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1. Review of Eigenvalues, Eigenvectors and Characteristic
Polynomial

Recall the topics we finished Linear Algebra I with. We were discussing eigenvalues
and eigenvectors of endomorphisms and square matrices, and the question when
they are diagonalizable. For your convenience, I will repeat here the most relevant
definitions and results.

Let V be a finite-dimensional F -vector space, dimV = n, and let f : V → V be
an endomorphism. Then for λ ∈ F , the λ-eigenspace of f was defined to be

Eλ(f) = {v ∈ V : f(v) = λv} = ker(f − λ idV ) .

λ is an eigenvalue of f if Eλ(f) 6= {0}, i.e., if there is 0 6= v ∈ V such that
f(v) = λv. Such a vector v is called an eigenvector of f for the eigenvalue λ.

The eigenvalues are exactly the roots (in F ) of the characteristic polynomial of f ,

Pf (x) = det(x idV −f) ,

which is a monic polynomial of degree n with coefficients in F .

The geometric multiplicity of λ as an eigenvalue of f is defined to be the dimension
of the λ-eigenspace, whereas the algebraic multiplicity of λ as an eigenvalue of f
is defined to be its multiplicity as a root of the characteristic polynomial.

The endomorphism f is said to be diagonalizable if there exists a basis of V
consisting of eigenvectors of f . The matrix representing f relative to this basis is
then a diagonal matrix, with the various eigenvalues appearing on the diagonal.

Since n× n matrices can be identified with endomorphisms F n → F n, all notions
and results makes sense for square matrices, too. A matrix A ∈ Mat(n, F ) is
diagonalizable if and only if it is similar to a diagonal matrix, i.e., if there is an
invertible matrix P ∈ Mat(n, F ) such that P−1AP is diagonal.

It is an important fact that the geometric multiplicity of an eigenvalue cannot
exceed its algebraic multiplicity. An endomorphism or square matrix is diagonal-
izable if and only if the sum of the geometric multiplicities of all eigenvalues equals
the dimension of the space. This in turn is equivalent to the two conditions (a)
the characteristic polynomial is a product of linear factors, and (b) for each eigen-
value, algebraic and geometric multiplicities agree. For example, both conditions
are satisfied if Pf is the product of n distinct monic linear factors.

2. The Cayley-Hamilton Theorem and the Minimal Polynomial

Let A ∈ Mat(n, F ). We know that Mat(n, F ) is an F -vector space of dimension n2.

Therefore, the elements I, A,A2, . . . , An
2

cannot be linearly independent (because
their number exceeds the dimension). If we define p(A) in the obvious way for p
a polynomial with coefficients in F , then we can deduce that there is a (non-zero)
polynomial p of degree at most n2 such that p(A) = 0 (0 here is the zero matrix).
In fact, much more is true.

Consider a diagonal matrix D = diag(λ1, λ2, . . . , λn). (This notation is supposed
to mean that λj is the (j, j) entry of D; the off-diagonal entries are zero, of course.)
Its characteristic polynomial is

PD(x) = (x− λ1)(x− λ2) · · · (x− λn) .

Since the diagonal entries are roots of PD, we also have PD(D) = 0. More generally,
consider a diagonalizable matrix A. Then there is an invertible matrix Q such



3

that D = Q−1AQ is diagonal. Since (Exercise!) p(Q−1AQ) = Q−1p(A)Q for p a
polynomial, we find

0 = PD(D) = Q−1PD(A)Q = Q−1PA(A)Q =⇒ PA(A) = 0 .

(Recall that PA = PD — similar matrices have the same characteristic polynomial.)

The following theorem states that this is true for all square matrices (or endomor-
phisms of finite-dimensional vector spaces).

2.1. Theorem (Cayley-Hamilton). Let A ∈ Mat(n, F ). Then PA(A) = 0.

Proof. Here is a simple, but wrong “proof”. By definition, PA(x) = det(xI −A),
so, plugging in A for x, we have PA(A) = det(AI−A) = det(A−A) = det(0) = 0.
(Exercise: find the mistake!)

For the correct proof, we need to consider matrices whose entries are polynomials.
Since polynomials satisfy the field axioms except for the existence of inverses, we
can perform all operations that do not require divisions. This includes addition,
multiplication and determinants; in particular, we can use the adjugate matrix.

Let B = xI−A, then det(B) = PA(x). Let B̃ be the adjugate matrix; then we still
have B̃B = det(B)I. The entries of B̃ come from determinants of (n−1)× (n−1)
submatrices of B, therefore they are polynomials of degree at most n− 1. We can
then write

B̃ = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0 ,

and we have the equality (of matrices with polynomial entries)

(xn−1Bn−1 +xn−2Bn−2 + · · ·+B0)(xI−A) = PA(x)I = (xn+bn−1x
n−1 + · · ·+b0)I ,

where we have set PA(x) = xn + bn−1x
n−1 + · · ·+ b0. Expanding the left hand side

and comparing coefficients of like powers of x, we find the relations

Bn−1 = I, Bn−2 −Bn−1A = bn−1I, . . . , B0 −B1A = b1I, −B0A = b0I .

We multiply these from the right by An, An−1, . . . , A, I, and add:

Bn−1A
n = An

Bn−2A
n−1 − Bn−1A

n = bn−1A
n−1

...
...

...
B0A − B1A

2 = b1A
− B0A = b0I

0 = PA(A)

�

2.2. Remarks.

(1) The reason why we cannot simply plug in A for x in B̃(xI −A) = PA(x)I
is that whereas x (as a scalar) commutes with the matrices occurring as
coefficients of powers of x, it is not a priori clear that A does so, too. We
will discuss this in more detail in the Introductory Algebra course, where
polynomial rings will be studied in some detail.

(2) Another idea of proof (and maybe easier to grasp) is to say that a ‘generic’
matrix is diagonalizable (if we assume F to be algebraically closed. . . ),
hence the statement holds for ‘most’ matrices. Since it is just a bunch of
polynomial relations between the matrix entries, it then must hold for all
matrices. This can indeed be turned into a proof, but unfortunately, this
requires rather advanced tools from algebra.
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(3) Of course, the statement of the theorem remains true for endomorphisms.
Let f : V → V be an endomorphism of the finite-dimensional F -vector
space V , then Pf (f) = 0 (which is the zero endomorphism in this case).
For evaluating the polynomial at f , we have to interpret fn as the n-fold
composition f ◦ f ◦ · · · ◦ f , and f 0 = idV .

Our next goal is to define the minimal polynomial of a matrix or endomorphism,
as the monic polynomial of smallest degree that has the matrix or endomorphism
as a “root”. However, we need to know a few more facts about polynomials in
order to see that this definition makes sense.

2.3. Lemma (Polynomial Division). Let f and g be polynomials, with g monic.
Then there are unique polynomials q and r such that r = 0 or deg(r) < deg(g)
and such that

f = qg + r .

Proof. We first prove existence, by induction on the degree of f . If deg(f) <
deg(g), then we take q = 0 and r = f . So we now assume that m = deg(f) ≥
deg(g) = n, f = amx

m+ · · ·+a0. Let f ′ = f −amxm−ng, then (since g = xn+ . . . )
deg(f ′) < deg(f). By the induction hypothesis, there are q′ and r such that
deg(r) < deg(g) or r = 0 and such that f ′ = q′g+r. Then f = (q′+amx

m−n)g+r.
(This proof leads to the well-known algorithm for polynomial long division.)

As to uniqueness, suppose we have f = qg + r = q′g + r′, with r and r′ both of
degree less than deg(g) or zero. Then

(q − q′)g = r′ − r .

If q 6= q′, then the degree of the left hand side is at least deg(g), but the degree of
the right hand side is smaller, hence this is not possible. So q = q′, and therefore
r = r′, too. �

Taking g = x − α, this provides a different proof for Theorem 17.13 of Linear
Algebra I.

2.4. Lemma and Definition. Let A ∈ Mat(n, F ). There is a unique monic poly-
nomial MA(x) of minimal degree such that MA(A) = 0. If p(x) is any polynomial
satisfying p(A) = 0, then p is divisible by MA (as a polynomial).

This polynomial MA is called the minimal (or minimum) polynomial of A. Sim-
ilarly, we define the minimal polynomial Mf of an endomorphism f of a finite-
dimensional vector space.

Proof. It is clear that monic polynomials p with p(A) = 0 exist (by the Cayley-
Hamilton Theorem 2.1, we can take p = PA). So there will be one such polynomial
of minimal degree. Now assume p and p′ were two such monic polynomials of (the
same) minimal degree with p(A) = p′(A) = 0. Then we would have (p− p′)(A) =
p(A) − p′(A) = 0. If p 6= p′, then we can divide p − p′ by its leading coefficient,
leading to a monic polynomial q of smaller degree than p and p′ with q(A) = 0,
contradicting the minimality of the degree.

Now let p be any polynomial such that p(A) = 0. By Lemma 2.3, there are
polynomials q and r, deg(r) < deg(MA) or r = 0, such that p = qMA + r.
Plugging in A, we find that

0 = p(A) = q(A)MA(A) + r(A) = q(A) · 0 + r(A) = r(A) .
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If r 6= 0, then deg(r) < deg(MA), but the degree of MA is the minimal possible
degree for a polynomial that vanishes on A, so we have a contradiction. Therefore
r = 0 and hence p = qMA. �

2.5. Remark. In Introductory Algebra, you will learn that the set of polynomials
as discussed in the lemma forms an ideal and that the polynomial ring is a principal
ideal domain, which means that every ideal consists of the multiples of some fixed
polynomial. The proof is exactly the same as for the lemma.

By Lemma 2.4, the minimal polynomial divides the characteristic polynomial. As
a simple example, consider the identity matrix In. Its characteristic polynomial is
(x− 1)n, whereas its minimal polynomial is x− 1. In some sense, this is typical,
as the following result shows.

2.6. Proposition. Let A ∈ Mat(n, F ) and λ ∈ F . If λ is a root of the charac-
teristic polynomial of A, then it is also a root of the minimal polynomial of A. In
other words, both polynomials have the same linear factors.

Proof. If PA(λ) = 0, then λ is an eigenvalue of A, so there is 0 6= v ∈ F n such that
Av = λv. Setting MA(x) = amx

m + · · ·+ a0, we find

0 = MA(A)v =
m∑
j=0

ajA
jv =

m∑
j=0

ajλ
jv = MA(λ)v .

(Note that the terms in this chain of equalities are vectors.) Since v 6= 0, this
implies MA(λ) = 0.

By Lemma 2.4, we know that each root of MA is a root of PA, and we have just
shown the converse. So both polynomials have the same linear factors. �

2.7. Remark. If F is algebraically closed (i.e., every non-zero polynomial is a
product of linear factors), this shows that PA is a multiple of MA, and Mk

A is a
multiple of PA when k is large enough. In fact, the latter statement is true for
general fields F (and can be interpreted as saying that both polynomials have the
same irreducible factors). For the proof, one replaces F by a larger field F ′ such
that both polynomials split into linear factors over F ′. That this can always be
done is shown in Introductory Algebra.

One nice property of the minimal polynomial is that it provides another criterion
for diagonalizability.

2.8. Proposition. Let A ∈ Mat(n, F ). Then A is diagonalizable if and only if its
minimal polynomial MA is a product of distinct monic linear factors.

Proof. First assume that A is diagonalizable. It is easy to see that similar matrices
have the same minimal polynomial (Exercise), so we can as well assume that A is
already diagonal. But for a diagonal matrix, the minimal polynomial is just the
product of factors x − λ, where λ runs through the distinct diagonal entries. (It
is the monic polynomial of smallest degree that has all diagonal entries as roots.)

Conversely, assume that MA(x) = (x − λ1) · · · (x − λm) with λ1, . . . , λm ∈ F
distinct. We write MA(x) = (x− λj)pj(x) for polynomials pj. I claim that

Eλj
(A) = im

(
pj(A)

)
.
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To show that im
(
pj(A)

)
⊂ Eλj

(A), consider

0 = MA(A)v = (A− λjI)pj(A)v .

If w ∈ im
(
pj(A)

)
, then w = pj(A)v for some v ∈ F n, hence

Aw − λjw = (A− λjI)w = 0 .

To show that Eλj
(A) ⊂ im

(
pj(A)

)
, let v ∈ Eλj

(A), so that Av = λjv. Then

pj(A)v = pj(λj)v ,

and pj(λj) 6= 0, so
v = pj(A)

(
pj(λj)

−1v
)
∈ im

(
pj(A)

)
.

Finally, I claim that
∑m

j=1 im
(
pj(A)

)
= F n. To see this, note that the polynomial

p(x) =
m∑
j=1

pj(λj)
−1pj(x)

has degree less than m and assumes the value 1 at the m distinct elements λ1, . . . ,
λm of F . There is only one such polynomial, and this is p(x) = 1. So for v ∈ F n,
we have

v = Iv = p(A)v =
m∑
j=1

pj(λj)
−1pj(A)v ∈

m∑
j=1

im
(
pj(A)

)
.

Both claims together imply that
m∑
j=1

dimEλj
(A) ≥ n ,

which in turn (by Cor. 17.10 of Linear Algebra I) implies that A is diagonalizable.
�

2.9. Example. Consider the matrix

A =

1 1 1
0 1 1
0 0 1

 .

Is it diagonalizable?

Its characteristic polynomial is clearly PA(x) = (x−1)3, so its minimal polynomial
must be (x− 1)m for some m ≤ 3. Since A− I 6= 0, m > 1 (in fact, m = 3), hence
A is not diagonalizable.

On the other hand, the matrix (for F = R, say)

B =

1 2 3
0 4 5
0 0 6


has MB(x) = PB(x) = (x− 1)(x− 4)(x− 6); B therefore is diagonalizable.

Exercise: what happens for fields F of small characteristic?
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3. The Structure of Nilpotent Endomorphisms

3.1. Definition. A matrix A ∈ Mat(n, F ) is said to be nilpotent, if Am = 0 for
some m ≥ 1. Similarly, if V is a finite-dimensional vector space and f : V → V
is an endomorphism, then f is said to be nilpotent if fm = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

m times

= 0 for

some m ≥ 1.

It follows that the minimal polynomial of A or f is of the form xm, where m is
the smallest number that has the property required in the definition.

3.2. Corollary. A nilpotent matrix or endomorphism is diagonalizable if and only
if it is zero.

Proof. The minimal polynomial is xm. Prop. 2.6 then implies that the matrix
or endomorphism is diagonalizable if and only if m = 1. But then the minimal
polynomial is x, which means that the matrix or endomorphism is zero. �

The following result tells us more about the structure of nilpotent endomorphisms.

3.3. Theorem. Let V be an F -vector space, dimV = n, and let f : V → V be
a nilpotent endomorphism. Then V has a basis v1, v2, . . . , vn such that f(vj) is
either zero or vj+1.

Proof. Let Mf (x) = xm. We will do induction on m. When m = 0 (then V = {0})
or m = 1, the claim is trivial, so we assume m ≥ 2. Then {0} ( ker(f) ( V ,
and we can consider the quotient space W = V/ ker(f). Then f induces an

endomorphism f̃ : W → W that satisfies f̃m−1 = 0. (Note that fm−1(V ) ⊂
ker(f).) So by induction, there is a basis w1, . . . , wk of W such that f̃(wj) = 0
or wj+1. We can then write the basis in the form

(w1, . . . , wk) =
(
w′1, f̃(w′1), . . . , f̃

e1(w′1), w
′
2, f̃(w′2), . . . , f̃

e2(w′2), . . . , w
′
`, . . . , f̃

e`(w′`)
)

where f̃ ej+1(w′j) = 0 for j = 1, . . . , `. We now lift w′j to an element v′j ∈ V (i.e.,
we pick v′j ∈ V that maps to w′j under the canonical epimorphism V → W ). Then

v′1, f(v′1), . . . , f
e1(v′1), v

′
2, f(v′2), . . . , f

e2(v′2), . . . , v
′
`, f(v′`), . . . , f

e`(v′`)

are linearly independent in V (since their images in W are linearly independent;

note that the image of f i(v′j) is f̃ i(w′j)). We must have f ej+1(v′j) ∈ ker(f) (since
its image in W is zero). Note that their linear hull L is a complementary subspace
of ker(f). I claim that the extended sequence

v′1, f(v′1), . . . , f
e1+1(v′1), v

′
2, f(v′2), . . . , f

e2+1(v′2), . . . , v
′
`, f(v′`), . . . , f

e`+1(v′`)

is still linearly independent. So assume we have a linear combination that vanishes.
Then we get an equality of two vectors, one a linear combination of what we had
before, the other a linear combination of the new vectors. So the first vector is
in L, the second in ker(f), but L ∩ ker(f) = {0}, so both vectors have to vanish.
Since the vectors we had previously are linearly independent, all their coefficients
must vanish. It remains to show that the new vectors are linearly independent as
well. So assume that we have

λ1f
e1+1(v′1) + λ2f

e2+1(v′2) + · · ·+ λ`f
e`+1(v′`) = 0 .

This implies that

f
(
f e1(v′1) + λ2f

e2(v′2) + · · ·+ λ`f
e`(v′`)

)
= 0 ,
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so f e1(v′1) + λ2f
e2(v′2) + · · · + λ`f

e`(v′`) ∈ ker(f). But this vector is also in L,
hence it must be zero, and since the vectors involved in this linear combination
are linearly independent (they are part of a basis of L), all the λj must vanish.

Finally, pick a basis v′`+1, . . . , v
′
n−k of a complementary subspace of the linear hull

of f e1+1(v′1), . . . , f
e`+1(v′`) in ker(f). Then

(v1, . . . , vn) =
(
v′1, f(v′1), . . . , f

e1+1(v′1), . . . , v
′
`, f(v′`), . . . , f

e`+1(v′`), v
′
`+1, . . . , v

′
n−k
)

is a basis of V with the required properties. �

3.4. Remark. The matrix A = (aij) representing f with respect to vn, . . . , v2, v1,
where v1, . . . , vn is a basis as in Thm. 3.3 above, has all entries zero except aj,j+1 =
1 if f(vn−j) = vn+1−j. Therefore A is a block diagonal matrix

A =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bn−k


with blocks of the form

Bj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .

3.5. Corollary. A nilpotent matrix is similar to a matrix of the form just de-
scribed.

Proof. This is clear from our discussion. �

3.6. Corollary. A matrix A ∈ Mat(n, F ) is nilpotent if and only if PA(x) = xn.

Proof. If PA(x) = xn, then An = 0 by the Cayley-Hamilton Theorem 2.1, hence
A is nilpotent. Conversely, if A is nilpotent, then it is similar to a matrix of the
form above, which visibly has characteristic polynomial xn. �

3.7. Remark. The statement of Cor. 3.6 would also follow from the fact that
PA(x) divides some power of MA(x) = xm, see Remark 2.7. However, we have
proved this only in the case that PA(x) splits into linear factors (which we know
is true, but only after the fact).

3.8. Example. Consider

A =

3 4 −7
1 2 −3
2 3 −5

 ∈ Mat(3,R) .

We find

A2 =

−1 −1 2
−1 −1 2
−1 −1 2


and A3 = 0, so A is nilpotent. Let us find a basis as given in Thm. 3.3. The
first step in the process comes down to finding a complementary subspace of
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ker(A2) = L
(
(2, 0, 1)>, (0, 2, 1)>

)
. We can take (1, 0, 0)>, for example, as the basis

of a complement. This will be v′1 in the notation of the proof above. We then
have Av′1 = (3, 1, 2)> and A2v′1 = (−1,−1,−1)>, and these three form a basis.
Reversing the order, we get−1 3 1

−1 1 0
−1 2 0

−13 4 −7
1 2 −3
2 3 −5

−1 3 1
−1 1 0
−1 2 0

 =

0 1 0
0 0 1
0 0 0

 .

4. Direct Sums of Subspaces

The proof of the Jordan Normal Form Theorem, which is our next goal, uses the
idea to split the vector space V into subspaces on which the endomorphism can
be more easily described. In order to make this precise, we introduce the notion
of direct sum of linear subspaces of V .

4.1. Lemma and Definition. Let V be a vector space, Ui ⊂ V (for i ∈ I) linear
subspaces. Then the following statements are equivalent.

(1) Every v ∈ V can be written uniquely as v =
∑

i∈I ui with ui ∈ Ui for all
i ∈ I (and only finitely many ui 6= 0).

(2)
∑

i∈I Ui = V , and for all j ∈ I, we have Uj ∩
∑

i∈I\{j} Ui = {0}.
(3) If Bi is a basis of Ui, for i ∈ I, then the Bi are pairwise disjoint, and⋃

i∈I Bi is a basis of V.

If these conditions are satisfied, we say that V is the direct sum of the subspaces Ui
and write V =

⊕
i∈I Ui. If I = {1, 2, . . . , n}, we also write V = U1⊕U2⊕· · ·⊕Un.

Proof. “(1) ⇒ (2)”: Since every v ∈ V can be written as a sum of elements of
the Ui, we have V =

∑
i∈I Ui. Now assume that v ∈ Uj ∩

∑
i6=j Ui. This gives two

representations of v as v = uj =
∑

i6=j ui. Since there is only one way of writing v
as a sum of ui’s, this is only possible when v = 0.

“(2) ⇒ (3)”: Let B =
⋂
i∈I Bi, considered as a ‘multiset’ (i.e., such that elements

can occur several times). Since Bi generates Ui and
∑

i Ui = V , B generates V .
To show that B is linearly independent, consider a linear combination∑

i∈I

∑
b∈Bi

λi,bb = 0 .

For any fixed j ∈ I, we can write this as

Uj 3 uj =
∑
b∈Bj

λj,bb = −
∑
i6=j

∑
b∈Bi

λi,bB ∈
∑
i6=j

Ui .

By (2), this implies that uj = 0. Since Bj is a basis of Uj, this is only possible when
λj,b = 0 for all b ∈ Bj. Since j ∈ I was arbitrary, this shows that all coefficients
vanish.

“(3) ⇒ (1)”: Write v ∈ V as a linear combination of the basis elements in
⋃
iBi.

Since Bi is a basis of Ui, this shows that v =
∑

i ui with ui ∈ Ui. Since there is
only one way of writing v as such a linear combination, all the ui are uniquely
determined. �
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4.2. Remark. If U1 and U2 are linear subspaces of the vector space V, then V =
U1 ⊕ U2 is equivalent to U1 and U2 being complementary subspaces.

Next, we discuss the relation between endomorphisms of V and endomorphisms
between the Ui.

4.3. Lemma and Definition. Let V be a vector space with linear subspaces Ui
(i ∈ I) such that V =

⊕
i∈I Ui. For each i ∈ I, let fi : Ui → Ui be an endomor-

phism. Then there is a unique endomorphism f : V → V such that f |Ui
= fi for

all i ∈ I.
We call f the direct sum of the fi and write f =

⊕
i∈I fi.

Proof. Let v ∈ V . Then we have v =
∑

i ui as above, therefore the only way
to define f is by f(v) =

∑
i fi(ui). This proves uniqueness. Since the ui in the

representation of v above are unique, f is a well-defined map, and it is clear that
f is linear, so f is an endomorphism of V. �

4.4. Remark. If in the situation just described V is finite-dimensional and we
choose a basis of V that is the union of bases of the Ui, then the matrix represent-
ing f relative to that basis will be a block diagonal matrix, where the diagonal
blocks are the matrices representing the fi relative to the bases of the Ui.

4.5. Lemma. Let V be a vector space with linear subspaces Ui (i ∈ I) such that
V =

⊕
i∈I Ui. Let f : V → V be an endomorphism. Then there are endomorphims

fi : Ui → Ui for i ∈ I such that f =
⊕

i∈I fi if and only if each Ui is invariant
under f (or f -invariant), i.e., f(Ui) ⊂ Ui.

Proof. If f =
⊕

i fi, then fi = f |Ui
, hence f(Ui) = f |Ui

(Ui) = fi(Ui) ⊂ Ui.
Conversely, suppose that f(Ui) ⊂ Ui. Then we can define fi : Ui → Ui to be the
restriction of f to Ui; it is then clear that fi is an endomorphism of Ui and that
f =

⊕
i fi. �

We now come to a relation between splittings of f as a direct sum and the char-
acteristic or minimal polynomial of f .

4.6. Lemma. Let V be a vector space and f : V → V an endomorphism. Let
p(x) = p1(x)p2(x) be a polynomial such that p(f) = 0 and such that p1(x) and p2(x)
are coprime, i.e., there are polynomials a1(x) and a2(x) such that a1(x)p1(x) +
a2(x)p2(x) = 1. Let Ui = ker

(
pi(f)

)
, for i = 1, 2. Then V = U1 ⊕ U2 and the Ui

are f -invariant. In particular, f = f1 ⊕ f2, where fi = f |Ui
.

Proof. We first show that

im
(
p2(f)

)
⊂ U1 = ker

(
p1(f)

)
and im

(
p1(f)

)
⊂ U2 = ker

(
p2(f)

)
.

Let v ∈ im
(
p2(f)

)
, so v =

(
p2(f)

)
(u) for some u ∈ U . Then(

p1(f)
)
(v) =

(
p1(f)

)((
p2(f)

)
(u)
)

=
(
p1(f)p2(f)

)
(u) =

(
p(f)

)
(u) = 0 ,

so im
(
p2(f)

)
⊂ ker

(
p1(f)

)
; the other statement is proved in the same way.

Now we show that U1 ∩ U2 = {0}. So let v ∈ U1 ∩ U2. Then
(
p1(f)

)
(v) =(

p2(f)
)
(v) = 0. Using

idV = 1(f) =
(
a1(x)p1(x) + a2(x)p2(x)

)
(f) = a1(f) ◦ p1(f) + a2(f) ◦ p2(f) ,
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we see that

v =
(
a1(f)

)((
p1(f)

)
(v)
)

+
(
a2(f)

)((
p2(f)

)
(v)
)

=
(
a1(f)

)
(0) +

(
a2(f)

)
(0) = 0 .

Next, we show that im
(
p1(f)

)
+ im

(
p2(f)

)
= V . Using the same relation above,

we find for v ∈ V arbitrary that

v =
(
p1(f)

)((
a1(f)

)
(v)
)

+
(
p2(f)

)((
a2(f)

)
(v)
)
∈ im

(
p1(f)

)
+ im

(
p2(f)

)
.

These statements together imply that im
(
p1(f)

)
= U2, im

(
p2(f)

)
= U1 and V =

U1 ⊕ U2: Let v ∈ U1. We can write v = v1 + v2 with vi ∈ im
(
pi(f)

)
. Then

U1 3 v − v1 = v2 ∈ U2, but U1 ∩ U2 = {0}, so v = v1 ∈ im
(
p1(f)

)
.

Finally, we have to show that U1 and U2 are f -invariant. So let (e.g.) v ∈ U1. We
have(
p1(f)

)(
f(v)

)
=
(
p1(f) ◦ f

)
(v) =

(
f ◦ p1(f)

)
(v) = f

((
p1(f)

)
(v)
)

= f(0) = 0 ,

(since v ∈ U1 = ker
(
p1(f)

)
), hence f(v) ∈ U1 as well. �

4.7. Proposition. Let V be a vector space and f : V → V an endomorphism. Let
p(x) = p1(x)p2(x) · · · pk(x) be a polynomial such that p(f) = 0 and such that the
factors pi(x) are coprime in pairs. Let Ui = ker

(
pi(f)

)
. Then V = U1 ⊕ · · · ⊕ Uk

and the Ui are f -invariant. In particular, f = f1 ⊕ · · · ⊕ fk, where fi = f |Ui
.

Proof. We proceed by induction on k. The case k = 1 is trivial. So let k ≥ 2, and
denote q(x) = p2(x) · · · pk(x). Then I claim that p1(x) and q(x) are coprime. To
see this, note that by assumption, we can write, for i = 2, . . . , k,

ai(x)p1(x) + bi(x)pi(x) = 1 .

Multiplying these equations, we obtain

A(x)p1(x) + b2(x) · · · bk(x)q(x) = 1 ;

note that all the terms except b2(x) · · · bk(x)q(x) that we get when expanding the
product of the left hand sides contains a factor p1(x).

We can then apply Lemma 4.6 to p(x) = p1(x)q(x) and find that V = U1⊕U ′ and
f = f1 ⊕ f ′ with U1 = ker

(
p1(f)

)
, f1 = f |U1 , and U ′ = ker

(
q(f)

)
, f ′ = f |U ′ . In

particular, q(f ′) = 0. By induction, we then know that U ′ = U2 ⊕ · · · ⊕ Uk with
Uj = ker

(
pj(f

′)
)

and f ′ = f2⊕· · ·⊕fk, where fj = f ′|Uj
, for j = 2, . . . , k. Finally,

ker
(
pj(f

′)
)

= ker
(
pj(f)

)
(since the latter is contained in U ′) and f ′Uj

= f |Uj
, so

that we obtain the desired conclusion. �

5. The Jordan Normal Form Theorem

In this section, we will formulate and prove the Jordan Normal Form Theorem,
which will tell us that any matrix whose characteristic polynomial is a product of
linear factors is similar to a matrix of a very special near-diagonal form.

But first we need a little lemma about polynomials.
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5.1. Lemma. If p(x) is a polynomial (over F ) and λ ∈ F such that p(λ) 6= 0,
then (x− λ)m and p(x) are coprime for all m ≥ 1.

Proof. First, consider m = 1. Let

q(x) =
p(x)

p(λ)
− 1 ;

this is a polynomial such that q(λ) = 0. Therefore, we can write q(x) = (x−λ)r(x)
with some polynomial r(x). This gives us

−r(x)(x− λ) +
1

p(λ)
p(x) = 1 .

Now, taking the mth power on both sides, we obtain an equation(
−r(x)

)m
(x− λ)m + a(x)p(x) = 1 .

�

Now we can feed this into Prop. 4.7.

5.2. Theorem. Let V be a finite-dimensional vector space, and let f : V → V be
an endomorphism whose characteristic polynomial splits into linear factors:

Pf (x) = (x− λ1)
m1 · · · (x− λk)

mk ,

where the λi are distinct. Then V = U1 ⊕ · · · ⊕ Uk, where Uj = ker(f − λ idV )mj

is the generalized λj-eigenspace of f .

Proof. Write Pf (x) = p1(x) · · · pk(x) with pj(x) = (x− λj)
mj . By Lemma 5.1, we

know that the pj(x) are coprime in pairs. By the Cayley-Hamilton Theorem 2.1,
we know that Pf (f) = 0. The result then follows from Prop. 4.7. �

5.3. Theorem (Jordan Normal Form). Let V be a finite-dimensional vector
space, and let f : V → V be an endomorphism whose characteristic polynomial
splits into linear factors:

Pf (x) = (x− λ1)
m1 · · · (x− λk)

mk ,

where the λi are distinct. Then there is a basis of V such that the matrix repre-
senting f with respect to that basis is a block diagonal matrix with blocks of the
form

B(λ,m) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 ∈ Mat(F,m)

where λ ∈ {λ1, . . . , λk}.

Proof. We keep the notations of Thm. 5.2. We know that on Uj, (f−λj id)mj = 0,
so f |Uj

= λj idUj
+ gj, where g

mj

j = 0, i.e., gj is nilpotent. By Thm. 3.3, there
is a basis of Uj such that gj is represented by a block diagonal matrix Bj with
blocks of the form B(0,m) (such that the sum of the m’s is mj). Therefore, f |Uj

is
represented by Bj+λjIdimUj

, which is a block diagonal matrix composed of blocks
B(λj,m) (with the same m’s as before). The basis of V that is given by the union
of the various bases of the Uj then does what we want, compare Remark 4.4. �
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Here is a less precise, but for many applications sufficient version.

5.4. Corollary. Let V be a finite-dimensional vector space, and let f : V → V
be an endomorphism whose characteristic polynomial splits into linear factors, as
above. Then we can write f = d+n, with endomorphisms d and n of V, such that
d is diagonalizable, n is nilpotent, and d and n commute: d ◦ n = n ◦ d.

Proof. We just take d to be the endomorphism corresponding to the ‘diagonal part’
of the matrix given in Thm. 5.3 and n to be that corresponding to the ‘nilpotent
part’ (obtained by setting all diagonal entries equal to zero). Since the two parts
commute within each ‘Jordan block,’ the two endomorphisms commute. �

5.5. Example. Let us compute the Jordan Normal Form and a suitable basis for
the endomorphism f : R3 → R3 given by the matrix

A =

 0 1 0
0 0 1
−4 0 3

 .

We first compute the characteristic polynomial:

Pf (x) =

∣∣∣∣∣∣
x −1 0
0 x −1
4 0 x− 3

∣∣∣∣∣∣ = x2(x− 3) + 4 = x3 − 3x2 + 4 = (x− 2)2(x+ 1) .

We see that it splits into linear factors, which is good. We now have to find the
generalized eigenspaces. We have a simple eigenvalue −1; the eigenspace is

E−1(f) = ker

 1 1 0
0 1 1
−4 0 4

 = L
(
(1,−1, 1)>

)
.

The other eigenspace is

E2(f) = ker

−2 1 0
0 −2 1
−4 0 1

 = L
(
(1, 2, 4)>

)
.

This space has only dimension 1, so f is not diagonalizable, and we have to look
at the generalized eigenspace:

ker
(
(f − 2 idV )2

)
= ker

 4 −4 1
−4 4 −1
4 −4 1

 = L
(
(1, 1, 0)>, (1, 0,−4)>

)
.

So we can take as our basis

(f − 2 idV )
(
(1, 1, 0)>

)
= (−1,−2,−4)>, (1, 1, 0)>, (1,−1, 1)> ,

and we find−1 1 1
−2 1 −1
−4 0 1

−1 0 1 0
0 0 1
−4 0 3

−1 1 1
−2 1 −1
−4 0 1

 =

2 1 0
0 2 0
0 0 −1

 .
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5.6. Application. One important application of the Jordan Normal Form Theo-
rem is to the explicit solution of systems of linear first-order differential equations
with constant coefficients. Such a system can be written

d

dt
y(t) = A · y(t) ,

where y is a vector-valued function and A is a matrix. One can then show (Exer-
cise) that there is a unique solution with y(0) = y0 for any specified initial value y0,
and it is given by

y(t) = exp(tA) · y0

with the matrix exponential

exp(tA) =
∞∑
n=0

tn

n!
An .

If A is in Jordan Normal Form, the exponental can be easily determined. In
general, A can be transformed into Jordan Normal Form, the exponential can be
evaluated for the transformed matrix, then we can transform it back — note that

exp(tP−1AP ) = P−1 exp(tA)P .

5.7. Remark. What can we do when the characteristic polynomial does not split
into linear factors (which is possible when the field F is not algebraically closed)?
In this case, we have to use a weaker notion than that of diagonalizability. Define
the endomorphism f : V → V to be semi-simple if every f -invariant subspace
U ⊂ V has an f -invariant complementary subspace in V . One can show (Exercise)
that if the characteristic polynomial of f splits into linear factors, then f is semi-
simple if and only if it is diagonalizable. The general version of the Jordan Normal
Form Theorem then is as follows.

Let V be a finite-dimensional vector space, f : V → V an endomorphism. Then
f = s + n with endomorphisms s and n of V such that s is semi-simple, n is
nilpotent, and s ◦ n = n ◦ s.
Unfortunately, we do not have the means and time to prove this result here.

However, we can state the result we get over F = R.

5.8. Theorem (Real Jordan Normal Form). Let V be a finite-dimensional
real vector space, f : V → V an endomorphism. Then there is a basis of V such
that the matrix representing f with respect to this basis is a block diagonal matrix
with blocks of the form B(λ,m) and of the form (with µ > 0)

B′(λ, µ,m) =



λ −µ 1 0 · · · 0 0 0 0
µ λ 0 1 · · · 0 0 0 0
0 0 λ −µ · · · 0 0 0 0
0 0 µ λ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · λ −µ 1 0
0 0 0 0 · · · µ λ 0 1
0 0 0 0 · · · 0 0 λ −µ
0 0 0 0 · · · 0 0 µ λ


∈ Mat(R, 2m) .

Blocks B(λ,m) occur for eigenvalues λ of f ; blocks B′(λ, µ,m) occur if Pf (x) is
divisible by x2 − 2λx+ λ2 + µ2.
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Proof. Here is a sketch that gives the main ideas. Over C, the characteristic
polynomial will split into linear factors. Some of them will be of the form x − λ
with λ ∈ R, the others will be of the form x− (λ+µi) with λ, µ ∈ R and mu 6= 0.
These latter ones occur in pairs

(x− (λ+ µi))(x− (λ− µi)) = x2 − 2λx+ λ2 + µ2 .

If v1, . . . , vm is a basis of the generalized eigenspace (over C) for the eigenvalue
λ + µi, then v̄1, . . . , v̄m is a basis of the generalized eigenspace for the eigenvalue
λ − µi, where v̄ denotes the vector obtained from v ∈ Cn by replacing each
coordinate with its complex conjugate. If we now consider

1
2
(v1 + v̄1),

1
2i

(v1 − v̄1), . . . ,
1
2
(vm + v̄m), 1

2i
(vm − v̄m) ,

then these vectors are in Rn and form a basis of the sum of the two generalized
eigenspaces. If v1, . . . , vm gives rise to a Jordan block B(λ+ µi,m), then the new
basis gives rise to a block of the form B′(λ, µ,m). �

5.9. Theorem. Let V be a finite-dimensional vector space, f1, . . . , fk : V → V
diagonalizable endomorphisms that commute in pairs. Then f1, . . . , fk are simul-
taneously diagonalizable, i.e., there is a basis of V consisting of vectors that are
eigenvectors for all the fj at the same time. In particular, any linear combination
of the fj is again diagonalizable.

Proof. First note that if f and g are commuting endomorphisms and v is a λ-
eigenvector of f , then g(v) is again a λ-eigenvector of f (or zero):

f
(
g(v)

)
= g
(
f(v)

)
= g(λv) = λg(v) .

We now proceed by induction on k. For k = 1, there is nothing to prove. So assume
k ≥ 2. We can write V = U1⊕· · ·⊕Ul, where the Ui are the nontrivial eigenspaces
of fk. By the observation just made, we have splittings, for j = 1, . . . , k − 1,

fj = f
(1)
j ⊕ · · · ⊕ f

(l)
j with f

(i)
j : Ui → Ui.

By the induction hypothesis, f
(i)
1 , . . . , f

(i)
k−1 are simultaneously diagonalizable on Ui,

for each i. Since Ui consists of eigenvectors of fk, any basis of Ui that consists
of eigenvectors of all the fj, j < k, will also consist of eigenvectors for all the
fj, j ≤ k. To get a suitable basis of V , we take the union of the bases of the
various Ui. �

To finish this section, here is a uniqueness statement related to Cor. 5.4.

5.10. Theorem. The diagonalizable and nilpotent parts of f in Cor. 5.4 are
uniquely determined.

Proof. Let f = d + n = d′ + n′, where d and n are constructed as in the Jordan
Normal Form Theorem 5.3 and d◦n = n◦d, d′◦n′ = n′◦d′. Then d′ and n′ commute
with f (d′ ◦ f = d′ ◦d′+d′ ◦n′ = d′ ◦d′+n′ ◦d′ = f ◦d′, same for n′). Now let g be
any endomorphism commuting with f , and consider v ∈ Uj = ker((f − λj id)mj).
Then

(f − λj id)mj
(
g(v)

)
= g
(
(f − λj id)mj(v)

)
= 0 ,

so g(v) ∈ Uj, i.e., Uj is g-invariant. So g = g1 ⊕ · · · ⊕ gk splits as a direct sum
of endomorphisms of the generalized eigenspaces Uj of f . Since on Uj, we have
f |Uj

= λj id +n|Uj
and g commutes with f , we find that gj commutes with n|Uj

for all j, hence g commutes with n (and also with d).
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Applying this to d′ and n′, we see that d and d′ commute, and that n and n′

commute. We can write

d− d′ = n′ − n ;

then the right hand side is nilpotent (for this we need that n and n′ commute!). By
Thm. 5.9, the left hand side is diagonalizable, so we can assume it is represented
by a diagonal matrix. But the only nilpotent diagonal matrix is the zero matrix,
therefore d− d′ = n′ − n = 0, i.e., d′ = d and n′ = n. �

6. The Dual Vector Space

6.1. Defintion. Let V be an F -vector space. A linear form or linear functional
on V is a linear map φ : V → F .

The dual vector space of V is V ∗ = Hom(V, F ), the vector space of all linear forms
on V .

Recall how the vector space structure on V ∗ = Hom(V, F ) is defined: for φ, ψ ∈ V ∗

and λ, µ ∈ F , we have, for v ∈ V ,

(λφ+ µψ)(v) = λφ(v) + µψ(v) .

6.2. Example. Consider the standard example V = F n. Then the coordinate
maps

pj : (x1, . . . , xn) 7−→ xj

are linear forms on V .

The following result is important.

6.3. Proposition and Definition. Let V be a finite-dimensional vector space
with basis v1, . . . , vn. Then V ∗ has a unique basis v∗1, . . . , v

∗
n such that

v∗i (vj) = δij =

{
1 if i = j

0 if i 6= j
.

This basis v∗1, . . . , v
∗
n of V ∗ is called the dual basis of v1, . . . , vn or the basis dual to

v1, . . . , vn.

Proof. Since linear maps are uniquely determined by their images on a basis, there
certainly exist unique linear forms v∗i ∈ V ∗ with v∗i (vj) = δij. We have to show that
they form a basis of V ∗. First, it is easy to see that they are linearly independent,
by applying a linear combination to the basis vectors vj:

0 = (λ1v
∗
1 + · · ·+ λnv

∗
n)(vj) = λ1δ1j + · · ·+ λnδnj = λj .

It remains to show that the v∗i generate V ∗. So let φ ∈ V ∗. Then

φ = φ(v1)v
∗
1 + · · ·+ φ(vn)v

∗
n ,

since both sides take the same values on the basis v1, . . . , vn. �
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It is important to keep in mind that the dual basis vectors depend on all of
v1, . . . , vn — the notation v∗j is not intended to imply that v∗j depends only on vj!

Note that for v∗ ∈ V ∗, we have

v∗ =
n∑
j=1

v∗(vj)v
∗
j ,

and for v ∈ V , we have

v =
n∑
i=1

v∗i (v)vi

(write v = λ1v1 + · · ·+ λnvn, then v∗i (v) = λi).

6.4. Example. Consider V = F n, with the canonical basis e1, . . . , en. Then the
dual basis is p1, . . . , pn.

6.5. Corollary. If V is finite-dimensional, then dimV ∗ = dimV .

Proof. Clear from Prop. 6.3. �

6.6. Remark. The statement in Cor. 6.5 is actually an equivalence, if we define
dimension to be the cardinality of a basis: if V has infinite dimension, then the
dimension of V ∗ is “even more infinite”. This is related to the following fact. Let
B be a basis of V. Then the power set of B, i.e., the set of all subsets of B, has
larger cardinality than B. To each subset S of B, we can associate an element
b∗S ∈ V ∗ such that b∗S(b) = 1 for b ∈ S and b∗S(b) = 0 for b ∈ B \ S. Now there
are certainly linear relations between the b∗S, but one can show that no subset
of {b∗S : S ⊂ B} whose cardinality is that of B can generate all the b∗S. Therefore
any basis of V ∗ must be of stricltly larger cardinality than B.

6.7. Example. If V = L(sin, cos) (a linear subspace of the real vector space
of real-valued functions on R), then the basis dual to sin, cos is given by the
functionals f 7→ f(π/2), f 7→ f(0).

6.8. Theorem. Let V be a vector space. Then there is a canonical injective homo-
morphism αV : V → V ∗∗ of V into its bidual V ∗∗ = (V ∗)∗. It is an isomorphism
when V is finite-dimensional.

Proof. In order to construct αV , we have to associate to each v ∈ V a linear form
on V ∗. More or less the only thing we can do with a linear form is to evaluate it
on elements of V. Therefore we set

αV (v) = (V ∗ 3 φ 7→ φ(v) ∈ F ) .

Then αV (v) is a linear form on V ∗ by the definition of the linear structure on V ∗.
Also, αV is itself linear:

αV (λv + λ′v′)(φ) = φ(λv + λ′v′) = λφ(v) + λ′φ(v′)

= λαV (v)(φ) + λ′αV (v′)(φ) = (λαV (v) + λ′αV (v′))(φ) .

In order to prove that αV is injective, it suffices to show that its kernel is trivial.
So let 0 6= v ∈ V such that αV (v) = 0. We can choose a basis of V containing
v. Then there is a linear form φ on V such that φ(v) = 1 (and φ(w) = 0 on all
the other basis elements, say). But this means αV (v)(φ) = 1, so αV (v) cannot be
zero, and we get the desired contradiction.
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Finally, if V is finite-dimensional, then by Cor. 6.5, we have dimV ∗∗ = dimV ∗ =
dimV , so αV must be surjective as well (use dim im(αV ) = dimV −dim ker(αV ) =
dimV ∗∗.) �

6.9. Corollary. Let V be a finite-dimensional vector space, and let v∗1, . . . , v
∗
n be

a basis of V ∗. Then there is a unique basis v1, . . . , vn of V such that v∗i (vj) = δij.

Proof. By Prop. 6.3, there is a unique dual basis v∗∗1 , . . . , v
∗∗
n of V ∗∗. Since αV is

an isomorphism, there are unique v1, . . . , vn in V such that αV (vj) = v∗∗j . They
form a basis of V , and

v∗i (vj) = αV (vj)(v
∗
i ) = v∗∗j (v∗i ) = δij .

�

6.10. Example. Let V be the vector space of polynomials of degree less than n;
then dimV = n. For any α ∈ F , the evaluation map

evα : V 3 p 7→ p(α) ∈ F
is a linear form on V . Now pick α1, . . . , αn ∈ F distinct. Then evα1 , . . . , evαn ∈ V ∗

are linearly independent, hence form a basis. (This comes from the fact that the
Vandermonde matrix (αji )1≤i≤n,0≤j≤n−1 has determinant

∏
i<j(αj−αi) 6= 0.) What

is the basis of V dual to that? What we need are polynomials p1, . . . , pn of degree
less than n such that pi(αj) = δij. So pi(x) has to be a multiple of

∏
j 6=i(x− αj).

We then obtain

pi(x) =
∏
j 6=i

x− αj
αi − αj

,

these are exactly the Lagrange interpolation polynomials.

We then find that the unique polynomial of degree less than n that takes the value
βj on αj, for all j, is given by

p(x) =
n∑
j=1

βjpj(x) =
n∑
j=1

βj
∏
i6=j

x− αi
αj − αi

.

So far, we know how to ‘dualize’ vector spaces (and bases). Now we will see how
we can also ‘dualize’ linear maps.

6.11. Definition. Let V and W be F -vector spaces, f : V → W a linear map.
Then the transpose or dual linear map of f is defined as

f> : W ∗ −→ V ∗ , w∗ 7−→ f>(w∗) = w∗ ◦ f .
A diagram clarifies perhaps what is happening here.

V
f // W

w∗ // F

The composition w∗ ◦ f is a linear map from V to F , and is therefore an element
of V ∗. It is easy to see that f> is again linear: for w∗1, w

∗
2 ∈ W ∗ and λ1, λ2 ∈ F ,

we have

f>(λ1w
∗
1+λ2w

∗
2) = (λ1w

∗
1+λ2w

∗
2)◦f = λ1w

∗
1◦f+λ2w

∗
2◦f = λ1f

>(w∗1)+λ2f
>(w∗2) .

Also note that for linear maps f1, f2 : V → W and scalars λ1, λ2, we have

(λ1f1 + λ2f2)
> = λ1f

>
1 + λ2f

>
2 ,
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and for linear maps f1 : V1 → V2, f2 : V2 → V3, we obtain (f2 ◦ f1)
> = f>1 ◦ f>2 —

note the reversal.

Another simple observation is that id>V = idV ∗ .

6.12. Proposition. Let f : V → W be an isomorphism. Then f> : W ∗ → V ∗ is
also an isomorphism, and (f>)−1 = (f−1)>.

Proof. We have f ◦ f−1 = idW and f−1 ◦ f = idV . This implies that

(f−1)> ◦ f> = idW ∗ and f> ◦ (f−1)> = idV ∗ .

The claim follows. �

The reason for calling f> the “transpose” of f becomes clear through the following
result.

6.13. Proposition. Let V and W be finite-dimensional vector spaces, with bases
v1, . . . , vn and w1, . . . , wm, respectively. Let v∗1, . . . , v

∗
n and w∗1, . . . , w

∗
m be the cor-

responding dual bases of V ∗ and W ∗, respectively. Let f : V → W be a linear map,
represented by the matrix A with respect to the given bases of V and W. Then the
matrix representing f> with respect to the dual bases is A>.

Proof. Let A = (aij)1≤i≤m,1≤j≤n; then

f(vj) =
m∑
i=1

aijwi .

We then have(
f>(w∗i )

)
(vj) = (w∗i ◦ f)(vj) = w∗i

(
f(vj)

)
= w∗i

( m∑
k=1

akjwk

)
= aij .

Since we always have, for v∗ ∈ V ∗, that v∗ =
∑n

j=1 v
∗(vj)v

∗
j , this implies that

f>(w∗i ) =
n∑
j=1

aijv
∗
j .

Therefore the columns of the matrix representing f> with respect to the dual
bases are exactly the rows of A. �

6.14. Corollary. Let V be a finite-dimensional vector space, and let v1, . . . , vn and
w1, . . . , wn be two bases of V. Let v∗1, . . . , v

∗
n and w∗1, . . . , w

∗
n be the corresponding

dual bases. If P is the basis change matrix associated to changing the basis of V
from v1, . . . , vn to w1, . . . , wn, then the basis change matrix associated to changing
the basis of V ∗ from v∗1, . . . , v

∗
n to w∗1, . . . , w

∗
n is (P>)−1 = (P−1)> =: P−>.

Proof. By definition (see Linear Algebra I, Def. 14.3), P is the matrix representing
the identity map idV with respect to the bases w1, . . . , wn (on the domain side) and
v1, . . . , vn (on the target side). By Prop. 6.13, the matrix representing idV ∗ = id>V
with respect to the basis v∗1, . . . , v

∗
n (domain) and w∗1, . . . , w

∗
n (target) is P>. So

this is the basis change matrix associated to changing the basis from w∗1, . . . , w
∗
n

to v∗1, . . . , v
∗
n; hence we have to take the inverse in order to get the matrix we

want. �

As is to be expected, we have a compatibility between f>> and the canonical
map αV .
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6.15. Proposition. Let V and W be vector spaces, f : V → W a linear map.
Then the following diagram commutes.

V
f //

αV

��

W

αW

��
V ∗∗ f>> // W ∗∗

Proof. We have to show that f>> ◦ αV = αW ◦ f . So let v ∈ V and w∗ ∈ W ∗.
Then

f>>
(
αV (v)

)
(w∗) = (αV (v) ◦ f>)(w∗) = αV (v)

(
f>(w∗)

)
= αV (v)(w∗ ◦ f) = (w∗ ◦ f)(v)

= w∗
(
f(v)

)
= αW

(
f(v)

)
(w∗) .

�

6.16. Proposition. Let V be a vector space. Then we have α>V ◦ αV ∗ = idV ∗.
If V is finite-dimensional, then α>V = α−1

V ∗.

Proof. Let v∗ ∈ V ∗, v ∈ V. Then

α>V
(
αV ∗(v

∗)
)
(v) =

(
αV ∗(v

∗) ◦ αV
)
(v) = αV ∗(v

∗)
(
αV (v)

)
=
(
αV (v)

)
(v∗) = v∗(v) ,

so α>V
(
αV ∗(v

∗)
)

= v∗, and α>V ◦ αV ∗ = idV ∗ .

If dimV < ∞, then dimV ∗ = dimV < ∞, and αV ∗ is an isomorphism; the
relation we have shown then implies that α>V = α−1

V ∗ . �

6.17. Corollary. Let V and W be finite-dimensional vector spaces. Then

Hom(V,W ) 3 f 7−→ f> ∈ Hom(W ∗, V ∗)

is an isomorphism.

Proof. By the observations made in Def. 6.11, the map is linear. We have another
map

Hom(W ∗, V ∗) 3 φ 7−→ α−1
W ◦ φ> ◦ αV ∈ Hom(V,W ) ,

and by Prop. 6.15 and Prop. 6.16, the two maps are inverses of each other:

α−1
W ◦ f>> ◦ αV = f

and
(α−1

W ◦ φ> ◦ αV )> = α>V ◦ φ>> ◦ (α>W )−1 = α−1
V ∗ ◦ φ

>> ◦ αW ∗ = φ .

�

Next, we study how subspaces relate to dualization.

6.18. Definition. Let V be a vector space and S ⊂ V a subset. Then

S◦ = {v∗ ∈ V ∗ : v∗(v) = 0 for all v ∈ S} ⊂ V ∗

is called the annihilator of S.

S◦ is a linear subspace of V ∗, since we can write

S◦ =
⋂
v∈S

ker
(
αV (v)

)
.

Trivial examples are {0V }◦ = V ∗ and V ◦ = {0V ∗}.
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6.19. Theorem. Let V be a finite-dimensional vector space, W ⊂ V a linear
subspace. Then we have

dimW + dimW ◦ = dimV and αV (W ) = W ◦◦ .

So we have W ◦◦ = W if we identify V and V ∗∗ via αV .

Proof. Let v1, . . . , vn be a basis of V such that v1, . . . , vm is a basis of W (where
m = dimW ≤ dimV = n). Let v∗1, . . . , v

∗
n be the corresponding dual basis of V ∗.

Then for v∗ = λ1v
∗
1 + · · ·+ λnv

∗
n ∈ V ∗,

v∗ ∈ W ◦ ⇐⇒ ∀w ∈ W : v∗(w) = 0

⇐⇒ ∀j ∈ {1, . . . ,m} : v∗(vj) = 0

⇐⇒ ∀j ∈ {1, . . . ,m} : λj = 0 ,

so v∗m+1, . . . , v
∗
n is a basis of W ◦. The dimension formula follows.

In a similar way, we find that αV (v1), . . . , αV (vm) is a basis of W ◦◦, therefore
αV (W ) = W ◦◦.

Alternatively, we trivially have αV (W ) ⊂ W ◦◦ (check the definitions!), and since
both spaces have the same dimension by the first claim, they must be equal. �

Finally, we discuss how annihilators and transposes of linear maps are related.

6.20. Theorem. Let V and W be vector spaces, f : V → W a linear map. Then(
im(f)

)◦
= ker(f>) and

(
ker(f)

)◦
= im(f>) .

If V and W are finite-dimensional, we have the equality

dim im(f>) = dim im(f) .

Proof. Let w∗ ∈ W ∗. Then we have

w∗ ∈
(
im(f)

)◦ ⇐⇒ w∗
(
f(v)

)
= 0 for all v ∈ V

⇐⇒
(
f>(w∗)

)
(v) = 0 for all v ∈ V

⇐⇒ f>(w∗) = 0 ⇐⇒ w∗ ∈ ker(f>) .

Similarly, for v∗ ∈ V ∗, we have

v∗ ∈ im(f>) ⇐⇒ ∃w∗ ∈ W ∗ : v∗ = w∗ ◦ f
=⇒ ∀v ∈ ker(f) : v∗(v) = 0

⇐⇒ v∗ ∈
(
ker(f)

)◦
.

For the other direction, write W = f(V ) ⊕ U . Assume that v∗ ∈ V ∗ satisfies
v∗|ker(f) = 0. Define w∗ on f(V ) by w∗(f(v)) = v∗(v); this is well-defined since v∗

takes the same value on all preimages under f of a given element of W . We can
extend w∗ to all of W by setting w∗|U = 0. Then v∗ = w∗ ◦ f .

The dimension formula now follows:

dim im(f>) = dim
(
ker(f)

)◦
= dimV − dim ker(f) = dim im(f) .

�
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6.21. Remark. The equality of dimensions dim im(f>) = dim im(f) is, by Prop. 6.13,
equivalent to the statement “row rank equals column rank” for matrices.

Note that [BR2] claims (in Thm. 7.8) that we also have dim ker(f>) = dim ker(f).
However, this is false unless dimV = dimW ! (Find a counterexample!)

6.22. Interpretation in Terms of Matrices. Let us consider the vector spaces
V = F n and W = Fm and a linear map f : V → W . Then f is represented by a
matrix A, and the image of f is the column space of A, i.e., the subspace of Fm

spanned by the columns of A. We identify V ∗ = (F n)∗ and W ∗ = (Fm)∗ with F n

and Fm via the dual bases consisting of the coordinate maps. Then for x ∈ W ∗,
we have x ∈ (im(f))◦ if and only if x>y = x · y = 0 for all columns y of A, which
is the case if and only if x>A = 0. This is equivalent to A>x = 0, which says that
x ∈ ker(f>) — remember that A> represents f> : W ∗ → V ∗.

If we define a kernel matrix of A to be a matrix whose columns span the kernel
of A, the this says the following. Let A ∈ Mat(m× n, F ) and B ∈ Mat(m× k, F )
be matrices. Then the image of B (i.e., the column space of B) is the annihilator
of the image of A if and only if B is a kernel matrix of A>. The condition for B
to be a kernel matrix of A> means

A>B = 0 and A>x = 0 =⇒ ∃y : x = By .

Since the relation “U is the annihilator of U ′” is symmetric (if we identify a space
with its bidual), we find that B is a kernel matrix of A> if and only if A is a kernel
matrix of B>.

The statement (ker(f))◦ = im(f>) translates into “if B is a kernel matrix of A,
then A> is a kernel matrix of B>”, which follows from the equivalence just stated.

7. Norms on Real Vector Spaces

The following has some relevance for Analysis.

7.1. Definition. Let V be a real vector space. A norm on V is a map V → R,
usually written x 7→ ‖x‖, such that

(i) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ V ;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V (triangle inequality).

7.2. Examples. If V = Rn, then we have the following standard examples of
norms.

(1) The maximum norm:

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|} .

(2) The euclidean norm (see Section 9 below):

‖(x1, . . . , xn)‖2 =
√
x2

1 + . . . x2
n .

(3) The sum norm (or 1-norm):

‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn| .
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7.3. Remark. A norm on a real vector space V induces a metric: we set

d(x, y) = ‖x− y‖ ,
then the axioms of a metric (positivity, symmetry, triangle inequality) follow from
the properties of a norm.

7.4. Lemma. Every norm on Rn is continuous (as a map from Rn to R).

Proof. We use the maximum metric on Rn:

d(x, y) = max{|xj − yj| : j ∈ {1, . . . , n}} .
Let ‖ · ‖ be a norm, and let C =

∑n
j=1 ‖ej‖, where e1, . . . , en is the canonical basis

of Rn. Then we have

‖(x1, . . . , xn)‖ = ‖x1e1 + · · ·+ xnen‖ ≤ ‖x1e1‖+ · · ·+ ‖xnen‖
= |x1|‖e1‖+ · · ·+ |xn|‖en‖ ≤ max{|x1|, . . . , |xn|}C .

From the triangle inequality, we then get∣∣‖y‖ − ‖x‖∣∣ ≤ ‖y − x‖ ≤ Cd(y, x) .

So if d(y, x) < ε/C, then
∣∣‖y‖ − ‖x‖∣∣ < ε. �

7.5. Definition. Let V be a real vector space, x 7→ ‖x‖1 and x 7→ ‖x‖2 two norms
on V . The two norms are said to be equivalent, if there are C1, C2 > 0 such that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1 for all x ∈ V .

7.6. Theorem. On a finite-dimensional real vector space, all norms are equiva-
lent.

Proof. Without loss of generality, we can assume that our space is Rn, and we
can assume that one of the norms is the euclidean norm ‖ · ‖2 defined above. Let
S ⊂ Rn be the unit sphere, i.e., S = {x ∈ Rn : ‖x‖2 = 1}. We know from
Analysis that S is compact (it is closed as the zero set of the continuous function
x 7→ x2

1 + · · · + x2
n − 1 and bounded). Let ‖ · ‖ be another norm on Rn. Then

x 7→ ‖x‖ is continuous by Lemma 7.4, hence it attains a maximum C2 and a
minimum C1 on S. Then C2 ≥ C1 > 0 (since 0 /∈ S). Now let 0 6= x ∈ V , and
let e = ‖x‖−1

2 x; then ‖e‖2 = 1, so e ∈ S. This implies that C1 ≤ ‖e‖ ≤ C2, and
therefore

C1‖x‖2 ≤ ‖x‖2 · ‖e‖ =
∥∥‖x‖2e

∥∥ = ‖x‖ ≤ C2‖x‖2 .

So every norm is equivalent to ‖ · ‖2, which implies the claim, since equivalence of
norms is an equivalence relation. �

7.7. Examples. If V is infinite-dimensional, then the statement of the theorem is
no longer true. As a simple example, consider the space of finite sequences (an)n≥0

(such that an = 0 for n sufficiently large). Then we can define norms ‖ · ‖1, ‖ · ‖2,
‖ · ‖∞ as in Examples 7.2, but they are pairwise inequivalent now — consider the
sequences sn = (1, . . . , 1, 0, 0, . . . ) with n ones, then ‖sn‖1 = n, ‖sn‖2 =

√
n and

‖sn‖∞ = 1.

Here is a perhaps more natural example. Let V be the vector space C([0, 1]) of
real-valued continuous functions on the unit interval. We can define norms

‖f‖1 =

1∫
0

|f(x)| dx , ‖f‖2 =

√√√√√ 1∫
0

f(x)2 dx , ‖f‖∞ = max{|f(x)| : x ∈ [0, 1]}
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in a similar way as in Examples 7.2, and again they are pairwise inequivalent.
Taking f(x) = xn, we have

‖f‖1 =
1

n+ 1
, ‖f‖2 =

1√
2n+ 1

, ‖f‖∞ = 1 .

8. Bilinear Forms

We have already seen multilinear maps when we were discussing the determinant
in Linear Algebra I. Let us remind ourselves of the definition in the special case
when we have two arguments.

8.1. Definition. Let V1, V2 and W be F -vector spaces. A map φ : V1 × V2 → W
is bilinear if it is linear in both arguments, i.e.

∀λ, λ′ ∈ F, x, x′ ∈ V1, y ∈ V2 : φ(λx+ λ′x′, y) = λφ(x, y) + λ′φ(x′, y) and

∀λ, λ′ ∈ F, x ∈ V1, y, y
′ ∈ V2 : φ(x, λy + λ′y′) = λφ(x, y) + λ′φ(x, y′) .

When W = F is the field of scalars, φ is called a bilinear form.

If V1 = V2 = V and W = F , then φ is a bilinear form on V. It is symmetric if
φ(x, y) = φ(y, x) for all x, y ∈ V , and alternating if φ(x, x) = 0 for all x ∈ V . The
latter property implies that φ is skew-symmetric, i.e. φ(x, y) = −φ(y, x) for all
x, y ∈ V. To see this, consider

0 = φ(x+ y, x+ y) = φ(x, x) + φ(x, y) + φ(y, x) + φ(y, y) = φ(x, y) + φ(y, x) .

The converse holds if char(F ) 6= 2, since (taking x = y)

0 = φ(x, x) + φ(x, x) = 2φ(x, x) .

We denote by Bil(V,W ) the set of all bilinear forms on V ×W , and by Bil(V ) the
set of all bilinear forms on V. These sets are F -vector spaces in the usual way, by
defining addition and scalar multiplication point-wise.

8.2. Examples. The standard ‘dot product’ on Rn is a symmetric bilinear form
on Rn.

The map that sends
(
( ab ) , (

c
d )
)
∈ R2 × R2 to | a cb d | = ad − bc is an alternating

bilinear form on R2.

The map (A,B) 7→ Tr(A>B) is a symmetric bilinear form on Mat(m× n, F ).

If K : [0, 1]2 → R is continuous, then the following defines a bilinear form on the
space of continuous real-valued functions on [0, 1]:

(f, g) 7−→
1∫

0

1∫
0

K(x, y)f(x)g(y) dx dy .

Evaluation defines a bilinear form on V × V ∗: (v, φ) 7−→ φ(v).
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8.3. Lemma and Definition. A bilinear form φ : V ×W → F induces linear
maps

φL : V −→ W ∗, v 7→
(
w 7→ φ(v, w)

)
and φR : W −→ V ∗, w 7→

(
v 7→ φ(v, w)

)
.

The subspace ker(φL) ⊂ V is called the left kernel of φ; it is the set of all v ∈ V
such that φ(v, w) = 0 for all w ∈ W . Similarly, the subspace ker(φR) ⊂ W is
called the right kernel of φ.

The bilinear form φ is said to be non-degenerate if φL and φR are isomorphisms.
In this case V and W have the same finite dimension (Exercise).

If V and W are finite-dimensional, then φ is non-degenerate if and only if both
its left and right kernels are trivial.

Proof. First, by the definition of bilinear forms, the maps w 7→ φ(v, w) (for any
fixed v ∈ V ) and v 7→ φ(v, w) (for any fixed w ∈ W ) are linear, so φL and φR are
well-defined as maps into W ∗ and V ∗, respectively. Then using the definition of
bilinearity again, we see that φL and φR are themselves linear maps.

To prove the last statement, first observe that the left and right kernels are cer-
tainly trivial when φL and φR are isomorphisms. For the converse statement,
assume that the left and right kernels are trivial, so φL and φR are both injective.
Now note that φ>R ◦ αV = φL (Exercise). Since V is finite-dimensional, αV is an
isomorphism, hence φ>R is injective, since φL is. This implies that φR is surjective
(by Thm. 6.20), so φR (and in the same way, φL) is an isomorphism. �

8.4. Example. For the ‘evaluation pairing’ ev : V × V ∗ → F , we find that the
map evL : V → V ∗∗ is αV , and evR : V ∗ → V ∗ is the identity. So this bilinar
form ev is non-degenerate if and only if αV is an isomorphism, which is the case
if and only if V is finite-dimensional.

8.5. Example. The standard dot product on F n is a non-degenerate symmetric
bilinear form. In fact, here φL sends the standard basis vector ej to the jth coor-
dinate map in (F n)∗, so it maps a basis to a basis and is therefore an isomorphism.

8.6. Remarks.

(1) The bilinear form φ : V × V → F is symmetric if and only if φR = φL.

(2) If φ is a bilinear form on the finite-dimensional vector space V, then φ is
non-degenerate if and only if its left kernel is trivial (if and only if its right
kernel is trivial).

Indeed, in this case, dimV ∗ = dimV , so if φL is injective, it is also surjec-
tive, hence an isomorphism. But then φR = φ>L ◦ αV is an isomorphism as
well.

In fact, we can say a little bit more.

8.7. Proposition. Let V and W be F -vector spaces. There is an isomorphism

βV,W : Bil(V,W ) −→ Hom(V,W ∗) , φ 7−→ φL

with inverse given by
f 7−→

(
(v, w) 7→ (f(v))(w)

)
.
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Proof. We leave the (by now standard) proof that the given maps are linear as
an exercise. It remains to check that they are inverses of each other. Call the
second map γV,W . So let φ : V × W → F be a bilinear form. Then γV,W (φL)
sends (v, w) to (φL(v))(w) = φ(v, w), so γV,W ◦ βV,W is the identity. Conversely,
let f ∈ Hom(V,W ∗), and let φ = γV,W (f). Then for v ∈ V , φ(v) sends w to
(φL(v))(w) = φ(v, w) = (f(v))(w), so φL(v) = f(v) for all v ∈ V , hence φL = f .
This shows that βV,W ◦ γV,W is also the identity map. �

If V = W , we write βV : Bil(V ) → Hom(V, V ∗) for this isomorphism.

8.8. Example. Let V now be finite-dimensional. We see that a non-degenerate
bilinear form φ on V allows us to identify V with V ∗ via the isomorphism φL.
On the other hand, if we fix a basis v1, . . . , vn, we also obtain an isomorphism
ι : V → V ∗ by sending vj to v∗j , where v∗1, . . . , v

∗
n is the dual basis of V ∗. What

is the bilinear form corresponding to this map? We have, for v =
∑n

j=1 λjvj,

w =
∑n

j=1 µjvj,

φ(v, w) =
(
ι(v)

)
(w) =

(
ι
( n∑
j=1

λjvj

))( n∑
k=1

µkvk

)
=
( n∑
j=1

λjv
∗
j

)( n∑
k=1

µkvk

)
=

n∑
j,k=1

λiµk v
∗
j (vk) =

n∑
j,k=1

λiµkδjk =
n∑
j=1

λjµj .

This is just the standard dot product if we identify V with F n using the given
basis; it is a symmetric bilinear form on V.

8.9. Corollary. Let V be a finite-dimensional vector space, and let φ be a non-
degenerate bilinear form on V. Then every linear form ψ ∈ V ∗ is represented as
ψ(w) = φ(v, w) for a unique v ∈ V.

Proof. The equality ψ = φ(v, ·) means that ψ = φL(v). The claim now follows
from the fact that φL is an isomorphism. �

8.10. Example. Let V be the real vector space of polynomials of degree at most 2.
Then

φ : (p, q) 7−→
1∫

0

p(x)q(x) dx

is a bilinear form on V. It is non-degenerate since for p 6= 0, we have φ(p, p) > 0.
Evaluation at zero p 7→ p(0) defines a linear form on V, which by Cor. 8.9 must
be representable in the form p(0) = φ(q, p) for some q ∈ V. To find q, we have to
solve a linear system:

φ(a0 + a1x+ a2x
2, b0 + b1x+ b2x

2)

= a0b0 +
1

2
(a0b1 + a1b0) +

1

3
(a0b2 + a1b1 + a2b0) +

1

4
(a1b2 + a2b2) +

1

5
a2b2 ,

and we want to find a0, a1, a2 such that this is always equal to b0. This leads to

a0 +
1

2
a1 +

1

3
a2 = 1 ,

1

2
a0 +

1

3
a1 +

1

4
a2 = 0 ,

1

3
a0 +

1

4
a1 +

1

5
a2 = 0
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so q(x) = 9− 36x+ 30x2, and

p(0) =

1∫
0

(9− 36x+ 30x2)p(x) dx .

8.11. Representation by Matrices. Let φ : F n × Fm → F be a bilinear form.
Then we can represent φ by a matrix A = (aij) ∈ Mat(m × n, F ), with entries
aij = φ(ej, ei). In terms of column vectors x ∈ F n and y ∈ Fm, we have

φ(x, y) = y>Ax .

Similarly, if V and W are finite-dimensional F -vector spaces, and we fix bases
v1, . . . , vn of V and w1, . . . , wm of W , then any bilinear form φ : V × W → F
is given by a matrix relative to these bases, by identifying V and W with F n

and Fm in the usual way. If A = (aij) is the matrix as above, then aij = φ(vj, wi).
If v = x1v1 + · · ·+ xnvn and w = y1w1 + · · ·+ ymwm, then

φ(v, w) =
m∑
i=1

n∑
j=1

aijxjyi .

8.12. Proposition. Let V and W be finite-dimensional F -vector spaces. Pick
two bases v1, . . . , vn and v′1, . . . , v

′
n of V and two bases w1, . . . , wm and w′1, . . . , w

′
m

of W . Let A be the matrix representing the bilinear form φ : V ×W → F with
respect to v1, . . . , vn and w1, . . . , wm, and let A′ be the matrix representing φ with
respect to v′1, . . . , v

′
n and w′1, . . . , w

′
m. If P is the basis change matrix associated to

changing the basis of V from v1, . . . , vn to v′1, . . . , v
′
n, and Q is the basis change

matrix associated to changing the basis of W from w1, . . . , wm to w′1, . . . , w
′
m, then

we have
A′ = Q>AP .

Proof. Let x′ ∈ F n be the coefficients of v ∈ V w.r.t. the new basis v′1, . . . , v
′
n.

Then x = Px′, where x represents v w.r.t. the old basis v1, . . . , vn. Similary for
y′, y ∈ Fm representing w ∈ W w.r.t. the two bases, we have y = Qy′. So

y′
>
A′x′ = φ(v, w) = y>Ax = y′

>
Q>APx′ ,

which implies the claim. �

In particular, if φ is a bilinear form on the n-dimensional vector space V, then φ
is represented (w.r.t. any given basis) by a square matrix A ∈ Mat(n, F ). If we
change the basis, then the new matrix will be B = P>AP , with P ∈ Mat(n, F )
invertible. Matrices A and B such that there is an invertible matrix P ∈ Mat(n, F )
such that B = P>AP are called congruent.

8.13. Example. Let V be the real vector space of polynomials of degree less
than n, and consider again the symmetric bilinear form

φ(p, q) =

1∫
0

p(x)q(x) dx .

With respect to the standard basis 1, x, . . . , xn−1, it is represented by the “Hilbert
matrix” Hn =

(
1

i+j−1

)
1≤i,j≤n.
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8.14. Lemma. Let φ be a bilinear form on the finite-dimensional vector space V,
represented (w.r.t. some basis) by the matrix A. Then

(1) φ is symmetric if and only if A> = A;

(2) φ is skew-symmetric if and only if A> + A = 0;

(3) φ is alternating if and only if A> + A = 0 and all diagonal entries of A
are zero.

(4) φ is non-degenerate if and only if detA 6= 0.

Proof. Let v1, . . . , vn be the basis of V. Since aij = φ(vj, vi), the implications “⇒”
in the first three statements are clear. On the other hand, assume that A> = ±A.
Then

x>Ay = (x>Ay)> = y>A>x = ±y>Ax ,
which implies “⇐” in the first two statements. For the third statement, we com-
pute φ(v, v) for v = x1v1 + · · ·+ xnvn:

φ(v, v) =
n∑

i,j=1

aijxixj =
n∑
i=1

aiix
2
i +

∑
1≤i<j≤n

(aij + aji)xixj = 0 ,

since the assumption implies that both aii and aij + aji vanish.

The last statement follows by observing that the left kernel of φ corresponds to
the kernel of A, which is trivial if and only if detA 6= 0, i.e., A is invertible. �

As with endomorphisms, we can also split bilinear forms into direct sums in some
cases.

8.15. Definition. If V = U ⊕U ′, φ is a bilinear form on V , ψ and ψ′ are bilinear
forms on U and U ′, respectively, and for u1, u2 ∈ U , u′1, u

′
2 ∈ U ′, we have

φ(u1 + u′1, u2 + u′2) = ψ(u1, u2) + ψ′(u′1, u
′
2) ,

then φ is the orthogonal direct sum of ψ and ψ′.

Given V = U⊕U ′ and φ, this is the case if and only if φ(u, u′) = 0 and φ(u′, u) = 0
for all u ∈ U , u′ ∈ U ′ (and then ψ = φ|U×U , ψ′ = φ|U ′×U ′).

This can be generalized to an arbitrary number of summands.

If we represent φ by a matrix with respect to a basis that is compatible with the
splitting, then the matrix will be block diagonal.

8.16. Definition. Let φ be a symmetric bilinear form on V, and let U ⊂ V be a
linear subspace. Then

U⊥ = {v ∈ V : φ(v, u) = 0 for all u ∈ U}

is the subspace orthogonal to U (with respect to φ).

8.17. Proposition. Let φ be a symmetric bilinear form on V, and let U ⊂ V be
a linear subspace such that φ|U×U is non-degenerate. Then V = U ⊕ U⊥, and φ
splits accordingly as an orthogonal direct sum.

In this case, we also call U⊥ the orthogonal complement of U .
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Proof. We have to check a number of things. First, U∩U⊥ = {0} since v ∈ U∩U⊥

implies φ(v, u) = 0 for all u ∈ U , but φ is non-degenerate on U , so v must be zero.
Second, U + U⊥ = V : let v ∈ V, then U 3 u 7→ φ(v, u) is a linear form on U ,
and since φ is non-degenerate on U , by Cor. 8.9 there must be u′ ∈ U such that
φ(v, u) = φ(u′, u) for all u ∈ U . This means that φ(v − u′, u) = 0 for all u ∈ U ,
hence v − u′ ∈ U⊥, and we see that v = u′ + (v − u′) ∈ U + U⊥ as desired. So we
have V = U ⊕ U⊥. The last statement is clear, since by definition, φ is zero on
U × U⊥. �

Here is a first and quite general classification result for symmetric bilinear forms:
they can always be diagonalized.

8.18. Lemma. Assume that char(F ) 6= 2, let V be an F -vector space and φ a
symmetric bilinear form on V. If φ 6= 0, then there is v ∈ V such that φ(v, v) 6= 0.

Proof. If φ 6= 0, then there are v, w ∈ V such that φ(v, w) 6= 0. Note that we have

0 6= 2φ(v, w) = φ(v, w) + φ(w, v) = φ(v + w, v + w)− φ(v, v)− φ(w,w) ,

so at least one of φ(v, v), φ(w,w) and φ(v + w, v + w) must be nonzero. �

8.19. Theorem. Assume that char(F ) 6= 2, let V be a finite-dimensional F -vector
space and φ a symmetric bilinear form on V. Then there is a basis v1, . . . , vn of V
such that φ is represented by a diagonal matrix with respect to this basis.

Equivalently, every symmetric matrix A ∈ Mat(n, F ) is congruent to a diagonal
matrix.

Proof. If φ = 0, there is nothing to prove. Otherwise, we proceed by induction
on the dimension n. Since φ 6= 0, by Lemma 8.18, there is v1 ∈ V such that
φ(v1, v1) 6= 0 (in particular, n ≥ 1). Let U = L(v1), then φ is non-degenerate on U .
By Prop. 8.17, we have an orthogonal splitting V = L(v1) ⊕ U⊥. By induction
(dimU⊥ = n−1), U⊥ has a basis v2, . . . , vn such that φ|U⊥×U⊥ is represented by a
diagonal matrix. But then φ is also represented by a diagonal matrix with respect
to the basis v1, v2, . . . , vn. �

8.20. Remark. The entries of the diagonal matrix are not uniquely determined.
For example, we can always scale the basis elements; this will multiply the entries
by arbitrary nonzero squares in F . But this is not the only ambiguity. For example,
we have (

2 0
0 2

)
=

(
1 −1
1 1

)(
1 0
0 1

)(
1 1
−1 1

)
.

On the other hand, the number of nonzero entries is uniquely determined, since it
is the rank of the matrix, which does not change when we multiply on the left or
right by an invertible matrix.

8.21. Example. Let us see how we can find a diagonalizing basis in practice.
Consider the bilinear form on F 3 (with char(F ) 6= 2) given by the matrix

A =

0 1 1
1 0 1
1 1 0

 .

Following the proof above, we first have to find an element v1 ∈ F 3 such that
v>1 Av1 6= 0. Since the diagonal entries of A are zero, we cannot take one of
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the standard basis vectors. However, Lemma 8.18 tells us that (for example)
v1 = (1, 1, 0)> will do. So we make a first change of basis to obtain

A′ =

1 1 0
0 1 0
0 0 1

A

1 0 0
1 1 0
0 0 1

 =

2 1 2
1 0 1
2 1 0

 .

Now we have to find a basis of the orthogonal complement L(v1)
⊥. This can be

done by adding suitable multiples of v1 to the other basis elements, in order to
make the off-diagonal entries in the first row and column of the matrix zero. Here
we have to add −1/2 times the first basis vector to the second, and add −1 times
the first basis vector to the third. This gives

A′′ =

 1 0 0
−1

2
1 0

−1 0 0

A′

1 −1
2
−1

0 1 0
0 0 1

 =

2 0 0
0 −1

2
0

0 0 −2

 .

We are lucky: this matrix is already diagonal. (Otherwise, we would have to
continue in the same way with the 2 × 2 matrix in the lower right.) The total
change of basis is indicated by the product of the two P ’s that we have used:

P =

1 0 0
1 1 0
0 0 1

1 −1
2
−1

0 1 0
0 0 1

 =

1 −1
2
−1

1 1
2

−1
0 0 1


so the desired basis is v1 = (1, 1, 0)>, v2 = (−1

2
, 1

2
, 0)>, v3 = (−1,−1, 1)>.

For algebraically closed fields like C, we get a very nice result.

8.22. Theorem (Classification of Symmetric Bilinear Forms Over C). Let
F be algebraically closed, for example F = C. Then every symmetric matrix
A ∈ Mat(n, F ) is congruent to a matrix(

Ir 0
0 0

)
,

and the rank 0 ≤ r ≤ n is uniquely determined.

Proof. By Thm. 8.19, A is congruent to a diagonal matrix, and we can assume that
all zero diagonal entries come at the end. Let ajj be a non-zero diagonal entry.
Then we can scale the corresponding basis vector by 1/

√
ajj (which exists in F ,

since F is algebraically closed); in the new matrix we get, this entry is then 1.

The uniqueness statement follows from the fact that n− r is the dimension of the
(left or right) kernel of the associated bilinear form. �

If F = R, we have a similar statement. Let us first make a definition.

8.23. Definition. Let V be a real vector space, φ a symmetric bilinear form on V.
Then φ is positive definite if

φ(v, v) > 0 for all v ∈ V \ {0}.

8.24. Remark. A positive definite symmetric bilinear form is non-degenerate: if
v 6= 0, then φ(v, v) > 0, so 6= 0, hence v is not in the (left or right) kernel of v.
For example, this implies that the Hilbert matrix from Example 8.13 is invertible.
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8.25. Theorem (Classification of Symmetric Bilinear Forms Over R). Ev-
ery symmetric matrix A ∈ Mat(n,R) is congruent to a unique matrix of the form Ir 0 0

0 −Is 0
0 0 0

 .

The number r + s is the rank of A or of the corresponding bilinear form, the
number r − s is called the signature of A or of the corresponding bilinear form.

Proof. By Thm. 8.19, A is congruent to a diagonal matrix, and we can assume
that the diagonal entries are ordered in such a way that we first have positive,
then negative and then zero entries. If aii is a non-zero diagonal entry, we scale
the corresponding basis vector by 1/

√
|aii|. Then the new diagonal matrix we get

has positive entries 1 and negative entries −1, so it is of the form given in the
statement.

The number r+s is the rank of the form as before, and the number r is the maximal
dimension of a subspace on which the bilinear form is positive definite, therefore
r and s only depend on the bilinear form, hence are uniquely determined. �

8.26. Example. Let V be again the real vector space of polynomials of degree
≤ 2. Consider the symmetric bilinear form on V given by

φ(p, q) =

1∫
0

(2x− 1)p(x)q(x) dx .

What are the rank and signature of φ?

We first find the matrix representing φ with respect to the standard basis 1, x, x2.
Using

∫ 1

0
(2x− 1)xn dx = 2

n+2
− 1

n+1
= n

(n+1)(n+2)
, we obtain

A =

0 1
6

1
6

1
6

1
6

3
20

1
6

3
20

2
15

 =
1

60

 0 10 10
10 10 9
10 9 8

 .

The rank of this matrix is 2 (the kernel is generated by 10x2 − 10x+ 1). We have
that φ(x, x) = 1

6
> 0 and φ(x− 1, x− 1) = 1

6
− 21

6
+ 0 = −1

6
< 0, so r and s must

both be at least 1. The only possibility is then r = s = 1, so the rank is 2 and the
signature is 0. In fact, we have φ(x, x− 1) = 0, so

√
6x ,

√
6(x− 1) , 10x2 − 10x+ 1

is a basis such that the matrix representing φ is1 0 0
0 −1 0
0 0 0

 .

8.27. Theorem (Criterion for Positive Definiteness). Let A ∈ Mat(n,R) be
symmetric. Let Aj be the submatrix of A consisting of the upper left j × j block.
Then (the bilinear form given by) A is positive definite if and only if detAj > 0
for all 1 ≤ j ≤ n.
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Proof. First observe that if a matrix B represents a positive definite symmetric
bilinear form, then detB > 0: by Thm. 8.25, there is an invertible matrix P such
that P>BP is diagonal with entries 1, −1, or 0, and the bilinear form is positive
definite if and only if all diagonal entries are 1, i.e., P>BP = I. But this implies
1 = det(P>BP ) = detB(detP )2, and since (detP )2 > 0, this implies detB > 0.

Now if A is positive definite, then all Aj are positive definite, since they represent
the restriction of the bilinear form to subspaces. So detAj > 0 for all j.

Conversely, assume that detAj > 0 for all j. We use induction on n. For n = 1
(or n = 0), the statement is clear. For n ≥ 2, we apply the induction hypothesis
to An−1 and obtain that An−1 is positive definite. Then there is an invertible
matrix P ∈ Mat(n− 1,R) such that(

P> 0
0 1

)
A

(
P 0
0 1

)
=

(
I b

b> α

)
=: B ,

with some vector b ∈ Rn−1 and α ∈ R. Setting

Q =

(
I −b
0 1

)
,

we get

Q>BQ =

(
I 0
0 β

)
,

and so A is positive definite if and only if β > 0. But we have (note detQ = 1)

β = det(Q>BQ) = detB = det(P>) detA detP = (detP )2 detA ,

so β > 0, since detA = detAn > 0, and A is positive definite. �

9. Inner Product Spaces

In many applications, we want to measure distances an angles in a real vector
space. For this, we need an additional structure, a so-called inner product.

9.1. Definition. Let V be a real vector space. An inner product on V is a positive
definite symmetric bilinear form on V . It is usually written in the form (x, y) 7→
〈x, y〉 ∈ R. Recall the defining properties:

(1) 〈λx+ λ′x′, y〉 = λ〈x, y〉+ λ′〈x′, y〉;
(2) 〈y, x〉 = 〈x, y〉;
(3) 〈x, x〉 > 0 for x 6= 0.

A real vector space together with an inner product on it is called a real inner
product space.

Recall that an inner product on V induces an injective homomorphism V → V ∗,
given by sending x ∈ V to the linear form y 7→ 〈x, y〉; this homomorphism is an
isomorphism when V is finite-dimensional.

Frequently, it is necessary to work with complex vector spaces. In order to have
a similar structure there, we cannot use a bilinear form: if we want to have 〈x, x〉
to be real and positive, then we would get

〈ix, ix〉 = i2〈x, x〉 = −〈x, x〉 ,
which would be negative. The solution to this problem is to consider Hermit-
ian forms instead of symmetric bilinear forms. The difference is that they are
conjugate-linear in the second argument.
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9.2. Definition. Let V be a complex vector space. A sesquilinear form on V is
a map φ : V ×V → C that is linear in the first and conjugate-linear in the second
argument (“sesqui” means 11

2
):

φ(λx+ λ′x′, y) = λφ(x, y) + λ′φ(x′, y) , φ(x, λy + λ′y′) = λ̄φ(x, y) + λ̄′φ(x, y′) .

A Hermitian form on V is a sesquilinear form φ on V such that φ(y, x) = φ(x, y)
for all x, y ∈ V . Note that this implies φ(x, x) ∈ R. The Hermitian form φ is
positive definite if φ(x, x) > 0 for all x ∈ V \ {0}. A positive definite Hermitian
form on the complex vector space V is also called an inner product on V ; in this
context, the form is usually again written as (x, y) 7→ 〈x, y〉 ∈ C. We have

(1) 〈λx+ λ′x′, y〉 = λ〈x, y〉+ λ′〈x′, y〉;
(2) 〈y, x〉 = 〈x, y〉;
(3) 〈x, x〉 > 0 for x 6= 0.

A complex vector space together with an inner product on it is called a complex
inner product space. A real or complex vector space with an inner product on it
is an inner product space.

If V is a complex vector space, we denote by V̄ the complex vector space with the
same underlying set and addition as V , but with scalar multiplication modified
by taking the complex conjugate: λ · v = λ̄v, where on the left, we have scalar
multiplication on V̄ , and on the right, we have scalar multiplication on V . We
denote by V̄ ∗ = V ∗ the dual of this space. If V is a complex inner product space,
we get again injective homomorphisms

V −→ V̄ ∗ , x 7−→ (y 7→ 〈x, y〉)
and

V̄ −→ V ∗ , x 7−→ (y 7→ 〈y, x〉) ,
which are isomorphisms when V is finite-dimensional.

9.3. Examples. We have seen some examples of real inner product spaces al-
ready: the space Rn together with the usual dot product is the standard example
of a finite-dimensional real inner product space. An example of a different na-
ture, important in analysis, is the space of continuous real-valued functions on an
interval [a, b], with the inner product

〈f, g〉 =

b∫
a

f(x)g(x) dx .

As for complex inner product spaces, the finite-dimensional standard example is
Cn with the inner product

〈(z1, . . . , zn), (w1, . . . , wn)〉 = z1w̄1 + · · ·+ znw̄n ,

so 〈z, w〉 = z · w̄ in terms of the usual inner product. Note that

〈z, z〉 = |z1|2 + · · ·+ |zn|2 ≥ 0 .

The complex version of the function space example is the space of complex-valued
continuous functions on [a, b], with inner product

〈f, g〉 =

b∫
a

f(x)g(x) dx .
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9.4. Definition. Let V be an inner product space.

(1) For x ∈ V , we set ‖x‖ =
√
〈x, x〉 ≥ 0. x is a unit vector if ‖x‖ = 1.

(2) We say that x, y ∈ V are orthogonal, x ⊥ y, if 〈x, y〉 = 0.

(3) A subset S ⊂ V is orthogonal if x ⊥ y for all x, y ∈ S such that x 6= y. S
is an orthonormal set if in addition, ‖x‖ = 1 for all x ∈ S.

(4) v1, . . . , vn ∈ V is an orthonormal basis or ONB of V if the vectors form a
basis that is an orthonormal set.

9.5. Proposition. Let V be an inner product space.

(1) For x ∈ V and a scalar λ, we have ‖λx‖ = |λ| ‖x‖.
(2) (Cauchy-Schwarz inequality) For x, y ∈ V , we have |〈x, y〉| ≤ ‖x‖ ‖y‖,

with equality if and only if x and y are linearly dependent.

(3) (Triangle inequality) For x, y ∈ V , we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Note that these properties imply that ‖·‖ is a norm on V in the sense of Section 7.
In particular,

d(x, y) = ‖x− y‖
defines a metric on V ; we call d(x, y) the distance between x and y.If V = Rn with
the standard inner product, then this is just the usual euclidean distance.

Proof.

(1) We have

‖λx‖ =
√
〈λx, λx〉 =

√
λλ̄〈x, x〉 =

√
|λ|2〈x, x〉 = |λ|

√
〈x, x〉 = |λ| ‖x‖ .

(2) This is clear when y = 0, so assume y 6= 0. Consider

z = x− 〈x, y〉
‖y‖2

y ;

then 〈z, y〉 = 0. We find that

0 ≤ 〈z, z〉 = 〈z, x〉 = 〈x, x〉 − 〈x, y〉
‖y‖2

〈y, x〉 = ‖x‖2 − |〈x, y〉|2

‖y‖2
,

which implies the inequality. If x = λy, we have equality by the first part
of the proposition. Conversely, if we have equality, we must have z = 0,
hence x = λy (with λ = 〈x, y〉/‖y‖2).

(3) We have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 2 Re〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 ,

using the Cauchy-Schwarz inequality.

�

Next we show that given any basis of a finite-dimensional inner product space,
we can modify it in order to obtain an orthonormal basis. In particular, every
finite-dimensional inner product space has orthonormal bases.
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9.6. Theorem (Gram-Schmidt Orthonormalization Process). Let V be an
inner product space. For 0 6= x ∈ V write x• = x/‖x‖. Let x1, . . . , xk ∈ V be
linearly independent, and define

y1 = x•1

y2 = (x2 − 〈x2, y1〉y1)
•

y3 = (x3 − 〈x3, y1〉y1 − 〈x3, y2〉y2)
•

...

yk = (xk − 〈xk, y1〉y1 − · · · − 〈xk, yk−1〉yk−1)
• .

Then y1, . . . , yk is an orthonormal basis of L(x1, . . . , xk).

Proof. By induction on k. The case k = 1 (or k = 0) is clear — x1 6= 0, hence
y1 = x•1 is defined, and we have ‖y1‖ = 1.

If k ≥ 2, we know by the induction hypothesis that y1, . . . , yk−1 is an ONB of
L(x1, . . . , xk−1). Let

z = xk − 〈xk, y1〉y1 − · · · − 〈xk, yk−1〉yk−1 .

Since x1, . . . , xk are linearly independent, z 6= 0. Also, for 1 ≤ j ≤ k − 1, we have
that

〈z, yj〉 = 〈xk, yj〉 −
k−1∑
i=1

〈xk, yi〉〈yj, yi〉 = 〈xk, yj〉 − 〈xk, yj〉 = 0

since y1, . . . , yk−1 are orthonormal. With yk = z•, we then also have 〈yk, yj〉 =
0 for j < k, and ‖yk‖ = 1. The remaining orthonormality relations hold by
the induction hypothesis. That L(y1, . . . , yk) = L(x1, . . . , xk) is clear from the
construction. �

9.7. Corollary. Every finite-dimensional inner product space has an ONB.

Proof. Apply Thm.9.6 to a basis of the space. �

9.8. Corollary. If V is an n-dimensional inner product space, and {e1, . . . , ek} ⊂
V is an orthonormal set, then there are ek+1, . . . , en ∈ V such that e1, . . . , en is an
ONB of V.

Proof. Extend e1, . . . , ek to a basis of V in some way and apply Thm. 9.6 to this
basis. This will not change the first k basis elements, since they are already
orthonormal. �

Orthonormal bases are rather nice, as we will see.

9.9. Proposition. Let V be an inner product space and S ⊂ V an orthogonal set
of non-zero vectors. Then S is linearly independent.

Proof. Let T ⊂ S be finite, and assume we have a linear combination∑
s∈T

λss = 0 .

Now we take the inner product with a fixed t ∈ T :

0 = 〈
∑
s∈T

λss, t〉 =
∑
s∈T

λs〈s, t〉 = λt〈t, t〉 .
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Since t 6= 0, we have 〈t, t〉 6= 0, therefore we must have λt = 0. Since this works
for any t ∈ T , the linear combination must have been trivial. �

9.10. Theorem (Bessel’s Inequality). Let V be an inner product space, and
let {e1, . . . , en} ⊂ V be an orthonormal set. Then for all x ∈ V , we have the
inequality

n∑
j=1

∣∣〈x, ej〉∣∣2 ≤ ‖x‖2 .

Let U = L(e1, . . . , en) be the subspace spanned by e1, . . . , en. Then for x ∈ V , the
following statements are equivalent.

(1) x ∈ U ;

(2)
n∑
j=1

∣∣〈x, ej〉∣∣2 = ‖x‖2;

(3) x =
n∑
j=1

〈x, ej〉ej;

(4) for all y ∈ V , 〈x, y〉 =
n∑
j=1

〈x, ej〉〈ej, y〉.

In particular, statements (2) to (4) hold for all x ∈ V when e1, . . . , en is an ONB
of V .

When e1, . . . , en is an ONB, then (4) (and also (2)) is called Parseval’s Identity.
The relation in (3) is sometimes called the Fourier expansion of x relative to the
given ONB.

Proof. Let z = x−
n∑
j=1

〈x, ej〉ej. Then

0 ≤ 〈z, z〉 = 〈x, x〉 −
n∑
j=1

〈x, ej〉〈ej, x〉 = ‖x‖2 −
n∑
j=1

∣∣〈x, ej〉∣∣2 .
This implies the inequality and also gives the implication (2) ⇒ (3). The impli-
cation (3) ⇒ (4) is a simple calculation, and (4) ⇒ (2) follows by taking y = x.
(3) ⇒ (1) is trivial. Finally, to show (1) ⇒ (3), let

x =
n∑
j=1

λjej .

Then

〈x, ek〉 =
n∑
j=1

λj〈ej, ek〉 = λk ,

which gives the relation in (3). �

Next, we want to discuss linear maps on inner product spaces.
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9.11. Theorem. Let V and W be two inner product spaces over the same field
(R or C), with V finite-dimensional, and let f : V → W be linear. Then there is
a unique linear map f ∗ : W → V such that

〈f(v), w〉 = 〈v, f ∗(w)〉
for all v ∈ V , w ∈ W .

Proof. For w ∈ W fixed, the map V 3 v 7→ 〈f(v), w〉 is a linear form on V. Since
V is finite-dimensional, there is a unique f ∗(w) ∈ V satisfying the desired relation
for all v ∈ V . Now consider w + w′. We find that f ∗(w + w′) and f ∗(w) + f ∗(w′)
both satisfy the relation, so by uniqueness, f ∗ is additive. Similary, considering
λw, we see that f ∗(λw) and λf ∗(w) must agree. Hence f ∗ is actually a linear
map. �

9.12. Definition. Let V and W be inner product spaces over the same field.

(1) Let f : V → W be linear. If f ∗ exists with the property given in Thm. 9.11
(which is always the case when dimV <∞), then f ∗ is called the adjoint
of f .

(2) If f : V → V has an adjoint f ∗, and f = f ∗, then f is self-adjoint.

(3) If f : V → V has an adjoint f ∗ and f ◦ f ∗ = f ∗ ◦ f , then f is normal.

(4) An isomorphism f : V → W is an isometry if 〈f(v), f(w)〉 = 〈v, w〉 for all
v, w ∈ V.

9.13. Examples. If f : V → V is self-adjoint or an isometry, then f is normal.
For the second claim, note that an automorphism f is an isometry if and only if
f ∗ = f−1. (See also below.)

9.14. Proposition (Properties of the Adjoint). Let V1, V2, V3 be finite-dimensional
inner product spaces over the same field, and let f, g : V1 → V2, h : V2 → V3 be
linear. Then

(1) (f + g)∗ = f ∗ + g∗, (λf)∗ = λ̄f ∗;

(2) (h ◦ f)∗ = f ∗ ◦ h∗;
(3) (f ∗)∗ = f .

Proof.

(1) We have for v ∈ V1, v
′ ∈ V2

〈v, (f + g)∗(v′)〉 = 〈(f + g)(v), v′〉 = 〈f(v), v′〉+ 〈g(v), v′〉
= 〈v, f ∗(v′)〉+ 〈v, g∗(v′)〉 = 〈v, (f ∗ + g∗)(v′)〉

and

〈v, (λf)∗(v′)〉 = 〈(λf)(v), v′〉 = 〈λf(v), v′〉 = λ〈f(v), v′〉
= λ〈v, f ∗(v′)〉 = 〈v, λ̄f ∗(v′)〉 = 〈v, (λ̄f ∗)(v′)〉 .

The claim follows from the uniqueness of the adjoint.
(2) We argue in a similar way. For v ∈ V1, v

′ ∈ V3,

〈v, (h ◦ f)∗(v′)〉 = 〈(h ◦ f)(v), v′〉 = 〈h
(
f(v)

)
, v′〉

= 〈f(v), h∗(v′)〉 = 〈v, f ∗
(
h∗(v′)

)
〉 = 〈v, (f ∗ ◦ h∗)(v′)〉 .

Again, the claim follows from the uniqueness of the adjoint.
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(3) For v ∈ V1, v
′ ∈ V2,

〈v′, f(v)〉 = 〈f(v), v′〉 = 〈v, f ∗(v′)〉 = 〈f ∗(v′), v〉 = 〈v′, (f ∗)∗(v)〉 ,
and the claim follows.

�

Now we characterize isometries.

9.15. Proposition. Let V and W be inner product spaces of the same finite di-
mension over the same field. Let f : V → W be linear. Then the following are
equivalent.

(1) f is an isometry;

(2) f is an isomorphism and f−1 = f ∗;

(3) f ◦ f ∗ = idW ;

(4) f ∗ ◦ f = idV .

Proof. To show (1) ⇒ (2), we observe that for an isometry f and v ∈ V , w ∈ W ,

〈v, f ∗(w)〉 = 〈f(v), w〉 = 〈f(v), f
(
f−1(w)

)
〉 = 〈v, f−1(w)〉 ,

which implies f ∗ = f−1. The implications (2) ⇒ (3) and (2) ⇒ (4) are clear. Now
assume (say) that (4) holds (the argument for (3) is similar). Then f is injective,
hence an isomorphism, and we get (2). Now assume (2), and let v, v′ ∈ V . Then

〈f(v), f(v′)〉 = 〈v, f ∗
(
f(v′)

)
〉 = 〈v, v′〉 ,

so f is an isometry. �

9.16. Theorem. Let V be a finite-dimensional inner product space and f : V → V
a linear map. Then we have

im(f ∗) =
(
ker(f)

)⊥
and ker(f ∗) =

(
im(f)

)⊥
.

Proof. We first show the inclusions im(f ∗) ⊂
(
ker(f)

)⊥
and ker(f ∗) ⊂

(
im(f)

)⊥
.

So let z ∈ im(f ∗), say z = f ∗(y). Let x ∈ ker(f), then

〈x, z〉 = 〈x, f ∗(y)〉 = 〈f(x), y〉 = 〈0, y〉 = 0 ,

so z ∈
(
ker(f)

)⊥
. If y ∈ ker(f ∗) and z = f(x) ∈ im(f), then

〈z, y〉 = 〈f(x), y〉 = 〈x, f ∗(y)〉 = 〈x, 0〉 = 0 ,

so y ∈
(
im(f)

)⊥
. Now we have

dim im(f) = dimV − dim
(
im(f)

)⊥
≤ dimV − dim ker(f ∗)

= dim im(f ∗)

≤ dim
(
ker(f)

)⊥
= dimV − dim ker(f)

= dim im(f) .

So we must have equality throughout, which implies the result. �

Now we relate the notions of adjoint etc. to matrices representing the linear maps
with respect to orthonormal bases.
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9.17. Proposition. Let V and W be two inner product spaces over the same field,
let v1, . . . , vn and w1, . . . , wm be orthonormal bases of V and W , respectively, and
let f : V → W be linear. If f is represented by the matrix A relative to the given
bases, then the adjoint map f ∗ is represented by the conjugate transpose matrix
A∗ = Ā> with respect to the same bases.

Note that when we have real inner product spaces, then A∗ = A> is simply the
transpose.

Proof. Let F = R or C be the field of scalars. First note that if v, v′ ∈ V have
coordinates x, x′ ∈ F n with respect to the ONB v1, . . . , vn, then

〈v, v′〉 = x · x̄′ = x>x̄′ ;

this follows from Thm. 9.10. A similar statement holds for the inner product of W .
So for x ∈ F n, y ∈ Fm representing v ∈ V and w ∈ W , we have

〈v, f ∗(w)〉 = 〈f(v), w〉 = (Ax)>ȳ = x>A>ȳ = x>(Ā>y) .

This shows that Ā> = A∗ represents f ∗. �

Warning. If the given bases are not orthonormal, then the statement is wrong in
general.

9.18. Corollary. In the situation above, if V = W , then we have the following:

(1) f is self-adjoint if and only if A∗ = A;

(2) f is normal if and only if A∗A = AA∗;

(3) f is an isometry if and only if AA∗ = I.

Proof. This is clear. �

9.19. Definition. A matrix A ∈ Mat(n,R) is

(1) symmetric if A> = A;

(2) normal if AA> = A>A;

(3) orthogonal if AA> = In.

A matrix A ∈ Mat(n,C) is

(1) Hermitian if A∗ = A;

(2) normal if AA∗ = A∗A;

(3) unitary if AA∗ = In.

These properties correspond to the properties “self-adjoint”, “normal”, “isometry”
of the linear map given by A on the standard inner product space Rn or Cn.

10. Orthogonal Diagonalization

In this section, we discuss the following question. Let V be an inner product space
and f : V → V an endomorphism. When is it true that f has an orthonormal
basis of eigenvectors?

Let us first consider the case of complex inner product spaces.

Our goal in the following is to show that f has an orthonormal basis of eigenvectors
(so can be orthogonally diagonalized or is orthodiagonalizable — nice word!) if and
only if f is normal.
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10.1. Lemma. Let V be an inner product space and f : V → V an endomorphism.
If f is orthodiagonalizable, then f is normal.

Proof. If f is orthodiagonalizable, then there is an orthonormal basis e1, . . . , en
of V such that f is represented by a diagonal matrix D with respect to this basis.
Now D is normal, hence so is f , by Cor. 9.18. �

The proof of the other direction is a little bit more involved. We begin with the
following partial result.

10.2. Lemma. Let V be an inner product space, and let f : V → V be normal.

(1) ‖f ∗(v)‖ = ‖f(v)‖.
(2) If f(v) = λv for some v ∈ V , then f ∗(v) = λ̄v.

(3) If f(v) = λv and f(w) = µw with λ 6= µ, then v ⊥ w (i.e., 〈v, w〉 = 0).

Proof. For the first statement, note that

‖f ∗(v)‖2 = 〈f ∗(v), f∗(v)〉 = 〈f
(
f ∗(v)

)
, v〉

= 〈f ∗
(
f(v)

)
, v〉 = 〈f(v), f(v)〉 = ‖f(v)‖2 .

For the second statement, note that

〈f ∗(v), f∗(v)〉 = 〈f(v), f(v)〉 = |λ|2〈v, v〉
〈λ̄v, f ∗(v)〉 = λ̄〈f(v), v〉 = λ̄〈λv, v〉 = |λ|2〈v, v〉
〈f ∗(v), λ̄v〉 = λ〈v, f(v)〉 = λ〈v, λv〉 = |λ|2〈v, v〉
〈λ̄v, λ̄v〉 = |λ|2〈v, v〉

and so

〈f ∗(v)− λ̄v, f ∗(v)− λ̄v〉 = 〈f ∗(v), f∗(v)〉−〈λ̄v, f ∗(v)〉−〈f ∗(v), λ̄v〉+ 〈λ̄v, λ̄v〉 = 0 .

For the last statement, we compute

λ〈v, w〉 = 〈f(v), w〉 = 〈v, f ∗(w)〉 = 〈v, µ̄w〉 = µ〈v, w〉 .

Since λ 6= µ by assumption, we must have 〈v, w〉 = 0. �

This result shows that the various eigenspaces are orthogonal in pairs, and we
conclude that when f is a normal endomorphism of a complex inner product
space, it is orthodiagonalizable if it is just diagonalizable. It remains to prove
that this is the case.

10.3. Lemma. Let V be an inner product space over the field F = R or C, let
f : V → V be normal, and let p ∈ F [X] be a polynomial. Then p(f) is also
normal.

Proof. Let p(x) = amx
m + · · ·+ a0. Then by Prop. 9.14,

p(f)∗ = (amf
◦m + · · ·+ a1f + a0 idV )∗ = ām(f ∗)◦m + · · ·+ ā1f

∗ + ā0 idV = p̄(f ∗) ,

where p̄ is the polynomial whose coefficients are the complex conjugates of those
of p. (If F = R, then p(f)∗ = p(f ∗).) Now p(f) and p(f)∗ = p̄(f ∗) commute since
f and f ∗ do, hence p(f) is normal. �
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10.4. Lemma. Let V be a finite-dimensional inner product space, and let f : V →
V be normal. Then V = ker(f)⊕ im(f) is an orthogonal direct sum.

Proof. Let v ∈ ker(f) and w ∈ im(f). We show that v ⊥ w. The claim follows,
since dim ker(f) + dim im(f) = dimV .

We have f(v) = 0, so f ∗(v) = 0 by Lemma 10.2, and w = f(u). Then

〈v, w〉 = 〈v, f(u)〉 = 〈f ∗(v), u〉 = 〈0, u〉 = 0 .

�

10.5. Lemma. Let V be a finite-dimensional complex inner product space,and let
f : V → V be normal. Then f is diagonalizable.

Proof. We give two proofs. In the first proof, we show that the minimal polynomial
of f does not have multiple roots. So assume the contrary, namely that

Mf (x) = (x− α)2g(x)

for some α ∈ C and some polynomial g. We know that f − α idV is normal. Let
v ∈ V and consider w = (f − α idV )

(
g(f)(v)

)
. Obviously w ∈ im(f − α idV ),

but also (f − α idV )(w) = Mf (f)(v) = 0, so w ∈ ker(f − α idV ). By the previous
lemma, w = 0. Hence, f is already annihilated by the polynomial (x− α)g(x) of
degree smaller than Mf (x), a contradiction.

The second proof proceeds by induction on dimV . The base case dimV = 1 (or
= 0) is trivial. So assume dimV ≥ 2. f has at least one eigenvector v, say with
eigenvalue λ. Let U = ker(f−λ idV ) 6= 0 be the eigenspace andW = im(f−λ idV ).
We know that V = U ⊕W is an orthogonal direct sum, and we have that f(W ) ⊂
W , so f |W : W → W is again a normal map. By induction, f |W is diagonalizable.
Since f |U = λ idU is trivially diagonalizable, f is diagonalizable. (The same proof
would also prove directly that f is orthodiagonalizable.) �

So we have now proved the following.

10.6. Theorem. Let V be a finite-dimensional complex inner product space, and
let f : V → V be a linear map. Then f has an orthonormal basis of eigenvectors
if and only if f is normal.

This nice result leaves one question open: what is the situation for real inner
product spaces? The key to this is the following observation.

10.7. Proposition. Let V be a finite-dimensional complex inner product space,
and let f : V → V be a linear map. Then f is normal with all eigenvalues real if
and only if f is self-adjoint.

Proof. We know that a self-adjoint map is normal. So assume now that f is
normal. Then there is an ONB of eigenvectors, and with respect to this basis, f
is represented by a diagonal matrix D. Obviously, we have that D is self-adjoint
if and only if D̄> = D if and only if D̄ = D if and only if all entries of D (i.e., the
eigenvalues of f) are real. �

This implies the following.
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10.8. Theorem. Let V be a finite-dimensioanl real inner product space, and let
f : V → V be linear. Then f has an orthonormal basis of eigenvectors if and only
if f is self-adjoint.

Proof. If f has an ONB of eigenvectors, then its matrix with respect to this basis
is diagonal and so symmetric, hence f is self-adjoint.

On the other hand, if f is self-adjoint, we know that it is diagonalizable over C
with all eigenvalues real, so it is diagonalizable (over R). Lemma 10.2, (3) then
shows that the eigenspaces are orthogonal in pairs. �

In terms of matrices, this reads as follows.

10.9. Theorem. Let A be a square matrix with real entries. Then A is orthogo-
nally similar to a diagonal matrix (i.e., there is an orthogonal matrix P : PP> = I,
such that P−1AP is a diagonal matrix) if and only if A is symmetric. In this case,
we can choose P to be orientation-preserving, i.e., to have detP = 1 (and not −1).

Proof. The first statement follows from the previous theorem. To see that we can
take P with detP = 1, assume that we already have an orthogonal matrix Q such
that Q−1AQ = D is diagonal, but with detQ = −1. The diagonal matrix T with
diagional entries (−1, 1, . . . , 1) is orthogonal and detT = −1, so P = QT is also
orthogonal, and detP = 1. Furthermore,

P−1AP = T−1Q−1AQT = TDT = D ,

so P has the required properties. �

This statement has a geometric interpretation. If A is a symmetric 2× 2-matrix,
then the equation

(1) x>Ax = 1

defines a conic section in the plane. Our theorem implies that there is a rotation
P such that P−1AP is diagonal. This means that in a suitably rotated coordinate
system, our conic section has an equation of the form

a x2 + b y2 = 1 ,

where a and b are the eigenvalues of A. We can use their signs to classify the
geometric shape of the conic section (ellipse, hyperbola, empty, degenerate).

The directions given by the eigenvectors of A are called the principal axes of the
conic section (or of A), and the coordinate change given by P is called the principal
axes transformation. Similar statements are true for higher-dimensional quadrics
given by equation (1) when A is a larger symmetric matrix.

10.10. Example. Let us consider the conic section given by the equation

5x2 + 4xy + 2 y2 = 1 .

The matrix is

A =

(
5 2
2 2

)
.

We have to find its eigenvalues and eigenvectors. The characteristic polynomial
is (X − 5)(X − 2) − 4 = X2 − 7X + 6 = (X − 1)(X − 6), so we have the two
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eigenvalues 1 and 6. This already tells us that we have an ellipse. To find the
eigenvectors, we have to determine the kernels of A− I and A− 6I. We get

A− I =

(
4 2
2 1

)
and A− 6I =

(
−1 2
2 −4

)
,

so the eigenvectors are multiples of (1 −2)> and of (2 1)>. To get an orthonormal
basis, we have to scale them appropriately; we also need to check whether we
have to change the sign on one of them in order to get an orthogonal matrix with
determinant 1. Here, we obtain

P =

(
1√
5

2√
5

− 2√
5

1√
5

)
and P−1AP =

(
1 0
0 6

)
.

To sketch the ellipse, note that the principal axes are in the directions of the
eigenvectors and that the ellipse meets the first axis (in the direction of (1,−2)>)
at a distance of 1 from the origin and the second axis (in the direction of (2, 1)>)
at a distance of 1/

√
6 from the origin.

x

y

0 1

1

1

6
1

The ellipse 5x2 + 4xy + 2 y2 = 1.

11. External Direct Sums

Earlier in this course, we have discussed direct sums of linear subspaces of a vector
space. In this section, we discuss a way to contruct a vector space out of a given
family of vector spaces in such a way that the given spaces can be identified with
linear subspaces of the new space, which becomes their direct sum.

11.1. Definition. Let F be a field, and let (Vi)i∈I be a family of F -vector spaces.
The (external) direct sum of the spaces Vi is the vector space

V =
⊕
i∈I

Vi =
{

(vi) ∈
∏
i∈I

Vi : vi = 0 for all but finitely many i ∈ I
}
.

Addition and scalar multiplication in V are defined component-wise.
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If I is finite, say I = {1, 2, . . . , n}, then we also write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn ;

as a set, it is just the cartesian product V1 × · · · × Vn.

11.2. Proposition. Let (Vi)i∈I be a family of F -vector spaces, and V =
⊕

i∈I
their direct sum.

(1) There are injective linear maps ιj : Vj → V given by

ιj(vj) = (0, . . . , 0, vj, 0, . . . ) with vj in the jth position

such that with Ṽj = ιj(Vj), we have V =
⊕

j∈I Ṽj as a direct sum of
subspaces.

(2) If Bj is a bais of Vj, then B =
⋃
j∈I ιj(Bj) is a basis of V.

(3) If W is another F -vector space, and φj : Vj → W are linear maps, then
there is a unique linear map φ : V → W such that φj = φ ◦ ιj for all j ∈ I.

Proof.

(1) This is clear from the definitions, compare 4.1.

(2) This is again clear from 4.1.

(3) A linear map is uniquely determined by its values on a basis. Let B be a
basis as in (2). The only way to get φj = φ◦ ιj is to define φ(ιj(b)) = φj(b)
for all b ∈ Bj; this gives a unique linear map φ : V → W .

�

Statement (3) above is called the universal property of the direct sum. It is essen-
tially the only thing we have to know about

⊕
i∈I Vi; the explicit construction is

not really relevant (except to show that such an object exists).

12. The Tensor Product

As direct sums allow us to “add” vector spaces in a way (which corresponds to
“adding” their bases by taking the disjoint union), the tensor product allows us to
“multiply” vector spaces (“multiplying” their bases by taking a cartesian product).
The main purpose of the tensor product is to “linearize” multilinear maps.

You may have heard of “tensors”. They are used in physics (there is, for example,
the “stress tensor” or the “moment of inertia tensor”) and also in differential
geometry (the “curvature tensor” or the “metric tensor”). Basically a tensor is
an element of a tensor product (of vector spaces), like a vector is an element of
a vector space. You have seen special cases of tensors already. To start with, a
scalar (element of the base field F ) or a vector or a linear form are trivial examples
of tensors. More interesting examples are given by linear maps, endomorphisms,
bilinear forms and multilinear maps in general.

The vector space of m×n matrices over F can be identified in a natural way with
the tensor product (F n)∗⊗Fm. This identification corresponds to the interpreta-
tion of matrices as linear maps from F n to Fm. The vector space of m×n matrices
over F can also identified in a (different) natural way with (Fm)∗ ⊗ (F n)∗; this
corresponds to the interpretation of matrices as bilinear forms on Fm × F n.

In these examples, we see that (for example), the set of all bilinear forms has the
structure of a vector space. The tensor product generalizes this. Given two vector
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spaces V1 and V2, it produces a new vector space V1 ⊗ V2 such that we have a
natural identification

Bil(V1 × V2,W ) ∼= Hom(V1 ⊗ V2,W )

for all vector spaces W . Here Bil(V1 × V2,W ) denotes the vector space of bilinear
maps from V1 × V2 to W . The following definition states the property we want
more precisely.

12.1. Definition. Let V1 and V2 be two vector spaces. A tensor product of V1

and V2 is a vector space V , together with a bilinear map φ : V1 × V2 → V ,
satisfying the following “universal property”:

For every vector space W and bilinear map ψ : V1 × V2 → W , there is a unique
linear map f : V → W such that ψ = f ◦ φ.

V1 × V2

φ
//

ψ $$H
HHHHHHHH V

f~~~
~

~
~

W

In other words, the canonical linear map

Hom(V,W ) −→ Bil(V1 × V2,W ) , f 7−→ f ◦ φ

is an isomorphism.

It is easy to see that there can be at most one tensor product in a very specific
sense.

12.2. Lemma. Any two tensor products (V, φ), (V ′, φ′) are uniquely isomorphic
in the following sense: There is a unique isomorphism ι : V → V ′ such that
φ′ = ι ◦ φ.

V

ι

��
�
�
�
�
�
�
�

V1 × V2

φ
::vvvvvvvvv

φ′ ##H
HHHHHHHH

V ′

Proof. Since φ′ : V1 × V2 → V ′ is a bilinear map, there is a unique linear map
ι : V → V ′ making the diagram above commute. For the same reason, there is a
unique linear map ι′ : V ′ → V such that φ = ι′ ◦ φ′. Now ι′ ◦ ι : V → V is a linear
map satisfying (ι′ ◦ ι) ◦ φ = φ, and idV is another such map. But by the universal
property, there is a unique such map, hence ι′ ◦ ι = idV . In the same way, we see
that ι ◦ ι′ = idV ′ , therefore ι is an isomorphism. �

Beacuse of this uniqueness, it is allowable to simply speak of “the” tensor product
of V1 and V2 (provided it exists! — but see below). The tensor product is denoted
V1 ⊗ V2, and the bilinear map φ is written (v1, v2) 7→ v1 ⊗ v2.

It remains to show existence of the tensor product.
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12.3. Proposition. Let V1 and V2 be two vector spaces; choose bases B1 of V1 and
B2 of V2. Let V be the vector space with basis B = B1 ×B2, and define a bilinear
map φ : V1×V2 → V via φ(b1, b2) = (b1, b2) ∈ B for b1 ∈ B1, b2 ∈ B2. Then (V, φ)
is a tensor product of V1 and V2.

Proof. Let ψ : V1 × V2 → W be a bilinear map. We have to show that there is
a unique linear map f : V → W such that ψ = f ◦ φ. Now if this relation is to
be satisfied, we need to have f((b1, b2)) = f(φ(b1, b2)) = ψ(b1, b2). This fixes the
values of f on the basis B, hence there can be at most one such linear map. It
remains to show that the linear map thus defined satisfies f(φ(v1, v2)) = ψ(v1, v2)
for all v1 ∈ V1, v2 ∈ V2. But this is clear since ψ and f ◦ φ are two bilinear maps
that agree on pairs of basis elements. �

12.4. Remark. This existence proof does not use that the bases are finite and so
also works for infinite-dimensional vector spaces (given the fact that every vector
space has a basis).

There is also a different construction that does not require the choice of bases. The
price one has to pay is that one first needs to construct a gigantically huge space V
(with basis V1×V2), which one then divides by another huge space (incorporating
all relations needed to make the map V1 × V2 → V bilinear) to end up with the
relatively small space V1 ⊗ V2. This is a kind of “brute force” approach, but it
works.

Note that by the uniqueness lemma above, we always get “the same” tensor prod-
uct, no matter which bases we choose.

12.5. Elements of V1 ⊗ V2. What do the elements of V1 ⊗ V2 look like? Some
of them are values of the bilinear map φ : V1 × V2 → V1 ⊗ V2, so are of the form
v1 ⊗ v2. But these are not all! However, elements of this form span V1 ⊗ V2, and
since

λ(v1 ⊗ v2) = (λv1)⊗ v2 = v1 ⊗ (λv2)

(this comes from the bilinearity of φ), every element of V1 ⊗ V2 can be written as
a (finite) sum of elements of the form v1 ⊗ v2.

The following result gives a more precise formulation that is sometimes useful.

12.6. Lemma. Let V and W be two vector spaces, and let w1, . . . , wn be a basis
of W. Then every element of V ⊗W can be written uniquely in the form

n∑
i=1

vi ⊗ wi = v1 ⊗ w1 + · · ·+ vn ⊗ wn

with v1, . . . , vn ∈ V.

Proof. Let x ∈ V ⊗W ; then by the discussion above, we can write

x = y1 ⊗ z1 + · · ·+ ym ⊗ zm

for some y1, . . . , ym ∈ V and z1, . . . , zm ∈ W. Since w1, . . . , wn is a basis of W, we
can write

zj = αj1w1 + · · ·+ αjnwn
with scalars αjk. Using the bilinearity of the map (y, z) 7→ y ⊗ z, we find that

x = y1 ⊗ (α11w1 + · · ·+ α1nwn) + · · ·+ ym ⊗ (αm1w1 + · · ·+ αmnwn)

= (α11y1 + · · ·+ αm1ym)⊗ w1 + · · ·+ (α1ny1 + · · ·+ αmnym)⊗ wn ,
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which is of the required form.

For uniqueness, it suffices to show that

v1 ⊗ w1 + · · ·+ vn ⊗ wn = 0 =⇒ v1 = · · · = vn = 0 .

Assume that vj 6= 0. There is a bilinear form ψ on V ×W such that ψ(vj, wj) = 1
and ψ(v, wi) = 0 for all v ∈ V and i 6= j. By the universal property of the tensor
product, there is a linear form f on V ⊗W such that f(v⊗w) = ψ(v, w). Applying
f to both sides of the equation, we find that

0 = f(0) = f(v1 ⊗ w1 + · · ·+ vn ⊗ wn) = ψ(v1, w1) + · · ·+ ψ(vn, wn) = 1 ,

a contradiction. �

In this context, one can think of V ⊗W as being “the vector space W with scalars
replaced by elements of V .” This point of view will be useful when we want to
enlarge the base field, e.g., in order to turn a real vector space into a complex
vector space of the same dimension.

12.7. Basic Properties of the Tensor Product. Recall the axioms satisfied
by a commutative “semiring” like the natural numbers:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a

a+ 0 = a

a · (b · c) = (a · b) · c
a · b = b · a
a · 1 = a

a · (b+ c) = a · b+ a · c
(The name “semi”ring refers to the fact that we do not require the existence of
additive inverses.)

All of these properties have their analogues for vector spaces, replacing addition
by direct sum, zero by the zero space, multiplication by tensor product, one by
the one-dimensional space F , and equality by natural isomorphism:

U ⊕ (V ⊕W ) ∼= (U ⊕ V )⊕W

U ⊕ V ∼= V ⊕ U

U ⊕ 0 ∼= U

U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W

U ⊗ V ∼= V ⊗ U

U ⊗ F ∼= U

U ⊗ (V ⊕W ) ∼= U ⊗ V ⊕ U ⊗W

There is a kind of “commutative diagram”:

(Finite Sets,‘,×,∼=)
B 7→ #B

//

B 7→ FB
++WWWWWWWWWWWWWWWWWWWWW

(N,+, ·,=)

(Finite-dim. Vector Spaces,⊕,⊗,∼=)

dim

44hhhhhhhhhhhhhhhhhhh

Let us prove some of the properties listed above.
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Proof. We show that U ⊗ V ∼= V ⊗ U . We have to exhibit an isomorphism, or
equivalently, linear maps going both ways that are inverses of each other. By
the universal property, a linear map from U ⊗ V into any other vector space W
is “the same” as a bilinear map from U × V into W . So we get a linear map
f : U⊗V → V ⊗U from the bilinear map U×V → V ⊗U that sends (u, v) to v⊗u.
So we have f(u⊗ v) = v ⊗ u. Similarly, there is a linear map g : V ⊗ U → U ⊗ V
that satisfies g(v ⊗ u) = u ⊗ v. Since f and g are visibly inverses of each other,
they are isomorphisms. �

Before we go on to the next statement, let us make a note of the principle we have
used.

12.8. Note. To give a linear map f : U ⊗V → W, it is enough to specify f(u⊗v)
for u ∈ U , v ∈ V . The map U × V → W , (u, v) 7→ f(u⊗ v) must be bilinear.

Proof. We now show that U ⊗ (V ⊗W ) ∼= (U ⊗V )⊗W . First fix u ∈ U . Then by
the principle above, there is a linear map fu : V ⊗W → (U ⊗ V )⊗W such that
fu(v⊗w) = (u⊗v)⊗w. Now the map U×(V ⊗W ) → (U⊗V )⊗W that sends (u, x)
to fu(x) is bilinear (check!), so we get a linear map f : U⊗(V ⊗W ) → (U⊗V )⊗W
such that f(u⊗ (v ⊗ w)) = (u⊗ v)⊗ w. Similarly, there is a linear map g in the
other direction such that g((u⊗ v)⊗w) = u⊗ (v⊗w). Since f and g are inverses
of each other (this needs only be checked on elements of the form u⊗ (v ⊗ w) or
(u⊗ v)⊗ w, since these span the spaces), they are isomorphisms. �

We leave the remaining two statements involving tensor products for the exercises.

Now let us look into the interplay of tensor products with linear maps.

12.9. Definition. Let f : V → W and f ′ : V ′ → W ′ be linear maps. Then
V × V ′ → W ⊗W ′, (v, v′) 7→ f(v) ⊗ f ′(v′) is bilinear and therefore corresponds
to a linear map V ⊗ V ′ → W ⊗W ′, which we denote by f ⊗ f ′. I.e., we have

(f ⊗ f ′)(v ⊗ v′) = f(v)⊗ f ′(v′) .

12.10. Lemma. idV ⊗ idW = idV⊗W .

Proof. Obvious (check equality on elements v ⊗ w). �

12.11. Lemma. Let U
f−→ V

g−→ W and U ′ f ′−→ V ′ g′−→ W ′ be linear maps.
Then

(g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′) .

Proof. Easy — check equality on u⊗ u′. �
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12.12. Lemma. Hom(U,Hom(V,W )) ∼= Hom(U ⊗ V,W ).

Proof. Let f ∈ Hom(U,Hom(V,W )) and define f̃(u ⊗ v) =
(
f(u)

)
(v) (note that

f(u) ∈ Hom(V,W ) is a linear map from V to W ). Since
(
f(u)

)
(v) is bilinear

in u and v, this defines a linear map f̃ ∈ Hom(U ⊗ V,W ). Conversely, given
ϕ ∈ Hom(U ⊗ V,W ), define ϕ̂(u) ∈ Hom(V,W ) by

(
ϕ̂(u)

)
(v) = ϕ(u ⊗ v). Then

ϕ̂ is a linear map from U to Hom(V,W ), and the two linear(!) maps f 7→ f̃ and
ϕ 7→ ϕ̂ are inverses of each other. �

In the special case W = F , the statement of the lemma reads

Hom(U, V ∗) ∼= Hom(U ⊗ V, F ) = (U ⊗ V )∗ .

The following result is important, as it allows us to replace Hom spaces by tensor
products (at least when the vector spaces involved are finite-dimensional).

12.13. Proposition. Let V and W be two vector spaces. There is a natural linear
map

φ : V ∗ ⊗W −→ Hom(V,W ) , l ⊗ w 7−→
(
v 7→ l(v)w

)
,

which is an isomorphism when V or W is finite-dimensional.

Proof. We will give the proof here for the case that W is finite-dimensional, and
leave the case “V finite-dimensional” for the exercises.

First we should check that φ is a well-defined linear map. By the general principle
on maps from tensor products, we only need to check that (l, w) 7→

(
v 7→ l(v)w

)
is bilinear. Linearity in w is clear; linearity in l follows from the definition of the
vector space structure on V ∗:

(α1l1 + α2l2, w) 7−→
(
v 7→ (α1l1 + α2l2)(v)w = α1l1(v)w + α2l2(v)w

)
To show that φ is bijective when W is finite-dimensional, we choose a basis
w1, . . . , wn of W . Let w∗1, . . . , w

∗
n be the basis of W ∗ dual to w1, . . . , wn. Define a

map

φ′ : Hom(V,W ) −→ V ∗ ⊗W , f 7−→
n∑
i=1

(w∗i ◦ f)⊗ wi .

It is easy to see that φ′ is linear. Let us check that φ and φ′ are inverses. Recall
that for all w ∈ W , we have

w =
n∑
i=1

w∗i (w)wi .

Now,

φ′
(
φ(l ⊗ w)

)
=

n∑
i=1

(
w∗i ◦ (v 7→ l(v)w)

)
⊗ wi

=
n∑
i=1

(v 7→ l(v)w∗i (w))⊗ wi =
n∑
i=1

w∗i (w)l ⊗ wi

= l ⊗
n∑
i=1

w∗i (w)wi = l ⊗ w .
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On the other hand,

φ
(
φ′(f)

)
= φ

( n∑
i=1

(w∗i ◦ f)⊗ wi

)
=

n∑
i=1

(
v 7→ w∗i

(
f(v)

)
wi

)
=
(
v 7→

n∑
i=1

w∗i (f(v))wi

)
=
(
v 7→ f(v)

)
= f .

�

Now assume that V = W is finite-dimensional. Then by the above,

Hom(V, V ) ∼= V ∗ ⊗ V

in a natural way. But Hom(V, V ) contains a special element, namely idV . What
is the element of V ∗ ⊗ V that corresponds to it?

12.14. Remark. Let v1, . . . , vn be a basis of V, and let v∗1, . . . , v
∗
n be the basis of V ∗

dual to it. Then, with φ the canonical map from above, we have

φ
( n∑
i=1

v∗i ⊗ vi

)
= idV .

Proof. Apply φ′ as defined above to idV . �

On the other hand, there is a natural bilinear form on V ∗×V , given by evaluation:
(l, v) 7→ l(v). This gives the following.

12.15. Lemma. Let V be a finite-dimensional vector space. There is a linear
form T : V ∗ ⊗ V → F given by T (l ⊗ v) = l(v). It makes the following diagram
commutative.

V ∗ ⊗ V
φ

//

T
##G

GGGGGGGG Hom(V, V )

Tr
yytttttttttt

F

Proof. That T is well-defined is clear by the usual princpiple. (The vector space
structure on V ∗ is defined in order to make evaluation bilinear!) We have to check
that the diagram commutes. Fix a basis v1, . . . , vn, with dual basis v∗1, . . . , v

∗
n,

and let f ∈ Hom(V, V ). Then φ−1(f) =
∑

i(v
∗
i ◦ f) ⊗ vi, hence T (φ−1(f)) =∑

i v
∗
i (f(vi)). The terms in the sum are exactly the diagonal entries of the matrix A

representing f with respect to v1, . . . , vn, so T (φ−1(f)) = Tr(A) = Tr(f). �

The preceding operation is called “contraction”. More generally, it leads to linear
maps

U1 ⊗ · · · ⊗ Um ⊗ V ∗ ⊗ V ⊗W1 ⊗ · · · ⊗Wn −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn .

This in turn is used to define “inner multiplication”

(U1 ⊗ · · · ⊗ Um ⊗ V ∗)× (V ⊗W1 ⊗ · · · ⊗Wn) −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn

(by first going to the tensor product). The roles of V and V ∗ can also be reversed.
This is opposed to “outer multiplication”, which is just the canonical bilinear map

(U1 ⊗ · · · ⊗ Um)× (W1 ⊗ · · · ⊗Wn) −→ U1 ⊗ · · · ⊗ Um ⊗W1 · · · ⊗Wn .

An important example of inner multiplication is composition of linear maps.
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12.16. Lemma. Let U, V,W be vector spaces. Then the following diagram com-
mutes.

(l⊗v,l′⊗w)
_

��

(U∗ ⊗ V )× (V ∗ ⊗W )

��

φ×φ
// Hom(U, V )× Hom(V,W )

��

(f,g)
_

��
l′(v) l⊗w U∗ ⊗W

φ
// Hom(U,W ) g◦f

Proof. We have

φ(l′ ⊗ w) ◦ φ(l ⊗ v) =
(
v′ 7→ l′(v′)w

)
◦
(
u 7→ l(u)v

)
=
(
u 7→ l′

(
l(u)v

)
w = l′(v)l(u)w

)
= φ

(
l′(v)l ⊗ w

)
.

�

12.17. Remark. Identifying Hom(Fm, F n) with the space Mat(n×m,F ) of n×
m-matrices over F , we see that matrix multiplication is a special case of inner
multiplication of tensors.

12.18. Remark. Another example of inner multiplication is given by evaluation
of linear maps: the following diagram commutes.

(l ⊗ w, v)
_

��

(V ∗ ⊗W )× V
φ×idV//

��

Hom(V,W )× V

��

(f, v)
_

��

l(v)w W W f(v)

Complexification of Vector Spaces. Now let us turn to another use of the
tensor product. There are situations when one has a real vector space, which
one would like to turn into a complex vector space with “the same” basis. For
example, suppose that VR is a real vector space and WC is a complex vector space
(writing the field as a subscript to make it clear what scalars we are considering),
then W can also be considered as a real vector space (just by restricting the scalar
multiplication to R ⊂ C). We write WR for this space. Note that dimRWR =
2 dimCWC — if b1, . . . , bn is a C-basis of W , then b1, ib1, . . . , bn, ibn is an R-basis.
Now we can consider an R-linear map f : VR → WR. Can we construct a C-vector
space ṼC out of V in such a way that f extends to a C-linear map f̃ : ṼC → WC?
(Of course, for this to make sense, VR has to sit in ṼR as a subspace.)

It turns out that we can use the tensor product to do this.

12.19. Lemma and Definition. Let V be a real vector space. The real vector
space Ṽ = C⊗R V can be given the structure of a complex vector space by defining
scalar multiplication as follows.

λ(α⊗ v) = (λα)⊗ v

V is embedded into Ṽ as a real subspace via ι : v 7→ 1⊗ v.

This C-vector space Ṽ is called the complexification of V .
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Proof. We first have to check that the equation above leads to a well-defined R-
bilinear map C× Ṽ → Ṽ . But this map is just

C× (C⊗R V ) −→ C⊗R (C⊗R V ) ∼= (C⊗R C)⊗R V
m⊗idV−→ C⊗R V ,

where m : C⊗R C → C is induced from multiplication on C (which is certainly an
R-bilinear map). Since the map is in particular linear in the second argument, we
also have the “distributive laws”

λ(x+ y) = λx+ λy , (λ+ µ)x = λx+ µx

for λ, µ ∈ C, x, y ∈ Ṽ . The “associative law”

λ(µx) = (λµ)x

(for λ, µ ∈ C, x ∈ Ṽ ) then needs only to be checked for x = α ⊗ v, in which case
we have

λ(µ(α⊗ v)) = λ((µα)⊗ v) = (λµα)⊗ v = (λµ)(α⊗ v) .

The last statement is clear. �

If we apply the representation of elements in a tensor product given in Lemma 12.6
to Ṽ , we obtain the following.

Suppose V has a basis v1, . . . , vn. Then every element of Ṽ can be written uniquely
in the form

α1 ⊗ v1 + · · ·+ αn ⊗ vn for some α1, . . . , αn ∈ C.

In this sense, we can consider Ṽ to have “the same” basis as V, but we allow
complex coordinates instead of real ones.

On the other hand, we can consider the basis 1, i of C as a real vector space, then
we see that every element of Ṽ can be written uniquely as

1⊗ v + i⊗ v′ = ι(v) + i · ι(v′) for some v, v′ ∈ V .

In this sense, elements of Ṽ have a real and an imaginary part, which live in V
(identifying V with its image under ι in Ṽ ).

12.20. Proposition. Let V be a real vector space and W a complex vector space.
Then for every R-linear map f : VR → WR, there is a unique C-linear map
f̃ : ṼC → WC such that f̃ ◦ ι = f (where ι : VR → ṼR is the map defined above).

Ṽ

f̃

��
�
�
�
�
�
�
�

V

ι
>>~~~~~~~~

f   A
AA

AA
AA

A

W

Proof. The map C × V → W , (α, v) 7→ αf(v) is R-bilinear. By the universal
property of the tensor product Ṽ = C ⊗R V , there is a unique R-linear map
f̃ : Ṽ → W such that f̃(α⊗ v) = αf(v). Then we have

f̃(ι(v)) = f̃(1⊗ v) = f(v) .
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We have to check that f̃ is in fact C-linear. It is certainly additive (being R-linear),
and for λ ∈ C, α⊗ v ∈ Ṽ ,

f̃(λ(α⊗ v)) = f̃((λα)⊗ v) = λαf(v) = λf̃(α⊗ v) .

Since any C-linear map f̃ having the required property must be R-linear and
satisfy

f̃(α⊗ v) = f̃(α(1⊗ v)) = αf̃(1⊗ v) = αf(v) ,

and since there is only one such map, f̃ is uniquely determined. �

12.21. Remark. The proposition can be stated in the form that

HomR(V,W )
∼=−→ HomC(Ṽ ,W ) , f 7−→ f̃ ,

is an isomorphism. (The inverse is F 7→ F ◦ ι.)

We also get that R-linear maps between R-vector spaces give rise to C-linear maps
between their complexifications.

12.22. Lemma. Let f : V → W be an R-linear map between two R-vector spaces.
Then idC⊗f : Ṽ → W̃ is C-linear, extends f , and is the only such map.

Proof. Consider the following diagram.

V
f
//

ιV
��

F

  @
@@

@@
@@

W

ιW
��

Ṽ
F̃

// W̃

Here, F = ιW ◦f is an R-linar map from V into the C-vector space W̃ , hence there
is a unique C-linear map F̃ : Ṽ → W̃ such that the diagram is commutative. We
only have to verify that F̃ = idC⊗f . But

(idC⊗f)(α⊗ v) = α⊗ f(v) = α(1⊗ f(v)) = α(ιW ◦ f)(v) = αF (v) = F̃ (α⊗ v) .

�

13. Symmetric and Alternating Products

Note. The material in this section is not required for the final exam.

Now we want to generalize the tensor product construction (in a sense) in order
to obtain similar results for symmetric and skew-symmetric (or alternating) bi-
and multilinear maps.

13.1. Reminder. Let V and W be vector spaces. A bilinear map f : V ×V → W
is called symmetric if f(v, v′) = f(v′, v) for all v, v′ ∈ V . f is called alternating
if f(v, v) = 0 for all v ∈ V ; this imples that f is skew-symmetric, i.e., f(v, v′) =
−f(v′, v) for all v, v′ ∈ V . The converse is true if the field of scalars is not of
characteristic 2.

Let us generalize these notions to multilinear maps.
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13.2. Definition. Let V and W be vector spaces, and let f : V n → W be a
multilinear map.

(1) f is called symmetric if

f(vσ(1), vσ(2), . . . , vσ(n)) = f(v1, v2, . . . , vn)

for all v1, . . . , vn ∈ V and all σ ∈ Sn.
The symmetric multilinear maps form a linear subspace of the space of all
multilinear maps V n → W , denoted Sym(V n,W ).

(2) f is called alternating if

f(v1, v2, . . . , vn) = 0

for all v1, . . . , vn ∈ V such that vi = vj for some 1 ≤ i < j ≤ n.

The alternating multilinear maps form a linear subspace of the space of all
multilinear maps V n → W , denoted Alt(V n,W ).

13.3. Remark. Since transpositions generate the symmetric group Sn, we have
the following.

(1) f is symmetric if and only if it is a symmetric bilinear map in all pairs of
variables, the other variables being fixed.

(2) f is alternating if and only if it is an alternating bilinear map in all pairs
of variables, the other variables being fixed.

(3) Assume that the field of scalars has characteristic 6= 2. Then f is alternat-
ing if and only if

f(vσ(1), vσ(2), . . . , vσ(n)) = ε(σ)f(v1, v2, . . . , vn)

for all v1, . . . , vn ∈ V and all σ ∈ Sn, where ε(σ) is the sign of the permu-
tation σ.

13.4. Example. We know from earlier that the determinant can be interpreted
as an alternating multilinear map V n → F , where V is an n-dimensional vector
space — consider the n vectors in V as the n columns in a matrix. Moreover, we
had seen that up to scaling, the determinant is the only such map. This means
that

Alt(V n, F ) = F det .

13.5. We have seen that we can express multilinear maps as elements of suitable
tensor products: Assuming V and W to be finite-dimensional, a multilinear map
f : V n → W lives in

Hom(V ⊗n,W ) ∼= (V ∗)⊗n ⊗W .

Fixing a basis v1, . . . , vm of V and its dual basis v∗1, . . . , v
∗
n, any element of this

tensor product can be written uniquely in the form

f =
m∑

i1,...,in=1

v∗i1 ⊗ · · · ⊗ v∗in ⊗ wi1,...,in

with suitable wi1...in ∈ W . How can we read off whether f is symmetric or alter-
nating?
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13.6. Definition. Let x ∈ V ⊗n.

(1) x is called symmetric if sσ(x) = x for all σ ∈ Sn, where sσ : V ⊗n → V ⊗n is
the automorphism given by

sσ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n) .

We will write Sym(V ⊗n) for the subspace of symmetric tensors.

(2) x is called skew-symmetric if sσ(x) = ε(σ)x for all σ ∈ Sn.
We will write Alt(V ⊗n) for the subspace of skew-symmetric tensors.

13.7. Proposition. Let f : V n → W be a multilinear map, indentified with its
image in (V ∗)⊗n ⊗W . The following statements are equivalent.

(1) f is a symmetric multilinear map.

(2) f ∈ (V ∗)⊗n ⊗W lies in the subspace Sym((V ∗)⊗n)⊗W .

(3) Fixing a basis as above in 13.5, in the representation of f as given there,
we have

wiσ(1),...,iσ(n)
= wi1,...,in

for all σ ∈ Sn.

Note that in the case W = F and n = 2, the equivalence of (1) and (3) is just the
well-known fact that symmetric matrices encode symmetric bilinear forms.

Proof. Looking at (3), we have that wi1,...,in = f(vi1 , . . . , vin). So symmetry of f
(statement (1)) certainly implies (3). Assuming (3), we see that f is a linear
combination of terms of the form(∑

σ∈Sn

vdiσ(1) ⊗ · · · ⊗ vdiσ(n)

)
⊗ w

(with w = wi1,...,in), all of which are in the indicated subspace Sym((V ∗)⊗n)⊗W
of (V ∗)⊗n ⊗ W , proving (2). Finally, assuming (2), we can assume f = x ⊗ w
with x ∈ Sym((V ∗)⊗n) and w ∈ W . For y ∈ V ⊗n and z ∈ (V ∗)⊗n ∼= (V ⊗n)∗,
we have (sσ(z))(sσ(y)) = z(y). Since sσ(x) = x, we get x(sσ(y)) = x(y) for all
σ ∈ Sn, which implies that f(sσ(y)) = x(sσ(y)) ⊗ w = x(y) ⊗ w = f(y). So f is
symmetric. �

13.8. Proposition. Let f : V n → W be a multilinear map, indentified with its
image in (V ∗)⊗n ⊗W . The following statements are equivalent.

(1) f is an alternating multilinear map.

(2) f ∈ (V ∗)⊗n ⊗W lies in the subspace Alt((V ∗)⊗n)⊗W .

(3) Fixing a basis as above in 13.5, in the representation of f as given there,
we have

wiσ(1),...,iσ(n)
= ε(σ)wi1,...,in

for all σ ∈ Sn.

The proof is similar to the preceding one.

The equivalence of (2) and (3) in the propositions above, in the special caseW = F
and replacing V ∗ by V , gives the following. (We assume that F is of characteristic
zero, i.e., that Q ⊂ F .)
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13.9. Proposition. Let V be an m-dimensional vector space with basis v1, . . . , vm.

(1) The elements ∑
σ∈Sn

viσ(1)
⊗ · · · ⊗ viσ(n)

for 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m form a basis of Sym(V ⊗n). In particular,

dim Sym(V ⊗n) =

(
m+ n− 1

n

)
.

(2) The elements ∑
σ∈Sn

ε(σ)viσ(1)
⊗ · · · ⊗ viσ(n)

for 1 ≤ i1 < i2 < · · · < in ≤ m form a basis of Alt(V ⊗n). In particular,

dim Alt(V ⊗n) =

(
m

n

)
.

Proof. It is clear that the given elements span the spaces. They are linearly in-
dependent since no two of them involve the same basis elements of V ⊗n. (In the
alternating case, note that the element given above vanishes if two of the ij are
equal.) �

The upshot of this is that (taking W = F for simplicity) we have identified

Sym(V n, F ) = Sym((V ∗)⊗n) ⊂ (V ∗)⊗n = (V ⊗n)∗

and

Alt(V n, F ) = Alt((V ∗)⊗n) ⊂ (V ∗)⊗n = (V ⊗n)∗

as subspaces of (V ⊗n)∗. But what we would like to have are spaces Symn(V ) and
Altn(V ) such that we get identifications

Sym(V n, F ) = Hom(Symn(V ), F ) = (Symn(V ))∗

and

Alt(V n, F ) = Hom(Altn(V ), F ) = (Altn(V ))∗ .

Now there is a general principle that says that subspaces are “dual” to quotient
spaces: If W is a subspace of V , then W ∗ is a quotient space of V ∗ in a natural
way, and if W is a quotient of V , then W ∗ is a subspace of V ∗ in a natural way. So
in order to translate the subspace Sym(V n, F ) (or Alt(V n, F )) of the dual space
of V ⊗n into the dual space of something, we should look for a suitable quotient
of V ⊗n!

13.10. Definition. Let V be a vector space, n > 0 an integer.

(1) Let W ⊂ V ⊗n be the subspace spanned by all elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vn − vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

for v1, v2, . . . , vn ∈ V and σ ∈ Sn. Then the quotient space

Symn(V ) = Sn(V ) = V ⊗n/W

is called the nth symmetric tensor power of V . The image of v1⊗v2⊗· · ·⊗vn
in Sn(V ) is denoted v1 · v2 · · · vn.



57

(2) Let W ⊂ V ⊗n be the subspace spanned by all elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vn

for v1, v2, . . . , vn ∈ V such that vi = vj for some 1 ≤ i < j ≤ n. Then the
quotient space

Altn(V ) =
∧n(V ) = V ⊗n/W

is called the nth alternating tensor power of V . The image of v1⊗v2⊗· · ·⊗vn
in
∧n(V ) is denoted v1 ∧ v2 ∧ · · · ∧ vn.

13.11. Theorem.

(1) The map

ϕ : V n −→ Sn(V ) , (v1, v2, . . . , vn) 7−→ v1 · v2 · · · vn
is multilinear and symmetric. For every multilinear and symmetric map
f : V n → U , there is a unique linear map g : Sn(V ) → U such that
f = g ◦ ϕ.

(2) The map

ψ : V n −→
∧n(V ) , (v1, v2, . . . , vn) 7−→ v1 ∧ v2 ∧ · · · ∧ vn

is multilinear and alternating. For every multilinear and alternating map
f : V n → U , there is a unique linear map g :

∧n(V ) → U such that
f = g ◦ ψ.

These statements tell us that the spaces we have defined do what we want: We
get identifications

Sym(V n, U) = Hom(Sn(V ), U) and Alt(V n, U) = Hom(
∧n(V ), U) .

Proof. We prove the first part; the proof of the second part is analogous. First,
it is clear that ϕ is multilinear: it is the composition of the multilinear map
(v1, . . . , vn) 7→ v1 ⊗ · · · ⊗ vn and the linear projection map from V ⊗n to Sn(V ).
We have to check that ϕ is symmetric. But

ϕ(vσ(1), . . . , vσ(n))− ϕ(v1, . . . , vn) = vσ(1) · · · vσ(n) − v1 · · · vn = 0 ,

since it is the image in Sn(V ) of vσ(1) ⊗ · · · ⊗ vσ(n) − v1 ⊗ · · · ⊗ vn ∈ W . Now let
f : V n → U be multilinear and symmetric. Then there is a unique linear map
f ′ : V ⊗n → U corresponding to f , and by symmetry of f , we have

f ′(vσ(1) ⊗ · · · ⊗ vσ(n) − v1 ⊗ · · · ⊗ vn) = 0 .

So f ′ vanishes on all the elements of a spanning set of W . Hence it vanishes on W
and therefore induces a unique linear map g : Sn(V ) = V ⊗n/W → U .

V n
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The two spaces Sym(V ⊗n) and Sn(V ) (resp., Alt(V ⊗n) and
∧n(V )) are closely

related. We assume that F is of characteristic zero.
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13.12. Proposition.

(1) The maps Sym(V ⊗n) ⊂ V ⊗n → Sn(V ) and

Sn(V ) −→ Sym(V ⊗n) , v1 · v2 · · · vn 7−→
1

n!

∑
σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

are inverse isomorphisms. In particular, if b1, . . . , bm is a basis of V , then
the elements

bi1 · bi2 · · · bin with 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m

form a basis of Sn(V ), and dimSn(V ) =
(
m+n−1

n

)
.

(2) The maps Alt(V ⊗n) ⊂ V ⊗n →
∧n(V ) and∧n(V ) −→ Alt(V ⊗n) , v1∧v2∧· · ·∧vn 7−→

1

n!

∑
σ∈Sn

sign(σ)vσ(1)⊗vσ(2)⊗· · ·⊗vσ(n)

are inverse isomorphisms. In particular, if b1, . . . , bm is a basis of V , then
the elements

bi1 ∧ bi2 ∧ · · · ∧ bin with 1 ≤ i1 < i2 < · · · < in ≤ m

form a basis of
∧n(V ), and dim

∧n(V ) =
(
m
n

)
.

Proof. It is easy to check that the specified maps are well-defined linear maps and
inverses of each other, so they are isomorphisms. The other statements then follow
from the description in Prop. 13.9. �

Note that if dimV = n, then we have∧n(V ) = F (v1 ∧ · · · ∧ vn)

for any basis v1, . . . , vn of V .

13.13. Corollary. Let v1, . . . , vn ∈ V . Then v1, . . . , vn are linearly independent if
and only if v1 ∧ · · · ∧ vn 6= 0.

Proof. If v1, . . . , vn are linearly dependent, then we can express one of them, say
vn, as a linear combination of the others:

vn = λ1v1 + · · ·+ λn−1vn−1 .

Then

v1 ∧ · · · ∧ vn−1 ∧ vn = v1 ∧ · · · ∧ vn−1 ∧ (λ1v1 + · · ·+ λn−1vn−1)

= λ1(v1 ∧ · · · ∧ vn−1 ∧ v1) + · · ·+ λn−1(v1 ∧ · · · ∧ vn−1 ∧ vn−1)

= 0 + · · ·+ 0 = 0 .

On the other hand, when v1, . . . , vn are linearly independent, they form part of
a basis v1, . . . , vn, . . . , vm, and by Prop. 13.12, v1 ∧ · · · ∧ vn is a basis element of∧n(V ), hence nonzero. �
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13.14. Lemma and Definition. Let f : V → W be linear. Then f induces
linear maps Sn(f) : Sn(V ) → Sn(W ) and

∧n(f) :
∧n(V ) →

∧n(W ) satisfying

Sn(f)(v1 · · · vn) = f(v1) · · · f(vn) ,
∧n(f)(v1 ∧ · · · ∧ vn) = f(v1) ∧ · · · ∧ f(vn) .

Proof. The map V n → Sn(W ), (v1, . . . , vn) 7→ f(v1) · · · f(vn), is a symmetric
multilinear map and therefore determines a unique linear map Sn(f) : Sn(V ) →
Sn(W ) with the given property. Similarly for

∧n(f). �

13.15. Proposition. Let f : V → V be a linear map, with V an n-dimensional
vector space. Then

∧n(f) :
∧n(V ) →

∧n(V ) is multiplication by det(f).

Proof. Since
∧n(V ) is a one-dimensional vector space,

∧n(f) must be multiplica-
tion by a scalar. We pick a basis v1, . . . , vn of V and represent f by a matrix A
with respect to this basis. The scalar in question is the element δ ∈ F such that

f(v1) ∧ f(v2) ∧ · · · ∧ f(vn) = δ (v1 ∧ v2 ∧ · · · ∧ vn) .
The vectors f(v1), . . . , f(vn) correspond to the columns of the matrix A, and δ is
an alternating multilinear form on them. Hence δ must be det(A), up to a scalar
factor. Taking f to be idV , we see that the scalar factor is 1. �

13.16. Corollary. Let V be a finite-dimensional vector space, f, g : V → V two
endomorphisms. Then det(g ◦ f) = deg(g) det(f).

Proof. Let n = dimV. We have
∧n(g ◦ f) =

∧n g ◦
∧n f , and the map on the left

is multiplication by det(g ◦ f), whereas the map on the right is multiplication by
det(g) det(f). �

We see that, similarly to the trace Hom(V, V ) ∼= V ∗ ⊗ V → F , our constructions
give us a natural (coordinate-free) definition of the determinant of an endomor-
phism.
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