, so ��E(n) will be locallyfree of rank N = dimH0(C; E(n)t)), so we have to check equivariance. Let' : S ! Tn and � : S ! GLN be maps. Then (1�')�E and (1��(��'))�Eare isomorphic sheaves over C � S (we only change the basis of H0(C;|)),hence '���E = ��(1 � ')�E �= ��(1� �(� � '))�E = (�(� � '))���E :Transitivity is equally clear.If we want to considerM as a limit ofMn, we have a problem: Increasingn will also increase dimTn and N , so we don't get anything like open im-mersions on the Tn level. We must introduce a suitable equivalence relationof (representations of) stacks.De�nition of stacksRemark: \The notion of stack came up in the sixties. But to swallowschemes was already enough for one generation of mathematicians."(Faltings)De�nition 1 An algebraic groupoid is a pair of schemes (S;R) togetherwith maps R (dom, ran)�! S � S-id [ diagS and R�S R comp�! R(where R�SR is constructed using ran : R ! S for the left and dom : R! Sfor the right factor) such thatT 7�! �Hom(T; S);Hom(T;R)�45



is a groupoid functor on schemes. Hom(T; S) are to be the objects of thegroupoid and Hom(T;R) the morphisms. Domain and range of a morphismare given by (dom, ran), the identity morphism is given by id, and composi-tion of morphisms is given by comp.If (S;R) is an algebraic groupoid, then `S=R' is a stack.Example:(a) Let S be a scheme and G a group acting on S via �. Then we can takeR =G � S with dom = pr2, ran = �, id(s) = (1; s) and comp((g; s); (g0; gs)) =(g0g; s). The resulting stack corresponds to the quotient S=G.(b) R � S � S (closed immersion) is an equivalence relation. The stackS=R represents the quotient of S by this equivalence relation.De�nition 2 A sheaf on a stack S=R is a sheaf F on S, together with anisomorphism between the two pull-backs of F to R (i.e., dom�F �= ran�F),satisfying the following condition: Every map � : T ! S gives rise to a sheafF� = ��F on T . For every map � : T ! R (which should be interpreted asgiving an isomorphism between the `objects' �1 = dom � � and �2 = ran � �)we get an isomorphism �� : F�1 �=�! F�2 such that �id�� = idF� and suchthat for �1; �2 with ran � �1 = dom � �2, we get �comp�(�1��2) = ��2 � ��1.To put this into abstract nonsensical language: A sheaf on S=R is anatural transformation from the groupoid functor represented by (S;R) tothe groupoid functor T 7! (sheaves onT; isomorphisms). The correspondingsheaf on S is obtained as the image of idS 2 Hom(S; S) in the sheaves on S.To get a nice (abelian) category, we will only consider smooth stacks.De�nition 3 A stack S=R is smooth if S and dom; ran : R ! S aresmooth.Since a stack is meant to represent isomorphism classes of something,which can be obtained in a multitude of di�erent ways (looking at objectswith additional structure and modding the additional data out, for example),we need a notion of when two stacks represent `the same thing'.46



De�nition 4 Two (smooth) stacks S1=R1 and S2=R2 are equivalent (vulgo`the same stack') if there is a third stack S12=R12 such that we have smoothand surjective maps S1  S12!! S2such that R1 �S1�S1 (S12 � S12) �= R12 �= R2 �S2�S2 (S12 � S12) :(This means that we can check `equivalence' of objects in S12 by sending themto S1 or equally well to S2. Heuristically this means that we get `the same'equivalence classes.)Another way to de�ne this is to say that we take the equivalence relationgenerated by pairs (S0=R0; S=R) such that S 0!! S and R0 �= R�S�S (S0�S 0).As an example, we get `the same' coherent sheaves on equivalent stacks:Let S0 �!! S as in the de�nition above. Then F 7! ��F = F 0 should inducean equivalence of categories between coherent sheaves on S=R and coherentsheaves on S0=R0. By descent, a sheaf on S corresponds to a sheaf on S 0 suchthat the two possible pull-backs to S0�S S0 are isomorphic plus a transitivitycondition. Now we haveS0�S S0 �= S�S�S (S0�S0) �= id(S)�S�S (S0�S0) ,! R�S�S (S0�S0) �= R0(S ! S�S by the diagonal embedding), which implies that a sheaf on S 0=R0descends to a sheaf on S=R. The converse is clear. (Exercise: Write this outin terms of groupoid functors!)Back to our moduli problemLet m < n. Then we have two smooth stacks Mm = Tm=GLM and Mn =Tn=GLN which we want to relate.We can assume that E 2 Mm ) E 2 Mn. Then we get an open subsetT0n � Tn de�ned by `H1(C; E(m)) = 0 and H0(C; E(m)) generates E(m)'. T0nis stable under the GLN{action. 47



Claim: Tm=GLM and T0n=GLN de�ne equivalent stacks.(Hence we get some kind of open immersion Tm=GLM �= T0n=GLN �Tn=GLN .)Proof: Let T �! Tm � T0n represent isomorphisms pr�1Em �= pr�2En (I takethis to mean the following functor: S 7! isomorphisms Em �= En of vectorbundles on C�S such that S = Sm with respect to Em and S = Sm = Sn withrespect to En, plus bases of ��Em(m) and of ��En(n)) (this is representableby the Hilbert scheme formalism). The projections Em p (Em �= En) 7! Enare surjective by de�nition. They are also smooth: We use the in�nitesimalcriterion. Let T = SpecA with a local algebra A, I � A an ideal such thatI2 = 0, and let T0 = SpecA=I. We must show that we can lift � to �:T0 �0�! T\ �% #T ��! Tm(and similarly for T0n). � corresponds to a vector bundle E on C�T togetherwith a basis of ��E(m). Modulo I, we have an isomorphism E �= F , where Fis a vector bundle on C � T0 for which we also have given a basis of ��F(n).We use the isomorphism to identify E and F . We lift the resulting identityon E to the identity on E. The basis of ��E(n) can also be lifted because oflocal freeness. So we have de�ned � as the classi�ying map of E = E with thetwo bases. We still have to check that the pull-backs of Rm = GLM � Tmand R0n = GLN � T0n are isomorphic. This says that for two isomorphismsEm �= En and E 0m �= E 0n, Em and E 0m are isomorphic i� En and E 0n are isomorphic.This is of course clear.Hence by our de�nition, the two stacks are equivalent, and the E's corre-spond (does this mean the universal sheaves are `the same'?). 2Naturally, one wants to have a stack which is not `bigger' than necessary,i.e., a stack S=R with minimal possible dimension of S.So, let S=R �= Mn. We will get a lower bound on dimS from the fact thatS will be a versal deformation: For s 2 S, we have a Kodaira{Spencermap TS;s �! H1(C; End (Es)) which is surjective. (This should be so, since48



H1(: : :) is the `tangent space at Es of the moduli space'|see �rst lecture. TSis the tangent bundle of S.) Hence any E gives a lower bound on dimS =dimTS;s.Let s 2 S be a k{valued point. Let "2 = 0 and consider k["]. Then TS;s isgiven by all morphisms Spec k["]! S extending Spec k s�! S. Each elementof TS;s de�nes a vector bundle on C � Spec k["], which can be compared tothe constant bundle E (obtained from k["]!! k ,! k["]). The `di�erence'lies in H1(C; End (E)): Choose an open a�ne cover C = SU� such thatEjU� �= OrU�. Write the transition maps into GLr(OU�\U� ["]) as g��+" ��g��.Then �g�� de�nes a cocycle in H1(C; End (E)). This de�nes the Kodaira{Spencer map.This map is surjective: We �rst show that surjectivity is invariant undergoing over to an equivalent stack. Let S0!! S induce an equivalence of stacks.Let s0 2 S0 map to s 2 S. Every map Spec k["] ! S 0 (extending s0) mapsto a map Spec k["] ! S (extending s), and their images in H1(C; End (E))coincide. On the other hand, every map Spec k["]! S (extending s) can belifted to a map Spec k["]! S0 (extending s0) because of smoothness. HenceTS0;s0 and TS;s have the same image in H1(C; End (E)).From this we see that it su�ces to show surjectivity for Tn. An elementof H1(C; End (E)) corresponds to a deformation of E to C � Spec k["]. Sincewe can lift the given basis of ��E(n) to a basis over k["], we see that ourdeformation of E comes from a deformation in Tn.There is a kind of converse:Proposition 3 Given S smooth, E on C�S such that TS;s ! H1(C; End (Es))is surjective for all s 2 S and such that for all s 2 S, H1(C; E(n)s) = 0 andH0(C; E(n)s) generates E(n)s, then there is an open subset T0n � Tn suchthat for s 2 T0n, Es is isomorphic to a vector bundle parametrized by S, andT0n=GLN �= S=R as stacks, where R ! S � S represents Isom(pr�1E; pr�2E).Proof: R is smooth: Take as usual a local algebra A with an ideal I � A49



such that I2 = 0 and let T = SpecA, T0 = SpecA=I. We have to lift:T0 �! R\ % #T �! SThe lower map corresponds to a vector bundle E on C � T . Since T0 �!R �! S � S, we have another vector bundle E 0 and an isomorphism E �= E 0on C � T0. Since S is smooth, we can lift E 0 to some E 0 on C � T . Then Eand E 0 di�er by a class in H1(C; End (E)
 I), and two extensions of T0! Sdi�er by something in TS 
 I. Now,TS 
 I !!H1(C; End (E)) 
 I !!H1(C; End (E) 
 I)(the �rst by versality, the second because H1 is right exact here). This meansthat we can adjust E 0 to become isomorphic to E, whence the lift T ! R.Now let T ! Tn � S classify isomorphisms. Then the projections aresmooth (use a similar argument as above), hence the image T0n in Tn is open.Thus we get an equivalence of stacks T0n=GLN �= S=R. 2There is a construction of Artin: Given a vector bundle E on C �= C �Spec k, construct a smooth schemeS of dimension dimS = dimH1(C; End (E))(and a vector bundle on C �S extending E, probably). In this way, one canconstruct parts of the moduli stack directly.
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May 30, 1995We have our moduli stacksM = SnMn, whereMn = Sn=Rn with smoothschemes Sn and groupoid structures Rn on Sn. The inclusions Mn �Mn+1can be represented by open immersions Sn ,! Sn+1 on suitable representa-tives. The Sn are versal deformations, i.e., the tangent mapTSn !!R1��End (E)is surjective.There is a method of M. Artin to construct neighborhoods in Sn of agiven point E:Given E=k, we can construct a versal deformation of E overC�Speck[[t1; : : : ; td]]such that any other deformation can be obtained by base-change from it (wecan choose d = dimH1(C; End (E)) |in general, it has to be �).By the Artin Approximation Theorem, there is a subring k[t1; : : : ; td] �A � k[[t1; : : : ; td]], �etale and of �nite type over k[t1; : : : ; td], such that theversal deformation of E can be de�ned over A, and we get a versal familyover SpecA, which constitutes a neighborhood of E.Choose Sn = `�niteSpecA (with various A's) (we can take the union to be�nite because of quasi-compactness) and Rn = isomorphisms. This gives akind of direct construction of Mn.Moduli stack is connectdAs promised:Theorem 7 The moduli stack (for �xed rank and degree) is connected,i.e., each Sn (for n � 0) can be chosen connected, or alternatively, there isno open and closed non-trivial subset S 0n � Sn that is stable under Rn (i.e.,ran(dom�1(S0n)) = S0n).Proof: The idea is to use the known result for line bundles and reduce thegeneral case to it by �ltering vector bundles by line bundles.51



Claim: Let E have rank > 1. Then for N � 0, E(N) has a section s withs(x) 6= 0 for all x 2 C.Proof: Let T = f(s; x) 2 �(C; E(N)) � C j s(x) = 0g; this is a closed sub-variety of �(C; E(N))�C. Its �ber over x 2 C under pr2 is �(C; E(N)(�x)).If N is su�ciently big, then H1(C; E(N)(�x)) = 0, hence by RR, applied toE(N) and E(N)(�x),dim(�ber) = dim�(C; E(N)) � rk E ;and therefore,dimT � dim�(C; E(N)) � rk E + 1 < dim�(C; E(N)) :Hence pr1(T ) is a proper subset of �(C; E(N)), and an element in the com-plement is the section claimed to exist. 2We get E as an extension0 �! O(�N) �! E �! F �! 0(with degF = deg E +N). Since H1 is right exact on a curve, we have0 = H1(C; E(M))!! H1(C;F(M))(and analogously for E(M)(�x) and F(M)(�x)) for M � 0. Hence we canrepeat the construction to obtain a �ltration0 = E0 � E1 � : : : � Er = E(where r = rk E) such that Ei=Ei�1 �= O(�Ni) for i = 1; : : : ; r � 1 andEr=Er�1 �= det E 
 O(r�1Pi=1 Ni). Since we can always increase N in the con-struction above, we may assume N1 � N2 � : : :� Nr�1 � 0.Claim: Such extensions (with �xed r, Ni and deg E) are classi�ed by anirreducible variety.Proof: For line bundles, we get a copy of the Jacobian (which is irre-ducible). So suppose we know the assertion for r � 1 and bundles F . Wehave to classify extensions0 �! O(�N) �! E �! F �! 0 :52



We have Ext1(F ;O(�N)) = H1(C;Hom (F ;O(�N))). SinceH0(C;Hom (F ;O(�N))) = Hom(F ;O(�N)) = 0(induction on �ltration of F , use that degrees in there are � �N), H1de�nes a vector bundle. (Let F be the variety classifying F 's and F theuniversal bundle on C � F �! F . Then H = Hom(F ;O(�N)) is a bundleon C � F with ��H = 0, whence R1��H is locally free (by RR).) Its totalspace classi�es extensions E. 2So we have an irreducible variety T classifying �ltrations as above. Theconditions for Sn de�ne an open subvariety T 0 � T , which `maps' onto Sn=Rn.Since T 0 is irreducible, Sn=Rn is connected (or also irreducible, if this notionwere de�ned). (By choosing a connected component of Sn, we see that wemay take Sn connected.) 2Remark: This argument also works for semistable bundles (where we haveused the result).Theorem 8 Assume g > 1.(a) The closed subset of non-semistable E has codimension � 2 in Sn.(b) Suppose char k = 0. Then the closed subset of non-stable E has al-ways codimension � 1 in Sn. Unless g = 2 and the rank r = 2, thecodimension is � 2.In particular, the stable bundles are dense, hence they exist for any degreeand rank.Proof: To estimate the dimension, we use versality: TSn !!R1��End (E).But in case of singularities, the tangent space may be `too big'. To overcomethis, we look at a generic point.Let S = Sn and T = fE j E not semistableg, and let � be the genericpoint of an irreducible component of T . Then over C � k(�), E has a non-trivial HN{�ltration. This HN{�ltration is already de�ned over k(�): It isde�ned over a �nite extension M of K = k(�), which is a purely inseparable53



extension of a Galois extension L of K. Since the HN{�ltration is invariantunder the Galois group, it will be de�ned over K, if it is de�ned over L.If char k = 0, we are done. Otherwise, let p = char k. Consider a purelyinseparable extension K � K 0 = K( ppt). There exists a derivation @ on K 0such that @( ppt) = 1 and (K 0)@ = K (i.e., K = fu 2 K 0 j @u = 0g). @ actson OC�SpecK0 = OC
KK 0 via its action on the second factor. We claim thatthe HN{�ltration on E 0 = E 
K K 0 is invariant under @ (and hence de�nedover K). Let 0 � F 0 � E 0 be the �rst step in the HN{�ltration and considerF 0 1
@�! E 0=F 0(how is this map de�ned? It seems to require F 0 = F
KK 0, which probablyis what we want to prove!) This map is OC 
K K 0{linear (!), and must be 0because of the di�erent slopes.We can now replace T by a non-empty open T 0 � T and �nd a �ltrationE� on EjC�T 0 by vector bundles E� which induce the HN{�ltration on each�ber. Consider the following diagram:TT 0 �! R1��(End HN(E))\ ??yTS !! R1��(End (E))& ??y??yR1��(End (E)=End HN(E))where End HN denotes endomorphisms respecting the HN{�ltration. Themap on the lower right is surjective because R1�� is right exact. The mapTT 0 ! R1��(End (E)=End HN (E)) is zero, hence at a point E 2 T 0, we havecodimTS;ETT 0;E � dimH1(C; End (E)=End HN(E)) :Now, End (E)=End HN(E) has a �ltration with subquotients Hom(gr�(E); gr�(E))where � > � (gr�(E) has slope �). Because of the slopes and semistability,H0(C; End (E)=End HN(E)) = 0. Hence the dimension of H1 is given byRiemann{Roch:dimH1(End (E)=End HN(E)) 54



= (g � 1)rk End (E)=End HN (E)�X�<� degHom(gr�(E); gr�(E))� 2 ;since g � 2, rk � 1 anddegHom(gr�(E); gr�(E)) = rk (gr�(E))rk (gr�(E))(� � �) < 0(with the old de�nition of slope = deg =rk ) (and at least one of these occurs,since the �ltration is non-trivial). This proves part (a).To prove part (b), we show that the non-stable bundles have the claimedcodimension in the semistable ones. Let now T be the set of non-stablesemistable bundles, and let again � denote a generic point of a component ofT . Let E on C�� be semistable, but not stable. We get a �ltration of E whosesubquotients are direct sums of stable bundles (E1 = PF � E, where thesum is over stable sub-bundles with the same slope as E, continue with E=E1).By analogous arguments for the Galois case as used for part (a), we see thatthis �ltration is de�ned over k(�) (since we assume char k = 0, we need notworry about inseparable extensions). By the same reasoning as above, we getthe estimate (g�1)rk (: : :) for the codimension. (Why is in this case H0 = 0?We might have isomorphic stable bundles in di�erent subquotients : : :Maybethis is because the �ltration is canonical (image of stable bundle is stable?),hence has to be respected by global endomorphisms.) If the �ltration has atleast two steps, the rank is � 1, so the comdimension must be � 1 (and canbe 1 only if g = 2 and the rank is 1, which implies that the �ltration has twosteps with line bundles as subquotients, i.e., E has rank 2).We therefore may assume that the rank is zero, i.e., that E
k(�) is a directsum of stable bundles. This splitting is de�ned over a separable extension Lof K = k(�) (this is true even in characteristic p). SpecL ! SpecK is an�etale cover which extends to T 00 �etale�! T 0 open�! T ;hence TT 00;E ,! TT 0;E ,! TS;E, and we can estimate the codimension by thedimension of the cokernel of the map from TT 00 to R1��(End (E)=End �(E)),55



where End � means endomorphisms respecting the direct sum. Then our oldargument �nishes the proof. (Really? It seems there are di�culties withvector bundles of the form En (n{fold direct sum of a stable bundle E): howcan the global endomorphisms be restricted to make the argument work?) 2Example: For g = 2 and rk = 2, codimension 1 does indeed occur: Considernon-trivial extensions with all degrees zero0 �! L1 �! E �! L2 �! 0with line bundles L1, L2. Then H0(C; End (E)) = k. Sn can be chosento have dimension 1 + 4(g � 1) = 5. L1 and L2 depend on 2 prame-ters each, which gives a subspace of deimension 4, hence codimension 1.(dimH1(C;Hom(L2;L1)) = 1, since H0 = 0 generically, i.e., the non-trivialextension is unique.)The GIT-quotient againWe try to construct again the GIT-quotient (GIT = Geometric InvariantTheory): Let Sssn � Sn the open subset of semistable bundles and Rssn theinduced groupoid structure. We want a projective quotient.The determinant of cohomology de�nes a line bundle L on Sn and onSssn . Suppose L is generated by its Rssn {invariant global sections (on Sssn ).Then we get a map Sssn f�! PN, which is Rssn {invariant (meaning f � dom =f � ran : Rssn ! PN). Is the image closed? (whence projective) Suppose so(?). Then take the `Rssn {invariant normalization' Sssn �! M �nite�! PN andcheck the �bers and analyze curves in them (to see if we have the quotientwe want?).By Langton's Ph.D. Thesis (Harvard; Mumford), the image is closed.Theorem 9 Let V be a discrete valuation ring with fraction �eld K, and letEK be a semistable bundle on C � SpecK.Then E extends to a bundle E on C�SpecV with semistable special �ber.Proof: We may assume V to be complete: Given Ê on C � Spec V̂ (V̂ thecompletion of V ), choose a �xed extension E0 on C � SpecV . Let � be a56



uniformizer of V . Then for some n, we have�nÊ0 � Ê � ��nÊ0 :Since the sub-bundles of ��nÊ0=�nÊ0 are the same over V and over V̂ , Ê canbe de�ned over V .Now let E be any extension of EK and Es its special �ber. Let Es;� bethe HN{�ltration of Es, and let F be its �rst step. If Es is not semistable,we have �(F) > �(Es). Under the assumption that the Thm. is false, chooseE such that �(F) is minimal and among those such that rk (F) is minimal.F lives on the special �ber. Extend it by zero to all of C � SpecV . De�neE � E 0 � ��1E such that �E 0=�E is the image of F � E=�E. (I have changedthis from my notes which didn't quite make sense.) Then we have0 �! (E=�E)=F �! E 0=�E 0 ��! F �! 0(F and Es=F `change places'). Let F 0 be the �rst step in the HN{�ltrationof E 0=�E 0. Then �(F 0) � �(F) by the exact sequence above. By minimalityof �(F), �(F 0) = �(F) (note EK = E 0K). We get a strict map F 0! F , whosekernel must be zero (since rkF is minimal) (this doesn't seem to be the rightjusti�cation). Hence F 0 ,! F , and then F 0 �= F because rkF was minimal(here this is OK). (So the sequence splits by F ! F 0.)We have found a new extension �E 0 � E such thatE 0s ���! Es[ [F 0 �=�! FContinuing in this way, we obtain a decreasing sequenceE = E0 � E1 � : : : � En � �nEsuch that the �rst step Fn in the HN{�ltration of Ens is the image of En+1sand is �= Fn+1.On the formal scheme C
̂V , consider E1 = Tn�0 En � Ê :57



Let SpecA � C be an open a�ne subscheme, then over A
̂kV , we havea decreasing sequence of projective modules (En) with En � Ê; let E1 betheir intersection.Claim: rkE1 = rkF , and we have a surjection E1!! F . (F correspond-ing to F .)Proof: Let p = �(A
̂kV ) be the prime ideal induced by the maximal idealof V . Then length (E=En)p = n(rk Es � rkF) :By commutative algebra, there is a basis e1; : : : ; ea; ea+1; : : : ; ea+b of E suchthat a = rkF and En is generated by e1; : : : ; ea (which generate F ) and�nea+1; : : : ; �nea+b. We can choose this basis to be independent of n (usecompleteness of V ). Then we see that E1 is generated by a1; : : : ; ea, henceequals F . 2This gives us a formal sub-bundle Ĝ � Ê with Ĝs = F . ByGrothendieck,Ĝ is algebraic, hence comes from a sub-bundle G � E. Now,�(GK) = �(Gs) = �(F) > �(Es) = �(EK) ;contradicting the semistability of EK . 2Remark: We see that the construction in the proof (when starting with anarbitrary extension E of EK) eventually must lead to a semistable bundle.
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June 2, 1995(Raw notes by Bernd Steinert.)Recall S. Langston's Theorem from the last lecture:Theorem: Let V be a discrete valuation ring with fraction �eld K, let C bede�ned over V , and let EK be a semistable bundle on C 
V K.Then EK extends to a bundle E on C with semistable special �ber.The argument fot its proof was as follows:Take E `best possible' and look at the HN{�ltrationE = E0 � E1 � E2 � : : :The inclusions �En � En+1 give rise to isomorphisms En+1=�En �= F , whereF is the �rst step in the HN{�ltration of En=�En.Let E1 = Tn En; this is a formal vector bundle.Claim: En = E1 + �nEProof: Write C = SR SpecR as a union of open a�ne subschemes. E=�Eand F correspond to free modules over R
V V=�V :En �! E0 �! E0=�E0[FChoose a basis e1; : : : ; ea; ea+1; : : : ; ea+b of E0 such that e1; : : : ; ea are in Enand induce a basis of F . Then e1; : : : ; ea; �nea+1; : : : ; �nea+b 2 En form abasis of En (look at index).This can be done indenpendently of n: Chosen e(n)1 ; : : : ; e(n)a good for En,modify them by something in �nE to get elements good for En+1 (this ispossible because En = En+1 + �nE). Then ei = limn!1 e(n)i exists in dE 
 Vand is good for all n. 2We had the following picture:Let V be a complete discrete valuation (?) ring with �eld of fractions K.59



Let K � L and W the normalization of V in L. ThenS � Sss ��! PN% x??��� Spec V  - SpecK��� %SpecW  - SpecLwhere the map � is de�ned via global sections of (detH�)�N (this will beshown today).Using Langton's Theorem, we see that EL extends to E on C 
R W ,hence SpecL �! Isom pr1�! S original mappr2& S map extends to SpecVReplace lifting by equivalent one =) can extend.In this way one sees that the image is closed.Construction of global sections of (detH�)
(�M ) on Sthat are invariant under IsomRemark: If E is not semistable, any such section vanishes at E.Proof: Assume �(E) = g � 1 (for general �(E), see below) and let F � Ebe a sub-bundle violating the semistability property (i.e., �(F) > �(E)).Consider the following family over P1 of vector bundles: ~E = E � F(1)=F :0 �! F(1) �! ~E �! E=F �! 0What is the determinant of cohomology? Let C�P1 ��! P1 be the projection.Then det(R�� ~E) = det(R��F)
O(�(H�(C;F))| {z }>0 )
 det(R��E=F)= O(something > 0) :60



Hence deg(det�1) < 0, and all global sections must vanish. 2How to construct sections:Choose some �xed F such that �(F)+�(E) = g�1. detH�(C; E
F)
(�1)has global section #; # = 0 () H0(C; E 
 F) 6= 0.Observation: If rkF1 = rkF2 and detF1 �= detF2, thendetH�(C; E 
 F1) �= detH�(C; E 
 F2)as line bundles on the moduli stack of E's.Proof: This is OK if rkFi = 1. Otherwise, use induction: Write0 �! O(�N) �! Fi �! Gi �! 0 ;then detGi �= (detFi)(N) anddetH�(C; E 
Fi) �= detH�(C; E 
 O(�N))
 detH�(C; E 
 Gi) 2Fix some F0. Consider F with rkF = N rkF0 and detF �= (detF0)
N .ThendetH�(C; E 
 F) �= detH�(C; E 
 (F
N0 )) �= (detH�(C; E 
 F0))
NTheorem 10 If E is semistable, and N is su�ciently big, then there existsan F as above such that H�(C; E 
 F) = 0.Proof: This condition de�nes an open subset in the moduli stack of F 's.We may assume that E is stable: Write0 = E0 � E1 � E2 � : : : � Ed = Ewith Ei=Ei+1 stable. If all (Ei=Ei+1)
F have no cohomology, then E 
F hasno cohomology as well.Look at S = local deformation space of F .(Remark: Replace F by F � (F� 
 L): H1(E 
 F� 
L) is dual toH1(F 
Hom(E 
 L; !C)), hence we need not worry about detF .)61



S is smooth, F extends to a bundle F on C �S, and there is an epimor-phism TS!! R1��End (F).Study Ri��(E 
 F).Replace S by an open subset such that ��(E
F) is a vector bundle there.Claim: The cup product ��(E 
 F) � R1��End (F) �! R1��(E 
 F) isidentically zero.Proof: The tangent vectors are given by Spec (k["])! S.Let F0 be the constant deformation. F di�ers from F0 by a cocycle 1+"�,where � has values in End (F0).Let s0 2 �(C; E 
F0) be a global section, then s = s0+ " �s extends (forsome 1{�Cech{cocycle �s).We get "�(s0) + " d(�s) = 0, where d is the �Cech di�erential. But thisis just what we get by the cup product pairing. 2Choose a closed point s 2 S. There is a map�(C; E 
 F)�HomC(End (F); !C)� �! HomC(E 
 F ; !C)� ; (7)and this map vanishes. To get the map, look at�(C; E 
F)�HomC(E 
 F ; !C) �! �(C; End (F)
 !C) ;which is given by `contracting' E.Let G � E be the sub-bundle generically generated by the image of�(C; E 
 F) 
 F� ! E. This is the smallest sub-bundle G such that allsections lie in G 
F : �(C; E 
 F) = �(C;G 
 F) :The vanishing of the pairing (7) is equivalent to HomC(E 
 F ; !C) =HomC(E=G 
 F ; !C).Stability of E implies �(G) � �(E) � " (with some " � 1=rk E).Replacing S by an open subset, we may assume that the G's de�ne asub-bundle of E on C � S.Idea: Estimate the variation of G. 62



Deformations of sub-bundles G � E have tangent space HomC(G; E=G).This gives a map TS ! HomC(G; E=G), which can be described in the fol-lowing way (" comes from k["] with "2 = 0):Let G0 � E be constant, and let g be a local section of G0. Let g + " e bea local section of G. (: : : ?)Upper bound for HomC(G; E=G):(F�)rkG ! G is generically surjective (enough to estimate HomC(F�; E=G)),so we get a lower bound for deg G (may assume F� semistable). We then getbounds for h0(Hom (G; E=G))� h1(Hom (G; E=G)). SinceH1(End (E))!!H1(Hom (G; E=G)) (H1 is right exact), we get a �xed boundfor dimHomC(G; E=G).Replacing S by an open subset, we get a sub-bundle T 0S � TS withrk (TS=T 0S) � const. such thatT 0S � ker�TS �! ��Hom (G; E=G)� :The pairing ��(G 
 F) � T 0S �! R1��(G 
 F)??yR1��End (F)vanishes. Consider�(C;G 
 F)�Hom(G 
 F ; !) �! �(C; End (F)
 !) :The image is contained in a subspace of dimension � c.Key observation:h0(G 
 F)� h1(G 
 F) = �(G 
 F) rkG rkF� �" rkG rkF! �1 for rkF !1There exist r � rkG sections g1; : : : ; gr of G such that (F�)r (g1;:::;gr)�! G isgenerically surjective. This gives an injectionHom(G 
F ; !) ,! �(C; End (F)
 !)r ;63



and the image is contained in (above subspace)r, hence h1(G 
 F) � rc, acontradiction. 2
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June 6, 1995(Raw notes by Bernd Steinert.)In the last lecture, we have seen thatE semistable () 9F : H�(C; E 
F) = 0 :In particular, �(E) + �(F) = g � 1. (One can prescribe rkF � 0 and detFto some extent.)Corollary 2 #{functions generate detH�(C; E
F)
(�N) over the semistablelocus.Today, we will show the following:Assume given a complete curve B and a vector bundle E on B �C suchthat deg detR�pr1;�(E 
F) = 0 and such that Ejb�C is semistable for at leastone b 2 B.Claim: All restrictions Eb = Ejb�C are semistable and have the sameJordan{H�older series.Remark 1: All �bers Eb are semistable.Proof: Find F 0 with rkF 0 = M rkF and detF 0 = (detF)
M such thatH�(C; Eb0 
F 0) = 0 (where Eb0 is semistable). Thendet(R�pr1;�(E 
 F 0)) = �det(R�pr1;�(E 
 F))�
Mhas degree zero.Let # 2 �(B; (det(R�pr1;�(E 
F 0)))
(�1)) with #(b0) 6= 0. Then #(b) 6= 0for all b, hence Eb 
 F has trivial cohomology, and Eb is semistable for allb 2 B. 2Remark 2: Replace E by E 
 F 0 (which is semistable and has trivialcohomology).Remark 3: We may assume B = P1.Proof: Choose a �nite map B ��! P1 and consider ��E on P1 � C. Letx 2 P1. Then (��E)jfxg�C �= ���(OB=mxOB) 
 E�65



�= ��(OB=mxOB)
 E� Mb2��1(x) Ebwhere \�" means \Jordan{H�older equivalent" and the b are taken withtheir multiplicities in the last line. Since we are free to vary � as we like, theclaim for P1 implies that for B.Note that all �bers of ��E have trivial cohomology, hence the #{functionvanishes nowhere, and our assumptions are valid for P1 and ��E. 2Claim: All restrictions EjB�fcg are isomorphic.Proof: Choose �nite subsets S; S0 � C such that O(S) �= O(S0). Look atR1pr1;�(E 
 pr�2O(S)) = 0pr1;�(E 
 pr�2O(S)) �= Ms2S EjB�fsgThis follows essentially from the exact sequence0 �! O �! O(S) �!Ms2S k �! 0 :Also: pr1;�(E 
 pr�2O(S)) �= Ms2S EjB�fsg �= Ms02S0 EjB�fs0gThere is much freedom to choose S and S 0. Check multiplicity of indecom-posables (which is semi-continuous). =) Claim. 2Corollary 3 There exists an open cover C = S� U� such that EjB�U� =pr�1(EjB�fc0g).Proof: Use semi-continuity: Consider Ripr2;�(Hom(pr�1EjB�fc0g; E)). Therestrictions to each �ber B � fcg are isomorphic. By Grauert's semi-continuity, these are vector bundles and commute with base-change.Apply to i = 0 and lift isomorphisms on �bers. 2Now look at theHN{�ltration: HN r(E0) (slopes � r). They glue togetherto form global sub-bundles HN r(E) � E on B � C.66



Also: HN r(E)=HN r+1(E) �= pr�1O(r)
 pr�2Gr for vector bundles Gr on C.(This is as canonical as things can be here.)We know: HN r(E)jfbg�C has slope � g � 1, so Euler characteristic � 0.Claim: We have equality.Proof: detR�pr1;�E = Or detR�pr1;�(O(r)
 Gr| {z }exterior tensor prod.)= O�Xr r �(H�(C;Gr))�= O� 1Xr=r0�0 r(�(HN r)� �(HN r+1))�= O�Xr �(HN r)� r0�(HN r0| {z }=E )�= O�Xr �(HN r)�Hence Pr �(HNr) � 0 (because detR�pr1;�E has global sections?), and sinceall �(HN r) � 0, they must be = 0. Thus, all HN r are semistable sub-bundlesof the same slope as E, i.e., g � 1. 2This implies that Gr is semistable, and Eb �Lr Gr.[We now only have to give the argument for Remark 2.]We have shown now: E 
 F is JH{constant (if H�(C; Eb 
F) = 0).Idea: Let G be stable. We want to check that G occurs with the samemultiplicity in each Eb = Ejfbg�C .We get the JH{series for Eb 
 F by taking the JH{series for E (i.e.,E �Pm� G� with G� stable) plus taking the JH{series for each G� 
F .Let m�(G�) be the generic multiplicity, i.e., the multiplicity in the genericpoint � of B (Ejk(�)�C), and let mb(G�) be the multiplicity in b 2 B.Claim (?): mb � m�.Proof: Consider Spec V �! B� 7�! �Bs 7�! b67



Pull back on SpecV � C.[\This is really di�cult. Why is this so di�cult? Maybe I should give up: : : "]Take JH{series ((E�) ?) on generic �ber ��C: E� � E�; extend to E� � Esuch that E=E� is torsion free.The E� are bundles. E�jC�fsg have the same slope as E.Look at E�jC�fsg ,! EjC�fsg. Since E is semistable, this map is strict, andE=E� is a bundle.In some stage this quotient is my JH{constituent.=) E�=E�+1: If generic �ber �= G�, so is special �ber.So multiplicities can only jump up.And we have a matrix eq. ??Always: m� � mb. Adding these up, we get equality everywhere. 26 New construction of moduli spaceAs stack: Mss = S=R, where S was a versal deformation and R a groupoid.Let S �! PN(detH�)
(��)  p O(1)be the map de�ned by #(E 
 F).Factor this as S �! M �nite�! PN, where M is the normalization (in par-ticular, M is normal): M is de�ned by the normalization of k[#] in1Mn=0 ��Mss; (detH�)
(�n�)� :We have the scalar automorphisms Gm � S � R; R=Gm still acts on S.The stable locus Ss � S is open and R{invariant.Rs=Gm ,! Ss � Ss eqivalence relation =) Ms = Ss=Rs algebraic space.Claim: Ms �!M is an open immersion.68



Proof: By Zariski's Main Theorem, `quasi-�nite = �nite � open immer-sion'. (Here, �nite does not matter, because we have taken M to be thenormalization.)Hence we have to show that the map has �nite (i.e., 0{dimensional) �bers.If not, there is a (not necessarily complete) curve B0 contained in some�ber, whence a family E of stable vector bundles on B0�C. By Langston'sTheorem, this extends to a semistable family over B, the completion of B0.Ratios #1=#2 are constant on it, hence detH� is trivial, and E is JH{constant.Then all �bers are isomorphic (and stable), hence B ! � maps to a point inMs.Hence Ms open imm.�! M 0 �nite�!M ;then M 0 =M , and we are done. 2Comparison with what we get from GITFinally: Mn�0�(M; (detH�(C; E 
 F))
(�n)) = Mn�0An = Ais a graded ring.One has: A � k[�]norm.A � �(Q0)G (subring from GIT)with Mss = Q0=G, G = PGLN .Claim: All are equal.(subring from GIT) = sections on moduli space from GIT.M �! moduli space[ [ openMs �= ! M s(: : : ) 69



Next time: Higgs bundles.So far: GLr vector bundles of rank r[SLr vector bundles with trivial detor det a �xed line bundleThere are other reductive groups:Sp: vector bundles E with an alternating bilinear map h�; �i : E � E ! O(identifying E and E�)Or or SOr: vector bundles E with a symmetric bilinear map h�; �i : E�E !O (identifying E and E�)In these cases there is also a notion of (semi-)stability: \parabolic sub-groups" or subalgebras. Let E0 � E1 � : : : � Ebe isotropic sub-bundles. Semistable means the parabolic subalgebra hasdegree � 0.(: : : )This notion coincides with the old notion.This is not true for stability (one only excludes isotropic sub-bundles).
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June 9, 1995(Raw notes by Bernd Steinert.)7 Higgs bundlesLet C be a curve as before.De�nition 5 A Higgs bundle is a pair (E; #) such that E is a vector bundleon C and # 2 �(C; End (E) 
 !C).Why do we care about these?Note: �(C; End (E) 
 !C) = dual of H1(C; End (E))Thus: Higgs bundles �  cotangent bundle to modulispace of vector bundles !(Of course there are several di�culties).Formal computation of the tangent spaceWe have to look at isomorphism classes over k["] with "2 = 0. Let (E0; #0)be a Higgs bundle over k. We have to parametrize its extensions to k["].Write C = S� U� with open a�nes U� and let E �= E0["] (= id mod ") and# = #0 + " �#� on U�.Gluing E gives rise to a 1{cocycle 1+" g�� with g�� 2 �(U�\U�; End (E0)),and we have �#� � �#� = �[g��; #0] (commutator) modulo trivial deforma-tions, i.e., g�� = g� � g� with �#� = �[g�; #0].The quotient gives the tangent space. It can be written as the hyperco-homology of the complexEnd (E) Ad(#0)�! End (E) 
 !Cdeg 0 comutator deg 171



One can de�ne H1(C; End (E) Ad(#0)�! End (E) 
 !C). To calculate it, onehas to look at the �Cech complex in degree 1:� �! � �! � �!Ad(#0) ???y ???y ???y� �! � �! � �! ��Cech complex�!(Di�erently from vector bundles, there can be an H2 6= 0 here.)There is an exact sequence of complexes0 �! 0 �! End (E) =�! End (E) �! 0???y ???y ???y ???y ???y0 �! End (E)
 !C =�! End (E)
 !C �! 0 �! 0It gives rise to a long exact sequence: : : �! H i�1(End (E) 
 !C) �! H i(End (E)! End (E) 
 !C)�! H i(End (E)) Ad(#0)�! H i(End (E) 
 !C) �! : : :K� = H1(End (E) ! End (E) 
 !C) has an inner product that is non-degenerate. Hom(K�; !C) = K�[1] (i.e., degrees -1 and 0)Taking Serre duality:H1(K�) dual to H0(Hom (K�; !C)) = H1(K�)Check directly: This product is anti-symmetric.It is also the same as the canonical symplectic form on the cotangentbundle (at least if restricted to stable bundles, as usual).72



Invariants det(T � #) = T r � a1T r�1 + � � �+ (�1)rarwith ai 2 �(C;!
iC ). In particular, a1 = tr# and ar = det#.The characteristic variety is given byChar = SpecS� rMi=1 �(C;!
iC )��(S: symmetric algebra ?) A Higgs bundle over C � S gives a map S �!Char. Look at its �bers.Conversely: Given ai 2 �(C;!
iC ), we construct a �nite 
at D �! C:D = Spec �S�OC (!
(�1)) . !
(�r)(1;�a1; : : : ;�ar)� ;i.e. in local coordinates: If C = SU� and �� is a generator of !C on U�,write ai = ai;���. Then D = SV�, whereOD(V�) = OC(U�)[T�] . (T r� � a1;�T r�1� + � � � � ar;�) :The overlap rule on U� \ U� is T��� = T���.D is a curve, but in general it need not be nonsingular. It is a completeintersection.E is an OD{module by T��� 7! #. It is torsion free, but not necessarilylocally free. I.e.,(Higgs bundle) �!  coherent torsion free sheaf on C(with some conditions) !De�nition 6 A Higgs bundle (E; #) is called stable if for any #{stablesub-bundle 0 $ F $ E, we have �(F) < �(E).By GIT (or other methods), there exists a coarse moduli space Higgs sswhich is projective over Char. It has an open subset Higgs s which is amanifold. (The proofs should be similar to the ones before.)73



Why is it a manifold?Look at H2(C; End (E) �! End (E) 
 !C); this is dual to H0(End (E) �!End (E) 
 !C) = k.Remark: If (E; #) is a Higgs bundle, then (det E; tr #) is also a Higgsbundle.The obstruction for E is the same as the obstruction for det E. Hence weare reduced to rank 1. In this case,Higgs = Pic(C)� �(C;!C) ;and this is smooth.We have Higgs s � (cotangent bundle to Ms) as a dense open subset (byestimating dimensions); the complement has codimension at least 2.A Theorem of LaumonWe now suppose char k = 0.Look at the map Higgs s �! Char and recall that we have a non-degenerateinner product on the tangent bundle of Higgs s.Theorem 11 (Laumon) If S is smooth and is mapped into a �ber of themap above, then the image of the tangent bundle TS is isotropic.Corollary 4 dim(�ber) � 12 dim(Higgs ).(This is not really a theorem about stability.)Proof: (Thm.) Let (E; #) be the familiy of Higgs bundles on C � Scorresponding to S ! Higgs . By assumption, ai(#) = ai is constant on S.The tangent bundle is mappedTS �! R1pr2;�(End (E) �! End (E) 
 !C)(End (E) has an inner product). Try to get subcomplexes.We have the following rules: 74



{ We may replace S by an open subset or by an �etale cover;{ We may replace C by a �nite cover C 0 ! C with C 0 smooth (here theinner product gets multiplied by the degree of the covering).Now let's play the game:Let � be the generic point (of C?), K = k(�). We have CK, the function�eld K(C), and E becomes a vector space with an endomorphism #. Let# = #s+ #n be the Jordan decomposition of #. Then ker#n, ker#2n, and soon de�ne sub-vector spaces, so that we get #{stable sub-bundles0 � E1 � E2 � : : : � Eover CK.Everything holds over some open subset of S, hence without loss of gen-erality already over S. Then we getTS �! H1(End �lt(E) Ad(#)�! End �lt(E)
 !C)???yH1(Li End (gri(E)) �! Li End (gri(E)) 
 !C)The inner product becomes the pull-back.We may replace E by gri(E), hence we may assume #n = 0.Choose a covering C 0 �! C such that all eigenvalues of # = #s lie inK(C 0) (we also have to take a covering of S).Then we get a complete #{stable 
ag of (subspaces in the generic pointand) sub-bundles 0 � E1 � E2 � : : : � Er = EThis reduces us to the case rk E = 1. In this case,Higgs = Pic(C 0)� �(C 0; !C0)| {z }=Char ;and the inner product is given by (E = L is a line bundle)End (L) Ad(#)�! End (L) 
 !C


 


OC 0�! !C75



The complex splits, whence the assertion. 2Why is this interesting?We have the following dimensions:vector bundles : r2(g � 1) + 1char. variety : rPi=1dim�(C;!
i)= 1 + rPi=1(i(2g � 2) + 1 � g)= 1 + r2(g � 1)Higgs : 2(r2(g � 1) + 1)Corollary 5 The map Higgs s �! Char is 
at, and the �bers are maximalisotropic (i.e. Lagarangian).Fibers over generic points of Char:Claim: ai generic =) D smooth and irreducible.Corollary 6 Jac(D) (irred.) �= �ber$ line bundle on D (of deg : : : ).Proof: (Claim) Locally, D � C � A 1 is given byP (T ) = T r � a1T r�1 + � � � � ar = 0 :Look at points in C � A 1 � Char where P = @P@T = @P@� = 0 (� a localcoordinate in C).Check: For a given point in C � A 1 , this has codimension 3 in Char.For r � 3: Have sections with zero-order 0 and 1.P = @P@� = 0 gives 2 conditions@P@T = 0 gives 1 condition on ar�1.For r = 2: Hyperelliptic ones cause some problems (Weierstrass points).76



r = 1: never occurs.D irreducible:Otherwise D = D1 [ D2 is a disjoint union. Then P = P1 � P2 withpolynomials P1, P2 of degrees r1 and r2, resp., and co�cients in �(C;!
i).We get for the dimension:(1 + r21(g � 1)) + (1 + r22(g � 1)) � 1 = 1 + (r21 + r22)(g � 1) ;but r2 = r21 + 2r1r2 + r22 > r21 + r22, a contradiction. 2
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June 30, 1995Last time we have obtained the Higgs �brationT �Ms � Higgs ss f�! Char = rMi=1 �(C;!
i) = A N(N is the dimension of moduli space), where the complement of the cotangentbundle of Ms in Higgs ss has codimension � 2.Higgs classi�es pairs (E; #) with # 2 �(C; End (E) 
 !C), and (semi-)stability ofHiggs bundles is de�ned with respect to #{invariant sub-bundles.For some �xed degree, the generic �ber of f is a connected abelian variety(= Pic(D), where D! C is some covering).From now on, we will assume that det E = O (i.e., trivial), so that we canreplace GLr by SLr (which simpli�es things, since there is no Gm{factor).Correspondingly we restrict to # 2 �(C; sl(E) 
 !C), i.e., tr# = 0. (Thisimplies that we must drop the summand �(C;!) in Char|the dimensiongoes down by g.)Remark: We may replace SLr by any semi-simple group G, e.g. SOr or Spr(bundles with a non-degenerate symmetric or symplectic inner product). Wethen have to take # 2 �(C; g(E) 
 !C), where g is the Lie algebra of G.(The proof that D is irreducible can be di�cult for G 6= SLr.)f is proper, hence f�OHiggsss = OChar, so that we get the same globalfunctions:Mn�0 �(Ms; SnTMs) = �(Higgs ss;OHiggsss) = �(Char;OChar) = Mn�0 Sn� rMi=2 �(C;!
iC )�� :This is an isomorphism of graded vector spaces if we give �(C;!
iC )� degreei.Corollary 7 �(Ms;OMs) = 0.It is di�cult to determine the higher cohomology, because we don't knowmuch about R1 in this situation. But we can show that certain classes in H1are non-zero. 78



How do we get classes in H1 ?We have an ample line bundleL = �detH�(C; E 
 F)�
(�1)on M and on Higgs . (This depends only on rkF , since det E is trivial.)L has a �rst Chern class c1(L) 2 H1(M;
1M), and we get a mapc1(L) [ � : �(M; SnTM) �! H1(M;
1M
 SnTM) �! H1(M; Sn�1TM)where the second arrow is some kind of derivative (use that 
 is dual to Tand contract once).Claim: If n > 0, this map is injective.Proof: The idea is to restrict to the generic �ber:Recall the Higgs �bration:T �M � Higgs f�! Char???yMWe lift L from M to T �M and push it to Higgs . Since the complement hascodimension � 2, we get an injection on H1. We claim that there is a map� such that the following diagram commutes:H1(Higgs ;OHiggs) ,! Ln�0H1(M; SnTM)�x??? x??? c1(L)[��(Higgs ;OHiggs) === Ln�0 �(M; SnTM)Let ' 2 �(Char;OChar) be of positive degree. Then c1(L)[' is some classin H1(M; S�TM). To show that this is non-zero, restrict to generic �bers off . Restrict L to generic �ber (= Pic0(D)): There, (detH�(C; E))
(�1) =(detH�(D; E))
(�1) is known to give an ample line bundle (�{divisor) onPic0(D). 79



Aside: Higgs is a symplectic manifold (THiggs = H�(sl(E) Ad(#)�! sl(E)
!C),and the form induced by this restricts to the canonical symplectic form onT �M). This gives a canonical identi�cation 
1Higgs �= THiggs. Thus for a localfunction ' 2 OHiggs, we have d' 2 
1Higgs �= THiggs, i.e., we get a vector �eldH' from ' (the Hamiltonian vector �eld of ').If ' is induced from OChar, we have d' = 0 on the �bers (since ' isconstant along �bers), and H' is tangential to the (generic) �bers (since thetangent spaces of the �bers are maximal isotropic).Claim: The map � is given by ' 7! c1(L) [H' 2 H1(Higgs ;OHiggs).Proof: Later. 2To see that �(') 6= 0: Take `generic �ber' f�1(�) = A (an abelianvariety). Since L is ample on A, one knows thatc1(L) 2 H1(A;
1A) = H1(A;OA)
 t�Ainduces a perfect duality between H1(A;OA) and tA. (Is tA = �(A;TA) ?)Hence if c1(L) [H' = 0, then H' = 0 on f�1(�). Since H' is tangential tof�1(�), this means that H' = 0 everywhere, hence d' = 0, and ' is constant,contradicting our choice of '.Remark: Looking at functions and H1 doesn't note removal of bits of codi-mension � 2. Hence it doesn't matter whether we look at Higgs , Higgs ss,Higgs s, T �M, T �Mss or T �Ms. 2What is c1(L) ?Facts on Chern classes and the Chern character can be found, for example,in chapter 1 of [Hirzebruch, Berger, Jung: Manifolds and ModularForms].We take a base space (or stack) S and let � be the projection � : C�S �!S. Let E be a vector bundle on C � S. (E.g. S = M or S = Higgs withuniversal bundle.) Then L = detR���E is a line bundle on S and we havec1(L) = c1(R���E). [HBJ, p. 11]. 80



If E is an SLr{bundle, which we will assume, then c1(E) = 0.Recall the Chern character of a (virtual) vector bundle F :ch(F) = rkF + c1(F) + 12(c1(F)2)� c2(F) + � � �and the total Todd class of F :Td(F) = 1 + 12c1(F) + 112(c1(F)2 + c2(F)) + � � �ByGrothendieck{Hirzebruch{Riemann{Roch, we have (using c1(E) =0) ? + c1(L) + � � � = ch(R���E)= ��(ch(E) [ Td(C))= ��((1� c2(E) + � � �) [ (1 + 12c1(TC)))= ?� ��(c2(E)) + � � � ;hence (since �� shifts degrees down by one)c1(L) = ���(c2(E)) :In what cohomology theory do the Chern classes live?cp can be de�ned in H2p(�; ��p
) (hyper-cohomology), where��p
 = 0 �! 0 �! : : : �! 0 �! 
p d�! 
p+1 d�! : : :is the truncated de Rham{complex.For example, c1(L) 2 H2(0 �! 
1 d�! 
2 �! : : :) is the obstruction tohave an integrable connection on L.A connection on L is a map r : L �! L 
 
1 such that r(' � l) ='rl+ l 
 d' (for ' 2 O, l 2 L) (i.e. a prescription how vector �elds act onL).r is called integrable if the `curvature' r2 vanishes, or equivalently, if theaction of vector �elds preserves commutators.Connections always exist locally. Cover your space by open a�nes Uisuch that there is a connection ri on L over Ui. Then ri �rj = �ij is a81



1{form on Ui \ Uj , and r2i = Ri ^ � for some Ri (also called curvature) withdRi = 0. On Ui\Uj , we then have Ri�Rj = �ijrj+rj�ij = �d�ij (one ofthe signs is correct). This gives us a �Cech{2{cocycle in the �Cech complexassociated to 0 �! 
1 d�! 
2 �! : : : vanishing i� there is an integrableconnection on L globally.We have a sequenceH0(
2)d=0 �! H2(0 �! 
1 �! 
2 �! : : :) �! H1(
1) ;where the quotient measures the existence of a global connection (the imageof c1(L) in H1(
1) is called the Hodge class of L) and where the subspacemeasures if the global connection can be made integrable.An important property of the �rst �Chern class of line bundles is thatc1(L1 
 L2) = c1(L1) + c1(L2). This means that in chracteristic zero, itdoesn't matter if we look at L or at L
n (with n 6= 0) when we want to knowif c1(L) vanishes.Knowing c1 for line bundles, we can de�ne ci for vector bundles (by thesplitting principle).For c1(E): Locally de�ne connections ri, then ri�rj = �ij 2 End (E)

1 and so on. A similar construction as for line bundles gives us a class(`Atiyah class') in H1(End (E) 
 
1) that is the obstruction to having aglobal connection on E.0 �! End (E) 

1 �!? �! O �! 0The �ber over 1 2 O is a homogeneous space under End (E) 
 
1; it is thespace of connections on E. Look at the long exact cohomology sequence:0 �! �(End (E) 
 
1) �! �(?) �! k �! H1(End (E) 
 
1)The Atiyah class E is the image of 1 2 k in H1(End (E) 
 
1). Hence �(?)has an element mapping to 1 (i.e. a global connection) i� this class is zero.In general, we get the projection of cp(E) to Hp(
p) by applying sym-metric polynomials (i.e., the coe�cients of the characteristic polynomialEnd (E) !O[X]). 82



Let E be an SLr{bundle. Then0! sl(E) �! End (E) tr�! O �! 0We have c1(E) = 0 and c2(E) = c2(E�) cf. [HBJ p. 11], hencec2(sl(E)) = c2(End (E)) = c2(E� 
 E) = 2rc2(E)(Look at the Chern character ch(E) = r� c2(E) + : : : and use ch(E�
E) =ch(E�)ch(E), cf. [HBJ, p. 9]. For the �rst equality, note that the sequenceabove splits (at least if r is prime to the characteristic) by O ! End (E); x 7!(1=r)x idE .)This means that for many purposes, we can use sl(E) in place of E. (Thisis related to the fact that di�erent representations of SLr give Chern classesdi�ering by a constant factor.)Example: Consider a stable vector bundle E on a curve C. Then itsAtiyahclass lives in H1(C; End (E) 
 !C) = H0(C; End (E))� = kand is proportional to deg E. Hence stable SLr{bundles always have a(global) connection. (Over C , the Theorem of Narasimhan{Seshadri tellsus that there is even a unitary one.)Now look at the universal bundle E on C �M f�! M and its Atiyahclass � = �C + �M 2 H1(C �M; sl(E) 
 (
C � 
M)) :Since �C restricted to a �ber of f is trivial, we see that�C 2 H1(M; f�(sl(E) 
 
C)) = H1(M;
M)(Look at R1f�). As to �M, we have�M 2 H1(C �M; sl(E) 
 
M)�= �(M; R1f�(sl(E)) 
 
M)= Hom(TM; R1f�(sl(E)))= Hom(TM;TM)83



Claim: �M = �id 2 Hom(TM;TM) (with some choice of sign).Proof: Choose an open cover C = SUi such that EjUi is trivial. OnUij = Ui \ Uj , we have transition functions gij (parametrized by M). Takethe trivial connection ri on Ui �M. Then (taking the derivative in M{direction) ri �rj = dgij � g�1ij2 �(Uij �M; End (E) 
 
1M)= Hom(TM; End (EjUij )) :Now follow the de�nitions. 2Claim: �C 2 H1(M;
M) is proportional to c1(L).L is the determinant of cohomology or its inverse.Proof: (?) c2(E) = tr ((�C +�M)[ (�C +�M)) = tr (�C [�M) mod 
2M inH1(C�M;
C 

M) (maybe it's H2 ?) which maps to H1(M;
M) (Serreduality H1(C;
C) = H0(C;OC)� = k ?)Hence (by Riemann{Roch), c1(L) � f�c2(E) = ��C. I cannot say thatthis is particularly clear to me. 2This class in H1(M;
M) classi�es an extension of OM by 
M, whichdually is given by 0 �! OM �! Di� �1L �! TM �! 0 ;where Di� �1L are the di�erential operators of order � 1 on L and where OMis embedded in Di� �1L as the di�erential operators of order 0. (Di�erentialoperators of order 1 correspond to connections.)This is equal to the obstruction to de�ning a connection on E (on C�M)relative M (i.e. r : E ! E 
 
C). By a Theorem of A. Weil, r existslocally inM, and two such r's di�er by an element of f�(sl(E)

C) = 
M.Another formulation is the following: Consider the moduli space Mr ofstable (SLr{)bundles E together with a connection r : E ! E 
 
C . Thenthe canonical (forgetful) map Mr ! M gives a homogeneous space under
M with class c1(L). HenceMr = Spec �S�Di��1L . \1 = 1"�84



where the relation \1 = 1" means that one has to identify 1 2 S0Di��1L = kwith 1 2 S1Di��1L = Di��1L (identity operator).A reference for these things isG. Faltings: Stable G{bundles : : : , J. Alg. Geom. 2 (1993), 507{586
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July 4, 1995First, a correction/explanation of some arguments from the last lecture.T �M ,! Higgs f�! Char???yMHiggs is symplectic. For '; 2 OHiggs, we have the Poisson bracketf'; g = hd'; d i = H'( ) (where h�; �i is the symplectic form on THiggs). Itsatis�es the Jacobi identity. If ' and  are pull-backs from Char, we havef'; g = 0.We have the map�(Char;OChar)!�(Higgs ;OHiggs)!�(Higgs ;THiggs)!H1(Higgs ;OHiggs)' 7! ' = f�' 7! H' 7! c1(L) [H'and we have shown that its kernel are the constants.LetMr be the moduli space of stable SLr{bundles with connection intro-duced at the end of last lecture. We have the canonical map f :Mr �!M.Mr = ConnL = SpecM(S�Di��1L=\1 = 1") classi�es connections on L.Claim: �(Mr;OMr) = k.We have �(Mr;OMr) = �(M; f�OMr), and f�OMr is a twisted versionof S�TM. It is still �ltered (F�) with graded pieces grn = Fn=Fn�1 �= SnTM.Try to lift and look at obstructions.0 �! Fn�1=Fn�2 �! Fn=Fn�2 �! Fn=Fn�1 �! 0Show that�(SnTM) = �(Fn=Fn�1) �! H1(Fn�1=Fn�2) = H1(Sn�1TM)is injective (for n > 0). Then a section of Fn=Fn�2 must already come froma section of Fn�1=Fn�2. Induction then shows that all sections must comefrom F0 = k. 86



Claim: This map is given byLn�0 �(M; SnTM) = �(Higgs ;OHiggs) c1(L)[��! Ln�1H1(Sn�1TM)c1(L)[�& [H1(Higgs ;OHiggs)(The injection on the far right comes from the fact that the complementof T �M in Higgs has codimension � 2.)Example: n = 1: 0 �! OM �! Di� �1L �! TM �! 0Lift sections of TM locally to Di� �1L; di�erences on overlaps (in O)determine a class in H1(O).# of degree 1 in T �M corresponds to # 2 �(M;TM). Form d# and useduality to obtain a vector �eld on T �M (total space of cotangent bundle).Let M = SUi be a local cover trivializing L, with transition functionsgij . Then c1(L) is represented by d log gij = dgij g�1ij . We havehd#; dgij g�1ij i = g�1ij f#; gijg = g�1ij #(gij)(where gij is to be considered as a funtion `upstairs' (i.e. on T �M ?)). This isthe obstruction to lifting # to Di� �1L.For n > 1, we can write locally # = PI aI #i1 � � �#in. By similar computa-tions using the appropriate variant of Leibniz's rule and the case n = 1, weget the result.Varying the curveWe want to vary the curve C. (The curves of genus g are parametrized by amoduli space of dimension 3g � 3.)Assume we have a family C �! B of curves of genus g over a base B.Then we get a family M f�! B of corresponding moduli spaces (or stacks)and a line bundle L = detH� on M (everything considered is assumed to besmooth). 87



We want a `projective connection' on f�L
n:Given a vector �eld Z on B, �nd a second-order di�erential operator DZon M acting on L. DZ should be �rst-order `along B', and `DZ � Z' shouldbe `OB{linear' (meaning: we get the same result from commuting functionsin OB with DZ or Z).(A di�erential operator has order zero if it commutes with functions; ithas order n if commuting with functions gives di�erential operators of ordern� 1.)Our construction will work for L
n = K�M=B with � 6= 12 (K is the canonicalbundle).First, we want to solve the related problem obtained by replacing Di� �2Lby S2(Di� �1L) (here the exceptional value is � = 0).We have a family of moduli spaces Mr �! B as well, and Mr is `in-�nitesimally constant': Let Z be a vector �eld on B.Claim: Z lifts canonically to LZ on Mr, respecting commutators.Argument: We assume that C is over R = k[[t1; : : : ; td]]: C is a formalscheme over R, with a formal 
1.Claim: Restriction induces an eqivalence(E + integrable r on C0)  ! �E + integrable r : E ! E 
 
C=k on C�(C0 is the special �ber (ti 7! 0) of C).Proof: We show that this even holds on any open a�ne U � C, whereU �= U �k SpfR. The claim is then obtained by gluing.` ' above is the restriction, for `!', we use the trivialization U �= U �kSpfR to lift.Let (E;r) on U be given. Then�(U; EjU ) = �(U; E)r( @@ti )=0and E is generated by the right hand side.E.g. for d = 1: Start with some e0. If e is constructed and is o.k. modtn�1, then r( @@t)(e) = tn�1�?. Replace e by e� tnn �? (we are in characteristiczero, obviously), then e is o.k. mod tn.88



For d > 1, use a similar argument ( @@ti commute).That is: Let b 2 B f � Mr. Then dMr, the formal completion of Mralong f�1(b), is canonically isomorphic to f�1(b)� B̂ (hence tangent vectorsof B lift to Mr ; action).Or better: Consider B ,! B � B the diagonal embedding, dB �B theformal completion along the diagonal. Then dpr�1Mr �= dpr�2Mr. 2We have the map Mr �! M, where the latter varies with C. The mapTMr=B = H1dR(sl(E)) = H1(sl(E) r! sl(E) 
 
1) �! H1(sl(E)) = TM=Bis its tangent map (�ber-wise?).A vector �eld Z 2 TB �! H1(C;TC) (the latter is the tangent space ofthe moduli space of curves at C; the map is the tangent map of B ! modulispace) now induces�(C; sl(E) 
 
1) LZ�! H1dR �! H1(sl(E))Claim: This is the cup product.We get the image of Z in H1(C;TC) as follows:Write C = SUi and take C=k["] with Ui = Ui � k["]. The gluings of theconstant deformation and of the deformation given by Z di�er by " �#ij with#ij 2 �(Ui \ Uj;TC); this gives a 1{cocycle representing the image of Z.We work in B̂, i.e. over k[[t1; : : : ; td]]. Then Mr = Mr0 � B̂ (Mr0 is the�ber over 0), and we can extend by a constant r on B̂.Write C = SUi with Ui �= Ui � B̂ and where (Ui �= Uj) is (Ui �= Uj) +P ti#i + � � �. Additonally, the universal bundle E on M is trivialized: EjUi �=EjUi � B̂.Then� 2 TMr mapping to 0 2 TM ! family of vector bundles +r on C["] ! family on C0["] + constant (w.r.t. E) extension ! given by (E0;r0 + "�) with � 2 �(C; sl(E))89



Now apply vector �eld Z.Compute the commutator [LZ; � ]: The original E0 is given by a 1{cocyclegij on Ui \ Uj; � is given by �i on Ui such that �i � �j = d log gij . Ex-tend to a 2{parameter family over k[[s; t]], where � corresponds to @@s andZ corresponds to @@t: (E;r)(s; t) is a vector bundle with integrable connec-tion. Take the formal completion in the origin; then E becomes constant,�= E0 � k[[s; t]]. For the transition functions gij(s; t) on Ui \ Uj, this meansgij(s; 0) = gi(s)gj(s)�1. Take the t{derivative: @@t log gij(s; t) = Zij(gij)g�1ij .s{derivative  ! change connection  ! change the trivialization of E.(: : : )A plausibility argument is as follows:Mr parametrizes locally constant sheaves (sheaves that are parametrizedby locally constant transition fucntions gij on Ui \ Uj (which are thereforeinsensitive to changes of the gluing)). If we change the connection by �, thetransition fucntions now satisfy g�1 � rg = �. To compute the commutator[LZ; � ], we compare: Changing the gluing �rst, then the connection doesnothing, but changing the connection �rst and then the gluing gives us h�;Zi.2We want to apply Riemann{Roch to the universal bundle E onC�B Mr f�! Mr.Locally, E has an (integrable) connection ri lifting its universal connec-tion (mapping to sl(E) 
 
1C). We haveri �rj : sl(E) �! sl(E) 
 f�
1Mrr2i 2 sl(E) 
 (
C ^ f�
1Mr mod f�
2Mr)This de�nes a class inH1(sl(E) r�! sl(E) 

1C)
 f�
1Mr �= TMr=B 
 f�
1Mr :Claim: This is the canonical map TMr=TB �= TMr=B.(We have a splitting TMr = TB � TMr=B.)Complex topology argument: 90



Mr parametrizes locally constant (in C{direction) transition functionsgij . The obstruction for a global connection (on L ?) is given by the derva-tives of gij in Mr{direction. By locally picking canonical connections (withr2 = 0), we can represent this object by (d log gij; 0), giving a class inH1(C; slr(C )) (slr(C ) is constant).Then c2(E) is represented by a class which mod f�
2Mr is representedby � the square of this class. Hence f�(c2(E)) 2 �(Mr;
2Mr) is a classcorresponding to the inner product on TMr=B.Result: The pull-back of L toMr has a connection with curvature given bythe inner product on TMr induced by TMr �! TMr=B and the inner producton TMr=B.
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