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1. Very Basic Remarks

The following properties of the integers Z are fundamental.

(1) Z is an integral domain (i.e., a commutative ring such that ab = 0 implies
a = 0 or b = 0).

(2) Z≥0 is well-ordered: every nonempty set of nonnegative integers has a
smallest element.

(3) Z satisfies the Archimedean Principle: if n > 0, then for every m ∈ Z,
there is k ∈ Z such that kn > m.

2. Divisibility

2.1. Definition. Let a, b be integers. We say that “a divides b”, written

a | b ,
if there is an integer c such that b = ac. In this case, we also say that “a is a
divisor of b” or that “b is a multiple of a”.

We have the following simple properties (for all a, b, c ∈ Z).

(1) a | a, 1 | a, a | 0.
(2) If 0 | a, then a = 0.
(3) If a | 1, then a = ±1.
(4) If a | b and b | c, then a | c.
(5) If a | b, then a | bc.
(6) If a | b and a | c, then a | b± c.
(7) If a | b and |b| < |a|, then b = 0.
(8) If a | b and b | a, then a = ±b.

2.2. Definition. We say that “d is the greatest common divisor of a and b”,
written

d = gcd(a, b) or d = a u b ,
if d | a and d | b, d ≥ 0, and for all integers k such that k | a and k | b, we have
k | d.
We say that “m is the least common multiple of a and b”, written

m = lcm(a, b) or m = a t b ,
if a | m and b | m, m ≥ 0, and for all integers n such that a | n and b | n, we have
m | n.

In a similar way, we define the greatest common divisor and least common multiple
for any set S of integers. We have the following simple properties.

(1) gcd(∅) = 0, lcm(∅) = 1.
(2) gcd(S1∪S2) = gcd(gcd(S1), gcd(S2)), lcm(S1∪S2) = lcm(lcm(S1), lcm(S2)).
(3) gcd({a}) = lcm({a}) = |a|.
(4) gcd(ac, bc) = |c| gcd(a, b).
(5) gcd(a, b) = gcd(a, ka+ b).

3. The Euclidean Algorithm

How can we compute the gcd of two given integers? The key for this is the last
property of the gcd listed above. In order to make use of it, we need the operation
of division with remainder.
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3.1. Proposition. Given integers a and b with b 6= 0, there exist unique integers
q (“quotient”) and r (“remainder”) such that 0 ≤ r < |b| and a = bq + r.

Proof. Existence: Consider S = {a − kb : k ∈ Z, a − kb ≥ 0}. Then S ⊂ Z≥0 is
nonempty and therefore has a smallest element r = a − qb for some q ∈ Z. We
have r ≥ 0 by definition, and if r ≥ |b|, then r − |b| would also be in S, hence r
would not have been the smallest element.

Uniqueness: Suppose a = bq + r = bq′ + r′ with 0 ≤ r, r′ < |b|. Then b | r − r′

and 0 ≤ |r − r′| < |b|, therefore r = r′. This implies bq = bq′, hence q = q′ (since
b 6= 0). �

3.2. Algorithm GCD (Euclidean Algorithm). Given integers a and b, we do
the following.

(1) Set n = 0, a0 = |a|, b0 = |b|.
(2) If bn = 0, return an as the result.
(3) Write an = bn qn + rn with 0 ≤ rn < bn.
(4) Set an+1 = bn, bn+1 = rn.
(5) Replace n by n+ 1 and go to step 2.

We claim that the result returned is gcd(a, b). (Observe that 0 ≤ bn+1 < bn if the
loop is continued, hence the algorithm must terminate.)

Proof. We show that for all n that occur in the loop, we have gcd(an, bn) =
gcd(a, b). The claim follows, since the return value an = gcd(an, 0) = gcd(an, bn)
for the last n. For n = 0, we have gcd(a0, b0) = gcd(|a|, |b|) = gcd(a, b). Now
suppose that we know gcd(an, bn) = gcd(a, b) and that bn 6= 0 (so the loop is not
terminated). Then gcd(an+1, bn+1) = gcd(bn, an−bnqn) = gcd(bn, an) = gcd(an, bn)
(use property (5) of the gcd). �

3.3. Theorem. Fix a, b ∈ Z. The integers of the form xa + yb with x, y ∈ Z are
exactly the multiples of d = gcd(a, b). In particular, there are x, y ∈ Z such that
d = xa+ yb.

Proof. Since d divides both a and b, d also has to divide xa+yb. So these numbers
are multiples of d. For the converse, it suffices to show that d can be written as
xa+ yb. This follows by induction from the Euclidean Algorithm: Leet N be the
last value of n. Then d = aN · 1 + bN · 0; and if d = xn+1an+1 + yn+1bn+1, then we
have d = yn+1an +(xn+1−qnyn+1)bn, so setting xn = yn+1 and yn = xn+1−qnyn+1,
we have d = xnan + ynbn. So in the end, we must also have d = x0a0 + y0b0. �

There is a simple extension of the Euclidean Algorithm that also computes num-
bers x and y such that gcd(a, b) = xa+ yb. It looks like this.

3.4. Algorithm XGCD (Extended Euclidean Algorithm). Given integers
a and b, we do the following.

(1) Set n = 0, a0 = |a|, b0 = |b|, x0 = sign(a), y0 = 0, u0 = 0, v0 = sign(b).
(2) If bn = 0, return (an, xn, yn) as the result.
(3) Write an = bn qn + rn with 0 ≤ rn < bn.
(4) Set an+1 = bn, bn+1 = rn, xn+1 = un, yn+1 = vn, un+1 = xn − un qn,

vn+1 = yn − vn qn.
(5) Replace n by n+ 1 and go to step 2.
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By induction, one shows that an = xn a+ yn b and bn = un a+ vn b, so upon exit,
the return values (d, x, y) satisfy xa+ yb = d = gcd(a, b).

3.5. Proposition. If n divides ab and gcd(n, a) = 1, then n divides b.

Proof. By Thm. 3.3, there are x and y such that xa + yn = 1. We multiply by b
to obtain b = xab + ynb. Since n divides ab, n divides the right hand side and
therefore also b. �

4. Prime Numbers and Unique Factorization

4.1. Definition. A positive integer p is called a “prime number” (or simply a
“prime”), if p > 1 and the only positive divisors of p are 1 and p.

(This is really the definition of an “irreducible” element in a ring!)

4.2. Proposition. If p is a prime and a, b are integers such that p | ab, then p | a
or p | b.

(This is the general definition of a “prime” element in a ring!)

Proof. We can assume that p - a (otherwise we are done). Then gcd(a, p) = 1
(since the only other positive divisor of p, namely p itself, does not divide a).
Then by Prop. 3.5, p divides b. �

Now let n > 0 be a positive integer. Then either n = 1, or n is a prime number,
or else n has a “proper” divisor d such that 1 < d < n. Then we can write n = de
where also 1 < e < n. Continuing this process with d and e, we finally obtain
a representation of n as a product of primes. (If n = 1, it is given by an empty
product (a product without factors) of primes.)

4.3. Theorem. This prime factorization of n is unique (up to ordering of the
factors).

Proof. By induction on n. For n = 1, this is clear (there is only one empty set
. . . ). So assume that n > 1 and that we have written

n = p1p2 . . . pk = q1q2 . . . ql

with prime numbers pi, qj, where k, l ≥ 1. Now p1 divides the product of the qj’s,
hence p1 has to divide one of the qj’s. Up to reordering, we can assume that p1|q1.
But the only positive divisors of q1 are 1 and q1, so we must in fact have p1 = q1.
Let n′ = n/p1 = n/q1, then

n′ = p2p3 . . . pk = q2q3 . . . ql .

Since n′ < n, we know by induction that (perhaps after reordering the qj’s) k = l
and pj = qj for j = 2, . . . , k. This proves the claim. �
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4.4. Definition. This shows that we can write every nonzero integer n uniquely
as

n = ±
∏

p

pvp(n)

where the product is over all prime numbers p, and the exponents vp(n) are non-
negative integers, all but finitely many of which are zero. vp(n) is called the
“valuation of n at p”.

We have the following simple properties.

(1) vp(mn) = vp(m) + vp(n).
(2) m | n ⇐⇒ ∀p : vp(m) ≤ vp(n).

(3) gcd(m,n) =
∏

p

pmin(vp(m),vp(n)), lcm(m,n) =
∏

p p
max(vp(m),vp(n)).

(4) vp(m+ n) ≥ min(vp(m), vp(n)), with equality if vp(m) 6= vp(n).

Property (3) implies that gcd(m,n) lcm(m,n) = mn for positive m, n. In general,
we have gcd(m,n) lcm(m,n) = |mn|.
If we set vp(0) = +∞, then all the above properties hold for all integers (with the
usual conventions like min{e,∞} = e, e+∞ = ∞, . . . ).

We can extend the valuation function from the integers to the rational numbers
by setting

vp

(r
s

)
= vp(r)− vp(s)

(Exercise: check that this is well-defined). Properties (1) and (4) above then hold
for rational numbers, and a rational number x is an integer if and only if vp(x) ≥ 0
for all primes p.

5. Congruences

5.1. Definition. Let a, b and n integers with n > 0. We say that “a is congruent
to b modulo n”, written

a ≡ b mod n ,

if n divides the difference a− b.

5.2. Congruence is an equivalence relation.
For fixed n and arbitrary a, b, c ∈ Z, we have:

(1) a ≡ a mod n.
(2) If a ≡ b mod n, then b ≡ a mod n.
(3) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Hence we can partition Z into “congruence classes mod n”: we let

ā = a+ nZ = {a+ nx : x ∈ Z} = {b ∈ Z : a ≡ b mod n}

(in the ā notation, n must be clear from the context) and

Z/nZ = {ā : a ∈ Z} .

We then have

a ≡ b mod n ⇐⇒ b ∈ ā ⇐⇒ ā = b̄ .
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5.3. Proposition. The map

{0, 1, . . . , n− 1} −→ Z/nZ , r 7−→ r̄ = r + nZ
is a bijection. In particular, Z/nZ has exactly n elements.

Proof. The map is clearly well-defined. It is injective: assume r̄ = s̄ with 0 ≤
r, s < n. Then r ≡ s mod n, so n | r − s and |r − s| < n, therefore r = s. It
is surjective: Let ā be a congruence class and write a = nq + r with 0 ≤ r < n.
Then ā = r̄. �

Since the representative r of a class ā is given by the (least nonnegative) residue
of a when divided by n, congruence classes are also called “residue classes”.

5.4. The congruence classes form a commutative ring.
We define addition and multiplication on Z/nZ:

ā+ b̄ = a+ b , ā · b̄ = ab

We have to check that these operations are well-defined. This means that if
a ≡ a′ mod n and b ≡ b′ mod n, then we must have a + b ≡ a′ + b′ mod n and
ab ≡ a′b′ mod n. Now

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) is divisible by n,

and also
ab− a′b′ = (a− a′)b+ a′(b− b′) is divisible by n.

Once these operations are well-defined, all the commutative ring axioms carry over
immediately from Z to Z/nZ.

5.5. Congruences are useful. Why are congruences a useful concept? They
give us a kind of “Mickey Mouse” image of the integers (lumping together many
integers into one residue class, thus losing information), with the advantage that
the resulting structure Z/nZ has only finitely many elements. This means that
all sorts of questions that are difficult to answer with respect to Z are effectively
(though not necessarily efficiently, if n is large) decidable with respect to Z/nZ. If
we can show in this way that something is impossible over Z/nZ, then this often
implies a negative answer for Z, too.

Consider, for example, the equation x2 +y2−15 z2 = 7. Does it have a solution in
integers? That to decide seems to be hard. On the other hand, we can very easily
make a table of all possible values of the left hand side in Z/8Z: it is easy to see
that a square is always ≡ 0, 1, or 4 mod 8, and adding three of these values (note
that −15 ≡ 1 mod 8) leads to all residue classes mod 8 with one exception — the
left hand side is never ≡ 7 mod 8.

So a solution is not possible in Z/8Z. But any solution in Z would lead to an
image solution in Z/8Z, hence there can be no solution in Z either.

6. Coprime Integers and Multiplicative Inverses

When does a class ā have a multiplicative inverse in Z/nZ? We have to solve the
congruence ax ≡ 1 mod n; equivalently, there need to exist integers x and y such
that ax + ny = 1. By Thm. 3.3, this is equivalent with gcd(a, n) = 1. In this
case, we say that “a and n are relatively prime” or “a and n are coprime”, and
sometimes write a ⊥ n. We can use the extended Euclidean Algorithm to find the
inverse.
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6.1. Theorem. The ring Z/nZ is a field if and only if n is a prime number.

Proof. Clear for n = 1 (a field has at least two elements 0 and 1, and 1 is not a
prime number). For n > 1, Z/nZ is not a field if and only if there is some a ∈ Z,
not divisible by n, such that d = gcd(n, a) > 1. This implies that 1 < d < n is a
proper divisor of n, hence n is not a prime. Conversely, if d is a proper divisor of
n, then gcd(n, d) = d, and d̄ is not invertible. �

If gcd(n, a) = 1, then ā is called a “primitive residue class mod n”; its uniquely
determined multiplicative inverse in Z/nZ is denoted ā−1. The prime residue
classes form a group, the multiplicative group (Z/nZ)× of the ring Z/nZ.

When n = p is prime, then the field Z/pZ is also denoted Fp; we have F×p = Fp\{0̄}
for the multiplicative group; in particular, #F×p = p− 1.

6.2. Definition. The Euler φ function is defined for n > 0 by

φ(n) = #(Z/nZ)× = #{a ∈ Z : 0 ≤ a < n, a ⊥ n} .

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

We have that n is prime if and only if φ(n) = n− 1.

6.3. Proposition. If p is prime and e ≥ 1, then φ(pe) = pe−1(p− 1).

Proof. Clear for e = 1. For e > 1, observe that a ⊥ pe ⇐⇒ a ⊥ p ⇐⇒ p - a, so

φ(pe) = #{a ∈ Z : 0 ≤ a < pe, p - a}
= pe −#{a ∈ Z : 0 ≤ a < pe, p | a}
= pe − pe−1 = (p− 1)pe−1 .

�

6.4. A Recurrence. Counting the numbers between 0 (inclusive) and n (exclu-
sive) according to their gcd with n (which can be any (positive) divisor d of n),
we obtain ∑

d|n

φ
(n
d

)
=
∑
d|n

φ(d) = n .

This can be read as a recurrence for φ(n):

φ(n) = n−
∑

d|n,d<n

φ(d) .

We get

φ(1) = 1− 0 = 1 , φ(2) = 2− φ(1) = 1 , φ(3) = 3− φ(1) = 2 ,

φ(4) = 4− φ(2)− φ(1) = 2 , φ(6) = 6− φ(3)− φ(2)− φ(1) = 2 , etc.

Obviously, the recurrence determines φ(n) uniquely: If integers an (n ≥ 1) satisfy∑
d|n

ad = n ,

then an = φ(n). This still holds if the n’s are restricted to be divisors of some
fixed integer N .
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6.5. A Question. The following picture represents in black the coprime pairs
(m,n) with 0 ≤ m,n ≤ 100.

The black squares appear to be fairly evenly distributed, so the following question
should make sense.

What is the probability that two random (positive) integers are coprime?

Take a large positive integer N and consider all pairs (m,n) with 1 ≤ m,n ≤ N .
Call f(N) the number of such pairs with m ⊥ n. Since m′ ⊥ n′ for all m, n, where
m′ = m/ gcd(m,n), n′ = n/ gcd(m,n), we can count the pairs according to their
gcd. We get

N2 = #{(m,n) : 1 ≤ m,n ≤ N}

=
N∑

g=1

#{(m,n) : 1 ≤ m,n ≤ N, gcd(m,n) = g}

=
N∑

g=1

#{(m′, n′) : 1 ≤ m′, n′ ≤ N/g, m′ ⊥ n′}

=
N∑

g=1

f (bN/gc)

The probability we are looking for is P = limN→∞ P (N), where P (N) = f(N)/N2.
We get

1 =
N∑

g=1

bN/gc2

N2
P (bN/gc) .

Observe that the terms in the sum are between 0 and 1/g2, hence the sum is
uniformly absolutely convergent. Passing to the limit as N →∞, we obtain

1 =
∞∑

g=1

P

g2
,

hence

P =
1

∞∑
g=1

g−2

=
6

π2
≈ 0.608 .
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(Exercise: where is the gap in this argument?)

We can apply what we have learned to linear congruences.

Given a, b, and n, what are the solutions x of

ax ≡ b mod n ?

In other words, for which x ∈ Z does there exist a y ∈ Z such that ax+ ny = b ?

6.6. Theorem. The congruence ax ≡ b mod n has no solutions unless gcd(a, n) | b.
If there are solutions, they form a residue class modulo n/gcd(a, n).

Proof. By Thm. 3.3, the condition gcd(a, n) | b is necessary and sufficient for
solutions to exist. Let g = gcd(a, n). If g | b, we can divide the equation ax+ny = b
by g to get a′x + n′y = b′, where a = a′g, n = n′g, b = b′g. Then gcd(a′, n′) = 1,
and we can solve the equation ā′ x̄ = b̄′ for x̄ (in Z/n′Z): x̄ = b̄′ (ā′)−1. So the set
of solutions x is given by this residue class modulo n′. �

7. The Chinese Remainder Theorem

Now let us consider simultaneous congruences:

x ≡ a mod m, x ≡ b mod n

Is such a system solvable? What does the solution set look like? If d = gcd(m,n),
then we obviously need to have a ≡ b mod d for a solution to exist. On the other
hand, when m ⊥ n, solutions do always exist.

7.1. Chinese Remainder Theorem. If m ⊥ n, then the above system has so-
lutions x; they form a residue class modulo mn.

Proof. Since m ⊥ n, we can find u and v with mu+nv = 1 by Thm. 3.3. Consider
x = anv + bmu. We have

x = anv + bmu ≡ anv = a− amu ≡ a mod m

and similarly x ≡ b mod n. So solutions exist. Now we show that y is anoher
solution if and only if mn | y − x. If mn divides y − x, then m and n both divide
y − x, hence y ≡ x ≡ a mod m and y ≡ x ≡ b mod n. Now assume y is another
solution. Then m and n both divide y− x. So n | y− x = mt. By Prop. 3.5, n | t
and hence mn | mt = y − x. �

There is a straight-forward extension to more than two simultaneous congruences.

7.2. Chinese Remainder Theorem. If the numbers m1, m2, . . . , mk are co-
prime in pairs, then the system of congruences

x ≡ a1 mod m1 , x ≡ a2 mod m2 , . . . , x ≡ ak mod mk

has solutions; they form a residue class modulo m1m2 . . .mk.

Proof. Induction on k using Thm. 7.1. Note that a ⊥ b, a ⊥ c implies a ⊥ bc. �

Now we can answer the question from the beginning of this section.
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7.3. Theorem. The system

x ≡ a mod m, x ≡ b mod n

has solutions if and only if a ≡ b mod gcd(m,n). If solutions exist, they form a
residue class modulo lcm(m,n).

Proof. We have already seen that the condition is necessary. Let d = gcd(m,n).
We can find u and v such that mu+nv = b− a by Thm. 3.3. Then x = a+mu =
b−nv is a solution. As in the proof of Thm. 7.1, we see that y is another solution
if and only if m and n both divide y − x. This means that the solutions form a
residue class modulo lcm(m,n). �

We can give the Chinese Remainder Theorem a more algebraic formulation.

7.4. Theorem. Assume that m1,m2, . . . ,mk are coprime in pairs. Then the nat-
ural ring homomorphism

Z/m1m2 . . .mkZ −→ Z/m1Z× Z/m2Z× · · · × Z/mkZ
is an isomorphism. In particular, we have an isomorphism of multiplicative groups

(Z/m1m2 . . .mkZ)× ∼= (Z/m1Z)× × (Z/m2Z)× × · · · × (Z/mkZ)× .

Proof. By the above, the homomorphism is bijective, hence an isomorphism. �

7.5. A Formula for φ. The Chinese Remainder Theorem 7.4 implies that

φ(mn) = φ(m)φ(n) if m ⊥ n.

A similar formula holds for products with more factors. Applying this to the prime
factorization of n, we get

φ(n) =
∏
p|n

pvp(n)−1(p− 1) = n
∏
p|n

(
1− 1

p

)
.

8. Fermat’s and Euler’s Theorems

A very nice property of the finite fields Fp and all their extension fields is that the
map x 7→ xp is not only compatible with multiplication: (xy)p = xpyp, but also
with addition!

8.1. Theorem (“Freshman’s Dream”). Let F be a field of prime characteristic
p (this means that p · 1F = 0F ; for us, the basic example is F = Fp). Then for all
x, y ∈ F , we have (x+ y)p = xp + yp.

Proof. By the Binomial Theorem,

(x+y)p = xp+

(
p

1

)
xp−1y+

(
p

2

)
xp−2y2+· · ·+

(
p

k

)
xp−kyk+· · ·+

(
p

p− 1

)
xyp−1+yp.

Now the binomial coefficients
(

p
k

)
for 1 ≤ k ≤ p − 1 all are integers divisible

by p (why?), and since F is of characteristic p, all the corresponding terms in the
formula vanish, leaving only xp + yp. �

We can use this to give one proof of the following fundamental fact.
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8.2. Theorem (Fermat’s Little Theorem). Let p be a prime number. For all
ā ∈ Fp, we have āp = ā. (Equivalently, for all a ∈ Z, p divides ap − a.)

Proof.
First Proof: By induction on a. a = 0 is clear. Now, by Thm. 8.1, p divides
(a+1)p−ap−1 for all a ∈ Z. But then p also divides ((a+1)p−(a+1))−(ap−a),
hence:

p | ap − a ⇐⇒ p | (a+ 1)p − (a+ 1)

This gives the inductive step upwards and downwards, hence the claim holds for
all a ∈ Z.

Second Proof: Easy proof using Algebra. ā = 0̄ is clear. Hence it suffices to show
that āp−1 = 1̄ for all ā 6= 0̄. This is a consequence of the fact that #F×p = p − 1

and the general theorem that g#G = 1 for any g in any finite group G.

Third Proof: By Combinatorics (for a > 0). Consider putting beads that can
have colors from a set of size a at p equidistant places around a circle (to form
“necklaces”). There will be ap necklaces in total, a of which will consist of beads of
only one color. The remaining ap − a come in bunches of p, obtained by rotation,
so p has to divide ap − a. �

The algebra proof can readily be generalized.

8.3. Theorem (Euler). Let n be a positive integer. Then for all a ∈ Z with
a ⊥ n, we have aφ(n) ≡ 1 mod n.

Proof. Under the assumption, ā ∈ (Z/nZ)×, and by definition, #(Z/nZ)× = φ(n).
By the general fact from algebra used in the second proof of Thm. 8.2, the claim
follows. �

8.4. Example. What is 71113
mod 15? By Thm. 8.3, 78 ≡ 1 mod 15 (as φ(15) =

8). On the other hand, 11 ≡ 3 mod 8, and 34 ≡ 1 mod 8 (in fact, already 32 is

≡ 1 mod 8). So 1113 = (114)3 · 11 ≡ 11 ≡ 3 mod 8, and then 71113 ≡ 73 = 343 ≡
13 mod 15.

8.5. A Consequence of Fermat’s Little Theorem. Consider the polynomial
Xp − X with coefficients in Fp. By Fermat’s Little Theorem 8.2, every element
ā ∈ Fp is a root of this polynomial. Now Fp is a field, and so we can “divide out”
the roots successively to find that

Xp −X =
∏
ā∈Fp

(X − ā) .

This implies that for any polynomial f(X) dividing Xp − X (in the polynomial
ring Fp[X]), the number of its distinct roots in Fp equals the degree deg f(X).
More generally, if f is any polynomial in Fp[X], we can compute the number of
distinct roots of f in Fp by the formula

#{ā ∈ Fp : f(ā) = 0} = deg gcd(f,Xp −X) .
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9. Structure of F×p and (Z/pnZ)×

Fermat’s Theorem 8.2 tells us that the multiplicative order of any nonzero element
ā of Fp (this is the smallest positive integer n such that ān = 1̄) divides p−1. (The
set of all n such that ān = 1̄ consists exactly of the multiples of the order.) Now
the question arises, are there elements of order p − 1? In other, more algebraic
terms, is the group F×p cyclic? The answer is “yes”.

9.1. Theorem. The multiplicative group F×p is cyclic. (In other words, there exist
elements ḡ ∈ F×

p such that all ā ∈ F×p are powers of ḡ. The corresponding integers
g are called “primitive roots mod p”.)

Proof. Obviously, all elements of F×p of order dividing d (where d is a divisor

of p− 1) will be roots of Xd − 1̄. Since d divides p− 1, Xd − 1̄ divides Xp−1 − 1̄
and hence also Xp−X (as polyomials). By 8.5, it follows that Xd− 1 has exactly
d roots in Fp. Let ad be the number of elements of exact order d. Then we get

d =
∑
k|d

ak .

By the statement in 6.4, it follows that ad = φ(d); in particular, ap−1 = φ(p−1) ≥
1. Hence primitive roots exist. �

9.2. Examples. The proof shows that there are exactly φ(p− 1) essentially dis-
tinct primitive roots mod p. For the first few primes, we get the following table.

Prime Primitive Roots
2 1
3 2
5 2, 3
7 3, 5
11 2, 3, 8, 9
13 2, 6, 7, 11

There is a famous conjecture, named after Artin, that asserts that every integer
g 6= −1 that is not a square is a primitive root mod infinitely many different
primes. (Why are squares no good?) This has been proven assuming another
famous conjecture, the Extended Riemann Hypothesis. The best unconditional
result so far seems to be that the statement is true for all allowed integers, with
at most three exceptions. On the other hand, the statement is not known to hold
for any particular integer g!

9.3. Proposition. Let G be a finite multiplicative abelian group of order n. An
element g ∈ G is a generator of G (and so G is cyclic) if and only if gn/q 6= 1G for
all prime divisors q of n.

Proof. If g is a generator, then n is the least positive integer m such that gm = 1G,
hence the condition is necessary. Now if g is not a generator, then its order m
divides n, but is smaller than n, hence m divides n/q for some prime divisor q
of n. It follows that gn/q = 1G. �

Let us use this result to show that (Z/pnZ)× is cylic if p is an odd prime and
n ≥ 1.
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9.4. Theorem. Let g be a primitive root modulo p, where p is an odd prime.
Then one of g and g + p is a primitive root modulo pn for all n ≥ 1.

Proof. We know that gp−1 = 1 + ap for some a ∈ Z. If p - a, let h = g; otherwise
we set h = g + p; then we have hp−1 = 1 + a′p with p - a′:

(g + p)p−1 = gp−1 + (p− 1)gp−2p+ bp2 ≡ 1− kp mod p2

(with some integer b) where k ≡ gp−2 mod p is not divisible by p. Hence we have
in both cases that hp−1 ≡ 1 + ap mod p2 with p - a.

Now I claim that for all n ≥ 0, we have

hpn(p−1) ≡ 1 + apn+1 mod pn+2 .

This follows by induction from the case n = 0:

hpn+1(p−1) =
(
hpn(p−1)

)p
= (1 + (a+ bp)pn+1)p

= 1 + p (a+ bp)pn+1 + cpn+3

= 1 + apn+2 + (b+ c)pn+3

Here b and c are suitable integers, and the penultimate equality uses that p ≥ 3
(since then the last term in the binomial expansion, (a + bp)pp(n+1)p, is divisible
by pn+3, as are the intermediate ones, even when n = 0).

Now let n ≥ 2, and let q be a prime divisor of φ(pn) = pn−1(p − 1). If q divides

p − 1, then h(p−1)/q 6≡ 1 mod p, hence also hpn−1(p−1)/q ≡ h(p−1)/q 6≡ 1 mod p,
so hpn−1(p−1)/q 6≡ 1 mod pn. If q = p, then we have just seen that hpn−2(p−1) 6≡
1 mod pn. So by Prop. 9.3, h ∈ {g, g + p} is a primitive root mod pn. �

10. The RSA Cryptosystem

The basic idea of Public Key Cryptography is that each participant has two keys:
A public key that is known to everybody and serves to encrypt messages, and a
private key that is known only to her or him and is used to decrypt messages. For
this idea to work, two conditions have to be satisfied:

(1) Both encryption and decryption must be reasonably fast (with keys of a
size satisfying the next condition)

(2) It must be impossible to compute the private key from the public key in
less than a very large amount of time (how large will depend on the desired
level of security)

Alice Bob

Encryption
Algorithm

Plaintext

Bob’s Public Key

Decryption
Algorithm

Plaintext

Bob’s Private Key

Ciphertext

Eve
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The first published system (1977) satisfying these assumptions was designed by
Rivest, Shamir and Adleman, and is called the RSA Cryptosystem (after their
initials). However, already in 1973, Clifford Cocks at GCHQ (the British NSA
equivalent) came up with the same system. It was not used by GCHQ, and
Cocks’ contribution only publicly acknowledged in 1997.

The idea was that finding the prime factors of a large number is very hard, whereas
knowing them would allow you to do ceratin things quickly.

10.1. The set-up. To generate a public-private key pair, one takes two large
prime numbers p and q (of 160 or more decimal digits, say). The public key then
consists of n = pq and another positive integer e that has to be coprime with
lcm(p − 1, q − 1) and can be taken to be fairly (but not too) small (in order to
make encryption more efficient).

Encryption proceeds as follows. The message is encoded in one or several numbers
0 ≤ m < n (e.g., by taking bunches of bits of length less than the length of n
(measured in bits)). Then each number m is encrypted as c = me mod n.

In order to decrypt such a c, we need to be able to undo the exponentiation
by e. In order to do this, we use Fermat’s Little Theorem 8.2 and the Chinese
Remainder Theorem 7.1: Since e ⊥ lcm(p− 1, q− 1), we can compute d such that
de ≡ 1 mod lcm(p − 1, q − 1) (using the XGCD Algorithm). Then cd = mde ≡
m mod p and modq by Fermat’s Little Theorem and so cd ≡ m mod n by the
Chinese Remainder Theorem.

So the public key is the pair (n, e) and the private key the pair (n, d). Encryption
is m 7→ me mod n, decryption is c 7→ cd mod n.

10.2. Why is it practical? Encryption and decryption are reasonably fast: they
involve exponentiation mod n, which can be done in O((log n)2 log e) time (where
e is the exponent), or even in O(log n log log n log e), using fast multiplication.

Also, it is possible to select suitable primes p and q in reasonable time: there are
algorithms that prove that a given number is prime in polynomial time (polynomial
in log p), and gaps between primes are on average of size log p, so one can expect
to find a prime in polynomial time. The remaining steps in choosing the public-
private key pair are relatively fast.

For example, my laptop running the computer algebra system MAGMA, takes
about 4 seconds to find a prime of 100 digits, and about 12 seconds to find a
prime of 120 digits.

10.3. Why is it considered secure? In order to get m from c, one needs a
number t such that ct ≡ m mod n. For general m, this means that te ≡ 1 mod
lcm(p − 1, q − 1). Then te − 1 is a multiple of lcm(p − 1, q − 1), and we can use
this in order to factor n in the following way.

Note that if n is an odd prime, then there are exactly two square roots of 1 in
the ring Z/nZ (which is a field of characteristic not 2 in this case), namely (the
residue classes of) 1 and −1. However, when n = pq is the product of two distinct
odd primes, then there are four such square roots; they are obtained from pairs of
square roots of 1 mod p and mod q via the Chinese Remainder Theorem 7.1. If
x2 ≡ 1 mod n, but x 6≡ ±1 mod n, then we can use x to factor n: we have that
n divides x2 − 1 = (x − 1)(x + 1), but n divides neither factor on the right, so
gcd(x− 1, n) has to be a proper divisor of n.
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Now suppose we know a multiple f of lcm(p − 1, q − 1). Write f = 2rs with
s odd (note that r ≥ 1 since p − 1 and q − 1 are even). Now pick a random
1 < w < n − 1. If gcd(w, n) 6= 1, then we have found a proper divisor of n.
Otherwise, we successively compute

w0 = ws mod n ,w1 = w2
0 mod n ,w2 = w2

1 mod n , . . . , wr = w2
r−1 mod n

By Fermat’s Little Theorem 8.2 and the Chinese Remainder Theorem 7.1, wr = 1.
Now if there is some j such that wj 6≡ ±1 mod n, but wj+1 ≡ 1 mod n, we have
found a square root of 1 mod n that will split n as explained above. One can
check (see [Sti, Sect. 5.7.2]) that the probability of success is at least 1/2. Hence
we need no more than two tries on average to factor n.

Conversely, if we have p and q, we can easily compute a suitable t (in fact, our d
in the private key is found that way).

The upshot is that in order to break the system, we have to factor n. Now
factorization appears to be a hard problem: even though quite some effort has
been invested into developing good factoring algorithms (in particular since this
is relevant for cryptography! — you can win prize money if you factor certain
numbers), and we now have considerably better algorithms than thirty years ago
(say), the performance of the best known algorithms is still much worse than
polynomial time. The complexity is something like

exp
(
O( 3
√

log n(log log n)2)
)
.

This is already quite a bit better than exponential (in log n), but grows fast enough
to make factorization of 300-digit numbers or so infeasible.

For example, again MAGMA on my laptop needs 14 seconds to factor a product
of two 20-digit primes and 3 minutes to factor a product of two 30-digit primes.

But note that there is an efficient algorithm (at least in theory) for factoring
integers on a quantum computer. So if quantum computers become a reality,
cryptosystems based on the difficulty of factorization like RSA will be dead.

11. Discrete Logarithms

In RSA, we use modular exponentiation with a fixed exponent, where the base is
the message. There are other cryptosystems, which in some sense work the other
way round: they use exponentiation with a fixed base and varying exponent. This
can be done in the multiplicative group of a finite field Fp, or even in a more
general setting.

11.1. The Discrete Logarithm Problem. Let G be a finite cyclic group of
order n, with generator g. The problem of finding a ∈ Z/nZ from g and ga is
known as the Discrete Logarithm Problem: We want to find the logarithm of ga

to the base g. If x = ga, then sometimes the notation a = logg x is used.

The difficulty of this problem depends on the representation of the group G.

(1) The simplest case is G = Z/nZ (the additive group), g = 1̄. Then logg x =
x, and the problem is trivially solved.

(2) It is more interesting to choose G = F×p , with g a primitive root mod p
(or rather, its image in F×p ). If the group order #G = p − 1 has a large
prime factor (e.g., p− 1 = 2q or 4q where q is prime), then here, the DLP
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(short for Discrete Logarithm Problem) is considered to be hard. The best
known algorithms have complexity

O
(
exp(c 3

√
log q(log log q)2)

)
;

the situation is comparable to factorization.

(3) Other groups one can use are the groups of Fp-rational points on elliptic
curves. Except for certain special cases, no special-purpose algorithms are
known, and the best one can do is to use generic algorithms, which have
exponential running time �

√
#G. This makes these groups attractive

for cryptography, since one gets secure systems with considerably shorter
key-lengths.

(4) When the group order n = #G factors, then the Chinese Remainder The-
orem can be used to simplify the problem (if the factorization is known!).
(This is the so-called Pohlig-Hellman attack.)

11.2. ElGamal Encryption. Here is a general setting for a cryptosystem based
on DLP. It was originally suggested with G = F×p . In this case, it is advisable to
take p such that p− 1 is a small factor times a (large) prime q, in order to avoid
the Pohlig-Hellman attack. Knowing the factorisation of p−1 also helps in finding
a primitive root g, compare Prop. 9.3 (try random g until one is identified as a
primitive root).

It works like this. Bob chooses a random number a ∈ Z/nZ, where n = #G is the
group order, and publishes h = ga as his public key. (The group G and generator
g are fixed and also publicly known.) The number a itself is his private key. This
means that in order to find the private key from the public key, one has to solve
a DLP. Now, when she wants to send Bob a message m ∈ G, Alice also chooses a
random number k ∈ Z/nZ and then sends the pair (gk,mhk) to Bob: she “masks”
the message by multiplying it by hk (remember that h is Bob’s public key), but
leaves a clue for Bob by also sending gk. Now to decrypt this, Bob takes the
pair (x, y) he receives and computes m = x−ay using his private key a.

An eavesdropper intercepting the ciphertext would need to find hk = gak from
gk and h = ga in order to get the plaintext. This is called the Diffie-Hellman
Problem, because it also comes up in the secret key exchange protocol developed
by Diffie and Hellman (see below). It is believed that the Diffie-Hellman Problem
is no easier than the DLP (it is certainly not harder), but this has not been proved.

11.3. Diffie-Hellman Key Exchange. This is a method for two people to agree
on a secret key, communicating through an open channel. It also works for general
cylic groups G with fixed generator g (but was first suggested with G = F×p ).

Our two protagonists, Alice and Bob, both select a random number a (for Alice)
and b (for Bob) in Z/nZ. Alice sends A = ga to Bob, and Bob sends B = gb to
Alice. Then Alice computes k = Ba, and Bob computes k = Ab. Both get the
same result gab, from which they then can derive a key for a classical symmetric
cryptosystem.

In order for the eavesdropper Eve to get at the key, she must be able to find gab

from the knowledge of ga and gb, which is exactly the Diffie-Hellman Problem.
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12. Quadratic Residues

12.1. Definition. Let p be an odd prime and a ∈ Z an integer not divisible by p.
Then a is called a “quadratic residue mod p” if the congruence x2 ≡ a mod p has
solutions. Otherwise, a is a “quadratic nonresidue mod p”.

12.2. Examples.

p qu. res. qu. nonres.
3 1 2
5 1, 4 2, 3
7 1, 2, 4 3, 5, 6
11 1, 3, 4, 5, 9 2, 6, 7, 8, 10

Let g be a primitive root mod p; then each a such that p - a is congruent to some
gk mod p (where k is uniquely determined modulo p− 1, in particular, since p is
odd, the parity of k is fixed). It is clear that x2 ≡ a mod p has a solution if and
only if k is even. Whence:

12.3. Theorem. Let p be an odd prime and a ∈ Z, p - a, and let g be a primitive
root mod p. Then the following statements are equivalent.

(1) a is a quadratic residue mod p.

(2) logg a is even.

(3) a(p−1)/2 ≡ 1 mod p (Euler’s criterion).

Proof. We have already seen the equivalence of the first two statements. Now if
a is a quadratic residue, then a ≡ x2 mod p for some x, hence a(p−1)/2 ≡ xp−1 ≡
1 mod p by Fermat’s Little Theroem 8.2. On the other hand, if a(p−1)/2 ≡ 1 mod p,
then, writing a ≡ gk, the logarithm k = logg a cannot be odd, since then a(p−1)/2 ≡
gk(p−1)/2 6≡ 1 mod p, because k(p− 1)/2 is not divisible by p− 1. �

We see that the product of two quadratic residues is again a quadratic residue,
whereas the product of a quadratic residue and a quadratic nonresidue is a qua-
dratic nonresidue. Also, the product of two quadratic nonresidues is a quadratic
residue.

We also see that there are exactly (p−1)/2 quadratic residue classes and (p−1)/2
quadratic nonresidue classes mod p.

12.4. Definition. To simplify notation, one introduces the Legendre Symbol: For
p an odd prime and a an integer, set(

a

p

)
=

 1 if p - a and a is a quadratic residue mod p,
−1 if p - a and a is a quadratic nonresidue mod p,

0 if p | a.

By the definitions, we have
(

a
p

)
=
(

b
p

)
if a ≡ b mod p.

We can combine this definition with Euler’s criterion to obtain the following.
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12.5. Proposition. Let p be an odd prime, and let a ∈ Z. Then(
a

p

)
≡ a(p−1)/2 mod p ,

and this congruence determines the value of the Legendre symbol.

Proof. Since p ≥ 3, the residue classes of −1, 0 and 1 mod p are distinct, so the
last statement follows. To prove the congruence, we consider the three possible
cases in the definition of the Legendre synbol. If a is a quadratic residue, then
both sides are ≡ 1 by Thm. 12.3. If a is a quadratic nonresidue, then the left hand
side is −1, whereas the right hand side is 6≡ 1, but its square is ≡ 1. Since Z/pZ
is a field, the right hand side must be ≡ −1. Finally, if p | a, then both sides are
≡ 0. �

Note that this result tells us that we can determine efficiently whether a given inte-
ger a is a quadratic residue mod p or not: the modular exponentiation a(p−1)/2 mod
p can be computed in polynomial time.

It is a different matter to actually find a square root of a mod p if a is a quadratic
residue mod p. There are probabilistic polynomial time algorithms for that, but
(as far as I know) no deterministic polynomial time algorithm is known that works
for general p.

12.6. Theorem. For p an odd prime and integers a and b,(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. We have(
a

p

)(
b

p

)
≡ a(p−1)/2b(p−1)/2 = (ab)(p−1)/2 ≡

(
ab

p

)
mod p

by Prop. 12.5. By the same proposition, the value of the Legendre symbol is
determined by the congruence. The claim follows. �

12.7. Example. By the preceding result, we can compute
(

a
p

)
in terms of the

factors of a. So, if a = ±2eqf1

1 q
f2

2 . . . qfk

k with odd primes qj, then(
a

p

)
=

(
±1

p

)(
2

p

)e(
q1
p

)f1
(
q2
p

)f2

. . .

(
qk
p

)fk

.

13. Quadratic Reciprocity

By the preceding example, in order to be able to compute
(

a
p

)
in general, we need

to know
(
−1
p

)
and

(
2
p

)
, and we need a way to find

(
q
p

)
if q 6= p is another odd

prime.

The first is simple.
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13.1. Theorem. If p is an odd prime, then(
−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

Proof. By Prop. 12.5, (
−1

p

)
≡ (−1)(p−1)/2 mod p .

Since both sides are ±1, equality follows. �

So the quadratic character of −1 mod p depends on p mod 4. Is there a similar
result concerning the quadratic character of 2 mod p? Here is a table.

p 3 5 7 11 13 17 19 23 29 31(
2
p

)
− − + − − + − + − +

It appears that
(

2
p

)
= 1 if p ≡ 1 or 7 mod 8 and

(
2
p

)
= −1 if p ≡ 3 or 5 mod 8.

In order to prove a statement like this, we need some other way of expressing
the sign of the Legendre symbol. This is provided by the following result due to
Gauss.

13.2. Theorem. Let p be an odd prime, and let S ⊂ Z be a set of cardinality
(p − 1)/2 such that {0} ∪ S ∪ −S is a complete system of representatives for
the residue classes mod p. (Examples are S = {1, 2, . . . , (p − 1)/2} and S =
{2, 4, 6, . . . , p− 1}.) Then for all a such that p - a, we have(

a

p

)
= (−1)#{s∈S : as∈−S̄} .

Here S̄ = {s̄ : s ∈ S} is the set of residue classes mod p represented by elements
of S.

Proof. For all s ∈ S, there are unique t(s) ∈ S and ε(s) ∈ {±1} such that
as ≡ ε(s)t(s) mod p. We claim that s 7→ t(s) is a permutation of S. But it is clear
that this map is surjective: Let s ∈ S and b an inverse of a mod p, then there is
s′ ∈ S such that ±s′ ≡ bs mod p, so as′ ≡ ±s mod p and therefore t(s′) = s. So
the map must be a bijection.

Now, mod p, we have (
a

p

)∏
s∈S

s ≡ a(p−1)/2
∏
s∈S

s

=
∏
s∈S

(as)

≡
∏
s∈S

(ε(s)t(s))

=
∏
s∈S

ε(s)
∏
s∈S

s

= (−1)#{s∈S : ε(s)=−1}
∏
s∈S

s .
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Since p does not divide
∏

s∈S s, we get(
a

p

)
≡ (−1)#{s∈S : ε(s)=−1} = (−1)#{s∈S : as∈−S̄} mod p ,

and therefore equality (both sides are ±1). �

Taking a = −1 in the preceding result immediately gives Thm. 13.1 again.

We can now use this to prove our conjecture about the value of
(

2
p

)
.

13.3. Theorem. If p is an odd prime, then(
2

p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof. We use Thm. 13.2. For S, we take the standard set

S = {1, 2, 3, . . . , p− 1

2
} .

We have to count how many elements of S land outside S (mod p) when multiplied
by 2.

If p = 8k + 1, these elements are 2k + 1, 2k + 2, . . . , 4k; there are 2k of them, an

even number, so
(

2
p

)
= 1.

If p = 8k + 3, these elements are 2k + 1, 2k + 2, . . . , 4k + 1; there are 2k + 1 of

them, an odd number, so
(

2
p

)
= −1.

f p = 8k + 5, these elements are 2k + 2, . . . , 4k + 2; there are 2k + 1 of them, an

odd number, so
(

2
p

)
= −1.

If p = 8k + 7, these elements are 2k + 2, 2k + 2, . . . , 4k + 3; there are 2k + 2 of

them, an even number, so
(

2
p

)
= 1. �

13.4. Do we get similar results for
(

q
p

)
, where q is a fixed odd prime and p varies?

Experimental evidence suggests that(
3

p

)
=

{
1 if p ≡ ±1 mod 12,

−1 if p ≡ ±5 mod 12;

}
=

{ (
p
3

)
if p ≡ 1 mod 4,

−
(

p
3

)
if p ≡ −1 mod 4;(

5

p

)
=

{
1 if p ≡ ±1 mod 5,

−1 if p ≡ ±2 mod 5.

}
=
(p

5

)
.

For larger q, we get similar patterns: if q ≡ 1 mod 4, the result depends on
p mod q, if q ≡ −1 mod 4, the result depends on p mod 4q. Both cases can be
combined into the following statement.
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13.5. Theorem (Law of Quadratic Reciprocity). Let p and q be distinct odd
primes. Then we have(

q

p

)
=

(
p∗

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)

=


(
p

q

)
if p ≡ 1 mod 4 or q ≡ 1 mod 4

−
(
p

q

)
if p ≡ −1 mod 4 and q ≡ −1 mod 4

where p∗ = (−1)(p−1)/2p, so p∗ = p if p ≡ 1 mod 4 and p∗ = −p if p ≡ −1 mod 4.

Proof. We make again use of “Gauss’ Lemma” Thm. 13.2. We need two sets

S = {1, 2, . . . , p− 1

2
} and T = {1, 2, . . . , q − 1

2
} .

Let m = #{s ∈ S : qs ∈ −S̄} (mod p) and n = #{t ∈ T : pt ∈ −T̄} (mod q).
Then we have (

q

p

)(
p

q

)
= (−1)m(−1)n = (−1)m+n .

We therefore have to find the parity of the sum m+ n.

Now, if qs ≡ −s′ mod p for some s′ ∈ S, then there is some t ∈ Z such that
pt− qs = s′ ∈ S, i.e., 0 < pt− qs ≤ (p− 1)/2. This number t now must be in T :

pt > qs > 0 and pt ≤ p− 1

2
+ qs ≤ (q + 1)

p− 1

2
< p

q + 1

2
.

Since q is odd, the last inequality implies t ≤ (q − 1)/2. Hence we see that

m = #{(s, t) ∈ S × T : 0 < pt− qs ≤ p− 1

2
} .

In exactly the same way, we have that

n = #{(s, t) ∈ S × T : −q − 1

2
≤ pt− qs < 0} .

Since there is no pair (s, t) ∈ S×T such that pt = qs, it follows that m+n = #X,
where

X = {(s, t) ∈ S × T : −q − 1

2
≤ pt− qs ≤ p− 1

2
} .

This set X is invariant under the rotation by π (or 180◦) about the center of the
rectangle, which has the effect of changing (s, t) into (s′, t′) = (p+1

2
− s, q+1

2
− t):

pt′ − qs′ = p
(q + 1

2
− t
)
− q
(p+ 1

2
− s
)

=
p− q

2
− (pt− qs) ,

so pt− qs ≤ (p− 1)/2 ⇐⇒ pt′− qs′ ≥ −(q− 1)/2 and pt− qs ≥ −(q− 1)/2 ⇐⇒
pt′ − qs′ ≤ (p − 1)/2. Since the only possible fixed point of the rotation is the
center (p+1

4
, q+1

4
) of the rectangle, and since this point belongs toX if it has integral

coordinates, we see that

#X is odd ⇐⇒ p+ 1

4
,
q + 1

4
∈ Z ⇐⇒ p ≡ −1 mod 4 and q ≡ −1 mod 4 .

This concludes the proof. �
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13.6. Example. With the help of the Law of Quadratic Reciprocity, we can eval-
uate Legendre symbols in the following way.(

67

109

)
=

(
109

67

)
=

(
42

67

)
=

(
2 · 3 · 7

67

)
=

(
2

67

)(
3

67

)(
7

67

)
= (−1)(−

(
67

3

)
)(−

(
67

7

)
) = −

(
1

3

)(
4

7

)
= −1

The disadvantage with this approach is that we have to factor the numbers we get
in intermediate stages, which can be very costly if the numbers are large. In order
to overcome this difficulty, we generalize the Legendre Symbol and allow arbitrary
odd integers instead of odd primes p.

13.7. Definition. Let a ∈ Z, and let n be an odd integer, with factorization
n = ±pe1

1 p
e2
2 . . . pek

k . Then we define the “Jacobi Symbol” via(a
n

)
=

k∏
j=1

(
a

pj

)ej

.

It has the following simple properties extending those of the Legendre Symbol.

(1)
(

a
n

)
= 0 if and only if gcd(a, n) 6= 1.

(2) If a ≡ b mod n, then
(

a
n

)
=
(

b
n

)
.

(3)
(

ab
n

)
=
(

a
n

) (
b
n

)
.

(4)
(

a
n

)
= 1 if a ⊥ n and a is a square mod n.

Warning. Contrary to the case of the Legendre symbol (i.e., when n is prime),
the converse of the last statement does not hold in general. For example,

(
2
15

)
= 1,

but 2 is not a square mod 15 (since 2 is not a square mod 3 and mod 5).

But, what is more important, the Jacobi symbol also obeys the Law of Quadratic
Reciprocity.

13.8. Theorem. Let m and n be positive odd integers. We have

(1)

(
−1

n

)
= (−1)

n−1
2 .

(2)

(
2

n

)
= (−1)

n2−1
8 .

(3)
(m
n

)
= (−1)

m−1
2

n−1
2

( n
m

)
.

Proof. This is proved by invoking the definition of the Jacobi Symbol and by
observing that n 7→ (−1)(n−1)/2 and n 7→ (−1)(n2−1)/8 are multiplicative on odd
integers n, and (m,n) 7→ (−1)(m−1)(n−1)/4 is bimultiplicative on pairs of odd inte-
gers. The results then reduce to Thms 13.1, 13.3 and 13.5, respectively. �

13.9. Example. Let us compute
(

67
109

)
again.(

67

109

)
=

(
109

67

)
=

(
42

67

)
=

(
2

67

)(
21

67

)
= (−1)

(
67

21

)
= −

(
4

21

)
= −1

In general, using Jacobi Symbols in the intermediate steps, we can compute Le-
gendre Symbnols (or, of course, Jacobi Symbols) much in the same way as we
compute a GCD; we only have to take care to take out powers of 2 when they
appear.
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14. Another Proof of Quadratic Reciprocity

Gauss found seven or eight different proofs of the law of quadratic reciprocity in
his life. Here is another one, which is more algebraic in flavor, and explains why
p∗ occurs in a natural way.

14.1. Definition. Let p be an odd prime, and set ζ = exp(2πi/p) ∈ C. For a ∈ Z
prime to p, we define the “Gauss Sum”

ga =

p−1∑
j=1

(
j

p

)
ζaj ∈ Z[ζ] .

14.2. Proposition. The Gauss Sum has the following properties.

(1) ga =

(
a

p

)
g1 for a ⊥ n.

(2) g2
1 = p∗.

(3) For an odd prime q 6= p, we have gq
1 ≡ gq mod q.

(The congruence takes place in the ring Z[ζ].)

Proof.

(1) We have (
a

p

)
ga =

p−1∑
j=1

(
aj

p

)
ζaj =

p−1∑
k=1

(
k

p

)
ζk = g1 .

(note that k = aj also runs through a complete set of representatives of
the primitive residue classes mod p.)

(2) We compute

g2
1 =

p−1∑
j,k=1

(
jk

p

)
ζj+k =

p−1∑
j,m=1

(
m

p

)
ζj(1+m)

=

p−1∑
m=1

(
m

p

) p−1∑
j=1

ζj(1+m) =

(
−1

p

)
p−

p−1∑
m=1

(
m

p

)
= p∗

(where k = jm; note that
(

jk
p

)
=
(

j2m
p

)
=
(

m
p

)
. Also note that∑p−1

j=0 ζ
ja = 0 if p - a and = p otherwise, and that

∑p−1
m=1

(
m
p

)
= 0.)

(3) Mod q, we have

gq
1 =

(
p−1∑
j=1

(
j

p

)
ζj

)q

≡
p−1∑
j=1

(
j

p

)q

ζjq =

p−1∑
j=1

(
j

p

)
ζqj = gq .

�
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14.3. Remark. By property (2) above, we have that

g1 = ±√p if p ≡ 1 mod 4 and g1 = ±i√p if p ≡ 3 mod 4.

It is then a natural question to ask which of the two signs is the correct one.
Gauss was working on this question for quite a long time, until he finally was able
to prove that the sign is always “+”. (Also for this statement, he found several
different proofs in his life.) If p ≡ 3 mod 4, this has for example the following
consequence. It is not hard to see that in this case

S(p) =

p−1∑
a=1

a

(
a

p

)
= −hp

with some integer h. The fact that g1 = +i
√
p then implies that h is positive.

This can be interpreted as saying that quadratic nonresidues mod p (between 1
and p − 1) are larger on average than quadratic residues. (If p > 3, then h is
the “class number of positive definite binary quadratic forms of discriminant −p”,
which is known to be positive, since it counts something. On the other hand, what
one really proves is that

h =
ig1

p
√
p

p−1∑
a=1

a

(
a

p

)
,

which implies that S(p) = ∓hp, and so the sign of the Gauss sum determines the
sign of S(p).)

14.4. Proof of the Quqdratic Reciprocity Law.

On the one hand, gq =

(
q

p

)
g1. On the other hand, mod q, we have

gq ≡ gq
1 = g1(g

2
1)

(q−1)/2 = g1(p
∗)(q−1)/2 ≡ g1

(
p∗

q

)
(by Euler’s criterion). Taking both together, we see that(

q

p

)
g1 ≡

(
p∗

q

)
g1 .

Now we multiply by g1 and use that g2
1 = p∗ is prime to q, so that we can cancel

it from both sides. This gives (
q

p

)
≡
(
p∗

q

)
mod q

and then equality.

15. Sums of Squares

In this section we address the question which positive integers can be written as
a sum of two, three, four, . . . squares.

Let us first look at sums of two squares. Let

S = {x2 + y2 : x, y ∈ Z}
= {0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, . . . } .

It is clear that every square is in S. Also, it is easy to see that if n ≡ 3 mod 4,
then n /∈ S (recall that a square is either ≡ 0 or ≡ 1 mod 4). Furthermore, we
have the following.
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15.1. Lemma. The set S is closed under multiplication:
if m,n ∈ S, then mn ∈ S.

Proof. Note that

(x2 + y2)(u2 + v2) = (xu∓ yv)2 + (xv ± yu)2 .

�

What is behind this formula is the following.

|x+ iy|2 = x2 + y2 and |αβ|2 = |α|2|β|2 .

Because of the multiplicative structure of S, it makes sense to look at the set of
prime numbers that are in S. It is clear that p /∈ S if p ≡ 3 mod 4. Obviously,
2 ∈ S, and from the list of the first few elements of S, it appears that p ∈ S if
p ≡ 1 mod 4.

15.2. Theorem. If p ≡ 1 mod 4 is a prime number, then p ∈ S.

Proof. We know that −1 is a square mod p, hence there are a ∈ Z, k ≥ 1 such
that a2 +1 = kp. We can take |a| ≤ (p− 1)/2, hence we can assume that k < p/4.

Now let k ≥ 1 be minimal such that there are x, y ∈ Z with x2 + y2 = kp. We
want to show that k = 1. So assume k > 1. Let u ≡ x mod k, v ≡ y mod k with
|u|, |v| ≤ k/2. Then

u2 + v2 = kk′

with 1 ≤ k′ ≤ k/2. (Note that k′ 6= 0 because k - p, as 1 < k < p.) Now

xu+ yv ≡ x2 + y2 ≡ 0 mod k , xv − yu ≡ xy − yx = 0 mod k

and (xu+ yv)2 + (xv − yu)2 = (x2 + y2)(u2 + v2) = k2 k′p. If we let

x′ =
xu+ yv

k
, y′ =

xv − yu

k
,

then (x′)2 +(y′)2 = k′p and k′ < k, contradicting our choice of k. So we must have
had k = 1. �

The technique of proof use here is called “descent” and goes back to Fermat. The
name comes from the fact that we “descend” from one value of k to a smaller one.

By what we know so far, we have already proved one direction of the following
result characterizing the elements of S.

15.3. Theorem. A positive integer n can be represented as a sum of two squares
if and only if for every prime p | n with p ≡ 3 mod 4, the exponent with which p
appears in the factorization of n is even.

Proof. If n is of the specified form, then n = p1 · · · prm
2 with primes pj = 2 or

pj ≡ 1 mod 4. Since by the above, all factors in this product are in S and S is
closed under multiplication, n ∈ S.

Now assume that n ∈ S and that we already know that all m ∈ S with m < n
are of the specified form. Let p ≡ 3 mod 4 be a prime number dividing n. Write
n = x2 + y2. We claim that p divides both x and y. It then follows that n = p2m
with m = (x/p)2 + (y/p)2 ∈ S, so we are done by induction.
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To show that p divides x and y, assume that (for example), p does not divide x.
Then there is a ∈ Z with ax ≡ 1 mod p, and we get

0 ≡ a2n = (ax)2 + (ay)2 ≡ 1 + (ay)2 mod p ,

contradicting the fact that −1 is not a square mod p. So pmust divide x and y. �

For three squares, the criterion is simpler (but we will not prove it).

15.4. Theorem. A positive integer can be represented as a sum of three squares
if and only if it is not of the form 4km where m ≡ 7 mod 8.

It is easy to see that a number n = 4km with m ≡ 7 mod 8 is not a sum of three
squares. First note that if a sum x2 + y2 + z2 is divisible by 4, then x, y, z have
to be even. This implies that 4n is a sum of three squares if and only if n is.
So we can assume that k = 0. Finally, mod 8, a square is 0, 1 or 4, so a sum
of three squares can never be ≡ 7 mod 8. The hard part of the proof is to show
that every n not of the given form actually is a sum of three squares. Part of the
difficulty comes from the fact that the set of sums of three squares is not closed
under multiplication: 3 and 5 are sums of three squares, but 15 is not.

15.5. Four Squares. It might therefore seem rather hopeless to look for an iden-
tity for four squares analogous to

(xu∓ yv)2 + (xv ± yu)2 = (x2 + y2)(u2 + v2) ,

but in fact there is a good reason why one exists. The quaternion algebra, a 4-
dimensional R-algebra, is a beautiful analog of the 2-dimensional algebra C; it was
discovered by Hamilton. It is defined to be

H := {a+ ib+ cj + dk : a, b, c, d ∈ R} ,

with the noncommutative multiplication rules

i2 = j2 = k2 = −1,

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j .

One can then define a “norm” map

N(a+ ib+ cj + dk) := (a+ ib+ cj + dk)(a− ib− cj − dk) = a2 + b2 + c2 + d2 ,

and it is easy to check that the norm is multiplicative. When one writes out what
this means, one discovers the identity

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2)

= (aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2

+ (aC + cA− bD + dB)2 + (aD + dA+ bC − cB)2 .

In light of this, the set of integers representable by four squares must be closed
under multiplication. In fact:
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15.6. Theorem (Lagrange). All positive integers are sums of four squares.

Proof. By the identity stated above, it suffices to show that all primes p are sums
of four squares. We do this by descent, imitating the proof of the Two Squares
Theorem. First note that, applying Lemma 15.7 below, we can find integers
a, b, c, d and k such that a2 + b2 + c2 + d2 = kp and 1 ≤ k < p (taking d = 0, say).
If k = 1 we are done. Otherwise, let A,B,C,D be the integers determined by

A ≡ −a mod k, |A| ≤ k/2
B ≡ b mod k, |B| ≤ k/2
C ≡ c mod k, |C| ≤ k/2
D ≡ d mod k, |D| ≤ k/2

Thus A2 +B2 +C2 +D2 ≤ k2. If equality holds, A, B, C and D must each equal
k/2 or −k/2. In that case a, b, c and d are each congruent to k/2 modulo k, which
means k2 divides a2 +b2 +c2 +d2 = kp. But that is not possible because 1 < k < p
and p is prime. Hence A2 + B2 + C2 +D2 = kk′ with 1 ≤ k′ < k. Applying the
magic identity, we have

k2k′p = (a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2)

= (aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2

+ (aC + cA− bD + dB)2 + (aD + dA+ bC − cB)2 .

Consider the right hand side: the latter three terms, and hence all four terms, are
divisible by k2. Dividing both sides by k2, we obtain a representation of k′p as a
sum of four squares, which completes one step of the descent. As already noted,
at each step we have 1 ≤ k′ < k. So, after a finite number of steps of the descent
we must obtain k′ = 1. This completes the proof. �

15.7. Lemma. Let p be an odd prime. Then there are integers u, v such that
u2 + v2 + 1 ≡ 0 mod p.

Proof. The statement is equivalent to the following: there are ū, v̄ ∈ Fp such that
ū2 = −v̄2 − 1. Now let

X = {ū2 : ū ∈ Fp} and Y = {−v̄2 − 1 : v̄ ∈ Fp} ,

then #X = #Y = (p + 1)/2. Since #X + #Y = p + 1 > p = #Fp, X and Y
cannot be disjoint, which proves the claim. �

16. Geometry of Numbers

In this section, we will learn about a nice method to solve number theoretical
problems using geometry. The main result was discovered by Hermann Minkowski.
The basic idea is that if we have a sufficiently nice and sufficiently “large” set
in Rn, then it will contain a non-zero point with integral coordinates. For the
applications, it is convenient to use more general “lattices” than the integral points,
so we have to introduce this notion first.
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16.1. Definition. A lattice Λ ⊂ Rn is the set of all integral linear combinations
of a set of basis vectors v1, . . . , vn of Rn. In particular, Λ is a subgroup of the
additive group Rn. The set

F =
{ n∑

j=1

tjvj : 0 ≤ tj < 1 for all j
}

is called a fundamental parallelotope for Λ. ∆(Λ) = vol(F ) = | det(v1, . . . , vn)| is
the covolume of Λ.

The most important property of F is that every vector v ∈ Rn can be written
uniquely as v = λ + w with λ ∈ Λ and w ∈ F . In other words, Rn is the disjoint
union of all translates F + λ of F by elements of Λ.

16.2. Example. The standard example of a lattice is Λ = Zn ⊂ Rn, which is
generated by the standard basis e1, . . . , en of Rn and has covolume ∆(Zn) = 1.

In some sense, this is the only example: if Λ = Zv1 + · · ·+Zvn ⊂ Rn is any lattice,
then Λ is the image of Zn under the invertible linear map T : Rn → Rn that sends
ej to vj. The covolume ∆(Λ) is then | det(T )|.

16.3. Proposition. Let Λ ⊂ Rn be a lattice, and let Λ′ ⊂ Λ be a subgroup of finite
index m. Then Λ′ is also a lattice, and ∆(Λ′) = m∆(Λ).

Proof. As an abstract abelian group, Λ ∼= Zn. By the structure theorem for finitely
generated abelian groups, there is an isomorphism φ : Λ → Zn that sends Λ′ to
a1Z×· · ·×anZ with nonnegative integers a1, . . . , an. Since the index m of Λ′ in Λ
is finite, we have a1 · · · an = m. Let v1, . . . , vn be the generators of Λ that are sent
to the standard basis of Zn under φ. Then Λ′ = Za1v1 + · · ·+ Zanvn ⊂ Rn, so Λ′

is a lattice. Furthermore,

∆(Λ′) = | det(a1v1, . . . , anvn)| = a1 · · · an | det(v1, . . . , vn)| = m∆(Λ) .

�

16.4. Corollary. Let φ : Zn → M be a group homomorphism onto a finite
group M . Then the kernel of φ is a lattice Λ, and ∆(Λ) = #M .

Proof. By the standard isomorphism theorem, we have Zn/ kerφ ∼= M , hence
Λ = kerφ is a subgroup of the lattice Zn of finite index #M . The claim follows
from Prop. 16.3 and ∆(Zn) = 1. �

Now we are ready to state and prove Minkowski’s Theorem.

16.5. Theorem (Minkowski). Let Λ ⊂ Rn be a lattice, and let S ⊂ Rn be a
symmetric (i.e., S = −S) and convex subset such that vol(S) > 2n∆(Λ). Then S
contains a nonzero lattice point from Λ.

Proof. In a first step, we show that X = 1
2
S has to intersect one of its translates

under elements of Λ. Let F be a fundamental parallelotope for Λ, and for λ ∈ Λ,
set

Xλ = F ∩ (X + λ) .

By the fundamental property of F , we get that

X =
∐
λ∈Λ

(Xλ − λ)
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(i.e., X is a disjoint union of translates of the Xλ). Hence∑
λ

vol(Xλ) = vol(X) = 2−n vol(S) > ∆(Λ) = vol(F ) ,

and so the sets Xλ cannot be all disjoint (because they then would not fit into F ).
So there are λ 6= µ such that Xλ ∩Xµ 6= ∅. Shifting by −µ, we see that

X ∩ (X + λ− µ) 6= ∅ .

Let x be a point in the intersection. Then 2x ∈ S and 2x− 2(λ−µ) ∈ S. Since S
is symmetric, we also have 2(λ − µ) − 2x ∈ S. Then, since S is also convex, the
midpoint of the linesegment joining 2x and 2(λ− µ)− 2x ∈ S must also be in S.
But this midpoint is λ− µ ∈ Λ \ {0}, and the statement is proved. �

Let us use this result to re-prove the essential results on sums of two and four
squares.

16.6. Theorem. Let p ≡ 1 mod 4 be a prime. Then p is a sum of two squares.

Proof. We need a lattice Λ and a set S. Let u be a square root of −1 mod p, and
set

Λ = {(x, y) ∈ Z2 : x ≡ uy mod p} .
Then Λ is a lattice in R2, and ∆(Λ) = p (we can think of Λ as the kernel of the
composition

Z2 −→ F2
p −→

F2
p

〈(ū, 1)〉
which is a surjective group homomorphism onto a group of order p). For the set
S, we take the open disk

S = {(ξ, η) ∈ R2 : ξ2 + η2 < 2p} .
Then vol(S) = π · 2p = 2πp > 4p = 22∆(Λ), and so by Thm. 16.5, there is some
nonzero (x, y) ∈ Λ ∩ S. Now for each (x, y) ∈ Λ, we have that

x2 + y2 ≡ (uy)2 + y2 = y2(1 + u2) ≡ 0 mod p .

So p divides x2 + y2; on the other hand, 0 < x2 + y2 < 2p by the definition of S.
So we must have x2 + y2 = p. �

Now let us consider the case of four squares. From Lemma 15.7, we know that for
every odd prime p, there are integers u and v such that p divides 1 + u2 + v2.

16.7. Theorem. Let p be an odd prime. Then p is a sum of four squares.

Proof. We need again a lattice Λ and a set S. For S, we should obviously take a
suitable open ball:

S = {(ξ1, ξ2, ξ3, ξ4) ∈ R4 : ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 < 2p} .
What is the volume of S? Here it is useful to know the general formula for the
volume of the n-dimensional unit ball; it is

vol(Bn) =
πn/2(

n
2

)
!

(where for odd n, the factorial satisfies the usual recurrence (x+ 1)! = x! (x+ 1),
and one has (−1/2)! =

√
π). For n = 4, we get π2/2 for the volume of the unit

ball, hence vol(S) = π2(2p)2/2 = 2π2p2.
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From this, we can already see that the lattice should have covolume p2. This
means that we need a 2-dimensional subspace of F4

p on which x2
1 + x2

2 + x2
3 + x2

4

vanishes. One such subspace is given by

V = 〈(1, ū, v̄, 0), (0,−v̄, ū, 1)〉 :

if (ā, āū− b̄v̄, āv̄ + b̄ū, b̄) is a general element of V , then

ā2 + (āū− b̄v̄)2 + (āv̄ + b̄ū)2 + b̄2

= ā2(1 + ū2 + v̄2) + b̄2(v̄2 + ū2 + 1) + 2āb̄(−ūv̄ + v̄ū)

= 0 .

If Λ is the kernel of Z4 → F4
p → F4

p/V , then for (x1, x2, x3, x4) ∈ Λ, we have

(x̄1, x̄2, x̄3, x̄4) ∈ V , hence p divides x2
1 + x2

2 + x2
3 + x2

4. For the covolume, we have
∆(Λ) = #(F4

p/V ) = p2. Since vol(S) = 2π2p > 16p2, the proof can be concluded
in the same way as before. �

17. Ternary Quadratic Forms

In the preceding sections, we have seen some quadratic forms.

17.1. Definition. An n-ary quadratic form is a homogenous polynomial of de-
gree 2 in n variables (here, the coefficients will always be integers, but one can
consider quadratic forms over any ring). For n = 2, we have binary quadratic
forms; they have the general form

Q(x, y) = a x2 + b xy + c y2 .

For n = 3, we have ternary quadratic forms

Q(x, y, z) = a x2 + b y2 + c z2 + d xy + e yz + f zx ,

and so on.

So far, we have been asking about representations of numbers by a quadratic form
Q, i.e., whether it is possible to find a given integer as the value of Q at some
tuple of integers.

Another question one can ask is whether a given quadratic form has a nontrivial
zero, i.e., whether there exist (in the case of ternary forms, say) integers x, y, z, not
all zero, such that Q(x, y, z) = 0. This is what we will look into now. For binary
forms, this question is not very interesting; it boils down to deciding whether or
not the form is the product of two linear forms with integral coefficients, which
is the case if and only if the discriminant b2 − 4ac of the form is a square. For
ternary forms, however, this is an interesting problem. Note that we can always
assume that solutions are primitive (i.e., gcd(x, y, z) = 1): common divisors can
always be divided out.

17.2. Definition. Let Q be a quadratic form in n variables; then it can be given
by a symmetric matrix MQ whose off-diagonal entries can be half-integers, such
that Q(x) = x>MQx. Then detQ = det(MQ) is called the determinant of Q, and
discQ = (−1)n−122bn/2c detQ is called the discriminant of Q; the discriminant is
always an integer. (The reason for the power of 2 appearing in the definition of
disc(Q) is that the discriminant then also makes sense in characteristic 2.)

For example,
disc(a x2 + b xy + c y2) = b2 − 4 ac
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and

disc(a x2 + b y2 + c z2 + d xy + e yz + f zx) = 4 abc+ def − ae2 − bf 2 − cd2 .

A quadratic formQ is non-degenerate if discQ 6= 0, otherwise it is called degenerate
or singular. In this latter case, there is a linear transformation of the variables
that results in a quadratic form involving fewer variables (choose an element in
the kernel of MQ as one of the new basis vectors . . . ).

17.3. Some Geometry. Ternary quadratic forms correspond to conic sections in
the plane. If we are looking for solutions toQ(x, y, z) = 0 in real numbers such that
z 6= 0 (say), we can divide by z2 and set ξ = x/z, η = y/z to obtain Q(ξ, η, 1) = 0,
the equation of a conic section in R2. (If we want to include the solutions with
z = 0, we have to consider the conic section in the projective plane.) In this setting,
nontrivial primitive integral solutions to Q(x, y, z) = 0 correspond to rational
points (points with rational coordinates) on the conic. This correspondence is
two-to-one: to the point (x/z, y/z) (in lowest terms) there correspond the two
solutions (x, y, z) and (−x,−y,−z).
For example, if we take Q(x, y, z) = x2 + y2 − z2, then it corresponds to the
unit circle in the xy plane, and the solutions (in this case, Pythagorean Triples)
correspond to the rational points on the unit circle (there are no solutions with
z = 0). In fact, it is easy to describe them all: fix one point, say (−1, 0), and
draw a line with rational slope t = u/v through it. It will intersect the circle
in another point, which will again have rational coordinates. Conversely, if we
take some rational point on the circle, the line connecting it to (−1, 0) will have
rational slope. We see that the rational points are parametrized by the rational
slopes (including∞ = 1/0 for the vertical tangent at (−1, 0); this line gives (−1, 0)
itself). The same kind of argument can be used quite generally.

17.4. Theorem. Let Q(x, y, z) be a non-degenerate ternary quadratic form that
has a primitive integral solution (x0, y0, z0). Then there are binary quadratic forms
Rx, Ry and Rz such that, up to scaling, all integral solutions of Q(x, y, z) = 0 are
given by

(Rx(u, v), Ry(u, v), Rz(u, v))

with integers u, v.

Proof. We first assume that Q = y2 − xz. Then we can clearly take

Rx(u, v) = u2 , Ry(u, v) = uv , Rz(u, v) = v2 .

(Dividing by z2, we have (y/z)2 = x/z; put y/z = u/v and clear denominators.)

Now assume that (x0, y0, z0) = (1, 0, 0). Then

Q(x, y, z) = b y2 + c z2 + d xy + e yz + f zx .

If we set

x = bX + e Y + c Z , y = −dX − f Y , z = −d Y − f Z ,

then Q(x, y, z) = − disc(Q)(Y 2−XZ), as is easily checked. By the first case (note
that disc(Q) 6= 0), this means that

Rx(u, v) = b u2 + e uv+ c v2 , Ry(u, v) = −d u2−f uv , Rz(u, v) = −d uv−f v2

do what we want.
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Finally, we consider the general case. By Prop. 18.6 in the “Introductory Algebra”
notes (Fall 2005), there is a matrix T ∈ GL3(Z) such that (x0 y0 z0) = (1 0 0)T .
Write

(x y z) = (x′ y′ z′)T

and set Q′(x′, y′, z′) = Q(x, y, z); then Q′(1, 0, 0) = Q(x0, y0, z0) = 0. By the
previous case, we have binary quadratic forms R′

x, R
′
y, R

′
z that parametrize the

solutions of Q′. Then

(Rx Ry Rz) = (R′
x R

′
y R

′
z)T

are the binary quadratic forms we want for Q. �

17.5. Example. For Q(x, y, z) = x2 + y2 − z2 and the initial solution (−1, 0, 1),
we can choose

T =

−1 0 1
0 1 0
0 0 1


and obtain x = −x′, y = y′, z = x′ + z′, so

Q′(x′, y′, z′) = Q(−x′, y′, x′ + z′) = (y′)2 − (z′)2 − 2x′z′ .

The quadratic forms parametrizing the solutions of Q′ are

R′
x(u, v) = u2 − v2 , R′

y(u, v) = 2uv , R′
z(u, v) = 2 v2 .

For our original form Q, we then get

Rx(u, v) = −R′
x(u, v) = v2 − u2

Ry(u, v) = R′
y(u, v) = 2uv

Rz(u, v) = R′
x(u, v) +R′

z(u, v) = u2 + v2

This is exactly the well-known parametrization of the Pythagorean Triples.

We see that we can easily find all solutions if we know just one. So there are two
questions that remain: to decide whether a solution exist, and, if so, find one.

18. Legendre’s Theorem

We can always diagonalize a non-degenerate quadratic form by a suitable linear
substitution of the variables (and perhaps scaling, to keep the coefficients integral).
Basically, this comes down to repeatedly completing the square. So, for theoretical
purposes at least, we can assume that our ternary quadratic form is diagonal:

Q(x, y, z) = a x2 + b y2 + c z2 .

In practice, it might be a very bad idea to do this, as the coefficients a, b, c may
be much larger than the coefficients of the original form!

Let us be a bit more formal.
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18.1. Definition. Let Q, Q′ be two ternary quadratic forms. We say that Q
and Q′ are equivalent if

Q′(x, y, z) = λQ(a11x+ a12y + a13z, a21x+ a22y + a23z, a31x+ a32y + a33z)

with λ ∈ Q× and a matrix

T =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈ GL3(Q) .

The above then means that every non-degenerate ternary quadratic form is equiv-
alent to a diagonal one. It is easily seen that Q has nontrivial integral (or equiv-
alently, rational) solutions if and only if Q′ does.

If we want to decide whether Q = ax2+by2+cz2 admits a solution, we can simplify
the problem somewhat. We can, of course, assume that gcd(a, b, c) = 1. If a (say)
is divisible by a square d2, then we can as well move d2 into the x2 term and thus
obtain an equivalent form with smaller coefficients. Proceeding in this way, we
can assume that a, b and c are squarefree.

Also, if two of the coefficients, say b and c, have a common prime divisor p, then
p must divide x. We replace x by px and then divide the form by p, making the
coefficients smaller. In this way, we can also assume that a, b and c are coprime
in pairs. We can summarize these assumptions by saying that abc is squarefree.

18.2. Necessary Conditions for Solubility. We can easily write down a num-
ber of conditions that are necessary for the existence of a solution:

(1) Not all of a, b, and c have the same sign.
(2) If abc is odd, then a, b and c are not equal mod 4.
(3) If a is even (say), then b+ c ≡ 0 or a+ b+ c ≡ 0 mod 8.
(4) If p | a is odd, then −bc is a quadratic residue mod p.
(5) If p | b is odd, then −ca is a quadratic residue mod p.
(6) If p | c is odd, then −ab is a quadratic residue mod p.

For odd primes p such that p - abc, we do not obtain any restrictions in this way:
there are always nontrivial solutions mod p (compare Lemma 15.7; the proof is
more or less the same).

Note that in order to check the conditions, we have to factor the coefficients a,
b and c. It can be shown that this cannot be avoided: if one can find solutions
to (diagonal) ternary quadratic forms, then one can also factor integers, hence
solving ternary quadratic forms is at least as hard as factoring integers.

The surprising fact is that these necessary conditions are already sufficient!

18.3. Theorem (Legendre). Let Q(x, y, z) = a x2+b y2+c z2 with abc squarefree
satisfy the conditions in 18.2. Then there exists a nontrivial solution in integers.

Proof. We will prove this using Minkowski’s Theorem 16.5. Let D = |abc|. Our
first claim is that there is a lattice Λ ⊂ Z3 such that for all (x, y, z) ∈ Λ, 2D
divides Q(x, y, z), and such that ∆(Λ) = 2D. In order to find such a Λ, we
construct lattices Λp for all odd p | D such that p | Q(x, y, z) when (x, y, z) ∈ Λp

and such that ∆(Λp) = p. We will also construct a lattice Λ2 such that 2 or 4
divides Q(x, y, z) for all (x, y, z) ∈ Λ2 (according to whether abc is odd or even)
and such that ∆(Λ2) = 2 or 4. Then Λ =

⋂
p|D Λp will do what we want.
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Now let p be an odd prime divisor of a (similarly for b or c). By assumption, there
exists some up ∈ Z such that p divides bu2

p + c. Let

Λp = {(x, y, z) ∈ Z3 : y ≡ upz mod p} .

It is easily checked that Λp does what we want.

Now assume that abc is odd. Then we let

Λ2 = {(x, y, z) ∈ Z3 : x+ y + z ≡ 0 mod 2} .

If a (say) is even and b+ c ≡ 0 mod 4, we let

Λ2 = {(x, y, z) ∈ Z3 : x ≡ y + z ≡ 0 mod 2} ;

if b+ c ≡ 2 mod 4, we let

Λ2 = {(x, y, z) ∈ Z3 : x ≡ y ≡ z mod 2} .

It is again easily checked that Λ2 has the required properties in each case.

Now assume that the sign of c differs from that of a and b. Then we take for S
the elliptic cylinder

S = {(ξ, η, ζ) ∈ R3 : |a|ξ2 + |b|η2 < 2D and |c|ζ2 < 2D} .

We find that

vol(S) = π
2D√
|ab|

2

√
2D√
|c|

=
4
√

2πD
√
D√

D
= 4

√
2πD > 16D = 8∆(Λ) .

Hence by Thm. 16.5, there is a nonzero element (x, y, z) in Λ ∩ S. Since it is in
Λ, Q(x, y, z) is a multiple of 2D. Since |Q(x, y, z)| =

∣∣(|a|x2 + |b|y2) − |c|z2
∣∣ and

both terms in the difference are < 2D, we find that |Q(x, y, z)| < 2D. Together,
these imply that Q(x, y, z) = 0. �

Note that the ellipsoid given by |a|ξ2 + |b|η2 + |c|ζ2 < 2D would be too small for
the proof to work. Note also that we did not need to assume that solutions mod 4
or mod 8 exist. This is a general feature: one can always leave out one “place” in
the conditions — either conditions mod powers of 2, or some odd prime, or the
“infinite place”, which here gives rise to the condition on the signs. The resaon
behind this is essentially quadratic reciprocity, which leads to the fact that the
number of places where the conditions fail is always even. In the above proof, one
could use the mod 4/mod 8 conditions to come up with a lattice of covolume 4D
giving divisibility by 4D; then the ellipsoid would be sufficiently large, and we
need not require the sign condition on the coefficients!

There is also a proof by descent (in fact, that was how Legendre originally proved
his theorem).

18.4. Corollary. If a x2 + b y2 + c z2 = 0 has a nontrivial solution in integers,
then it has one such that

max{|a|x2 , |b| y2 , |c| z2} ≤ 4π−2/3|abc| < 1.865|abc| ,

or equivalently,

|x| ≤ 2π−1/3
√
|bc| , |y| ≤ 2π−1/3

√
|ca| , |z| ≤ 2π−1/3

√
|ab| .
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Proof. With 2|abc| instead of 4π−2/3|abc|, this follows from the preceding proof.
Now note that this proof will still work if in the definition of S, we replace 2D by
αD with α > 4π−2/3. Since S contains only finitely many lattice points, there is
one solution such that

max{|a|x2 , |b| y2 , |c| z2} < α|abc|
for all α > 4π−2/3, which implies the claim. �

In fact, more is true.

18.5. Theorem (Holzer). If a x2 + b y2 + c z2 = 0 (with abc squarefree) has a
nontrivial solution in integers, then it has one such that

max{|a|x2 , |b| y2 , |c| z2} ≤ |abc| ,
or equivalently,

|x| ≤
√
|bc| , |y| ≤

√
|ca| , |z| ≤

√
|ab| .

To get this (when a, b > 0 and c < 0, say), one assumes that a given solution has

|z| >
√
ab and constructs a new one from this with smaller |z|. So the solution

with smallest |z| must have |z| ≤
√
ab; the bounds on x and y then follow.

19. p-adic Numbers

19.1. Motivation. In many circumstances, one wants to consider statements for
all powers of some prime number p. For example, if a polynomial equation has
(nontrivial) integral solutions, it necessarily has (nontrivial) solutions modulo all
powers of p. We also considered (nontrivial) solutions in real numbers. Now R is
a field, but Z/pnZ is only a ring (finite, which is nice) and not even an integral
domain when n ≥ 2. Therefore it is desirable to work instead in a structure
that is an integral domain or a field and at the same time captures statements
about all powers of p simultaneously. This can be done by “passing to the limit”
in a suitable way and leads to the ring Zp of p-adic integers and the field Qp of
p-adic numbers. Our statement about nontrivial solutions mod pn for all n can
then simply be expressed by saying that there is a (nontrivial) solution in Zp (or
in Qp).

Consider, for example, the equation x2 + 7 = 0 modulo powers of 2. Solutions are
given in the following table.

mod 21 : x ≡ 1

mod 22 : x ≡ 1, 3

mod 23 : x ≡ 1, 3, 5, 7

mod 24 : x ≡ 3, 5, 11, 13

mod 25 : x ≡ 5, 11, 21, 27

It is not hard to see that for n ≥ 3, there are always 4 solutions mod 2n. If Z/2nZ
were a field, this would not be possible: in a field, a quadratic equation has at most
two solutions. However, two of the four are sort of spurious: they do not “lift” to
solutions mod 2n+1. Now if we pass to the limit and only consider solutions that
can be lifted indefinitely, then we find two solutions, as expected.
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19.2. Definition. The ring Zp of p-adic integers is

Zp = {(an) : an ≡ an+1 mod pn for all n ≥ 1} ⊂
∞∏

n=1

Z/pnZ .

There is a canonical inclusion Z ↪→ Zp, given by

a 7−→ (ā, ā, ā, . . . ) .

Now we need some structural information on the ring Zp.

19.3. Theorem. Zp is an integral domain. It only has one maximal ideal, pZp,
and all non-zero ideals have the form pnZp for some n ≥ 0. (In particular, Zp is
a PID and therefore a UFD.) Its unit (or multiplicative) group is Z×

p = Zp \ pZp.

Proof. (a) pZp is a maximal ideal. We show that Zp/pZp
∼= Z/pZ; since the latter

is a field, the claim follows. Consider the map

Zp/pZp 3 (a1, a2, . . . ) + pZp 7−→ a1 ∈ Z/pZ .
It is a well-defined ring homomorphism and obviously surjective. The homomor-
phism Z → Zp induces a homomorphism Z/pZ → Zp/pZp, which is inverse to the
map above, hence we have an isomorphism.

(b) We have of course that Z×
p ⊂ Zp \ pZp (an element in a maximal ideal cannot

be a unit). Let us show that we actually have equality. So take u ∈ Zp \ pZp. If
u = (u1, u2, . . . ), each un is invertible in Z/pnZ, so there are unique vn such that
unvn = 1; then v = (v1, v2, . . . ) ∈ Zp and uv = 1.

(c) We now see easily that pZp is the only maximal ideal. For assume that m is
another maximal ideal. Then m\pZp 6= ∅, and by (b), this means that m contains
a unit, hence m = Zp, a contradiction.

(d) We have
⋂

n≥1 p
nZp = {0}. For a = (a1, a2, . . . ) ∈ pnZp implies aj = 0 for

j ≤ n.

(e) If a ∈ Zp \ {0}, then there is some n ≥ 0 and some u ∈ Z×
p such that a = pnu:

By (d), there is some n such that a ∈ pnZp \ pn+1Zp. Then a = pnu where
u ∈ Zp \ pZp = Z×

p .

(f) Let I ⊂ Zp be a non-zero ideal. Then, by (d) again, there is some n such that
I ⊂ pnZp, but I 6⊂ pn+1Zp. So there is some a ∈ I such that a = pnu with u ∈ Z×

p .

Since u is invertible, pn = au−1 ∈ I as well, and we find pnZp ⊂ I, hence I = pnZp.

(g) Zp is an integral domain. Suppose ab = 0 with a = (a1, a2, . . . ), b = (b1, b2, . . . ).
Assume a 6= 0; then a = pNu with some N ≥ 0, u ∈ Z×

p . Then ab = 0 implies

pNb = 0. Now this says that pNbn+N = 0 in Z/pN+nZ, so bn ≡ bN+n ≡ 0 mod pn,
hence bn = 0, for all n. �

Part (e) in the proof motivates the following definition.

19.4. Definition. For a = (a1, a2, . . . ) ∈ Zp define the p-adic valuation

vp(a) = max({0} ∪ {n ≥ 1 : an = 0}) ∈ {0, 1, . . . ,∞} .
Then a = pvp(a)u with u ∈ Z×

p , if a 6= 0 (and vp(0) = ∞) and the valuation is
compatible with the p-adic valuation on Z.

Define the p-adic absolute value by

|0|p = 0 , |a|p = p−vp(a) if a 6= 0.
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19.5. Definition. The field Qp of p-adic numbers is the field of fractions of Zp.

We have that Qp = Zp[1/p], and we can extend the p-adic valuation and absolute
value to Qp: vp(a/b) = vp(a)− vp(b) and |a/b|p = |a|p/|b|p; then for all a ∈ Q×

p ,

a = pvp(a)u

with some u ∈ Z×
p .

19.6. Lemma.

(1) |ab|p = |a|p |b|p .

(2) |a+ b|p ≤ max{|a|p, |b|p} ≤ |a|p + |b|p .

Proof. Easy. �

In particular, | · |p defines a metric on Zp and Qp: d(a, b) = |a − b|p. It is a fact
that with this metric, Zp is a compact metric space, and Z is dense in Zp. Also,
Qp can be identified with the completion of Q with respect to the p-adic absolute
value | · |p (in the same way as R is the completion of Q with respect to the usual
absolute value | · | = | · |∞).

19.7. Remark. Define |x|∞ = |x| for x ∈ R. Then for all a ∈ Q×,∏
v=p,∞

|a|v = 1 .

This is easy to see. Despite its apparent triviality, this Product Formula (and
its generalization to algebraic number fields) plays an important role in number
theory.

19.8. Lemma.

(1) Every series
∑∞

n=0 cnp
n with cn ∈ Zp converges in Zp.

(2) Every a ∈ Zp can be written uniquely in the form

a =
∞∑

n=0

cnp
n

with cn ∈ {0, 1, . . . , p− 1}.

Proof. Exercise. �

As an example, we have in Z3

−2 = 1 + 2 · 3 + 2 · 32 + 2 · 33 + . . . .

19.9. Proposition. Let F ∈ Z[X1, . . . , Xk].

(1) ∀n ≥ 1∃(x1, . . . , xk) ∈ Zk : pn | F (x1, . . . , xk)

⇐⇒ ∃(x1, . . . , xk) ∈ Zk
p : F (x1, . . . , xk) = 0 .

(2) If F is homogeneous, we have

∀n ≥ 1∃(x1, . . . , xk) ∈ Zk \ (pZ)k : pn | F (x1, . . . , xk)

⇐⇒ ∃(x1, . . . , xk) ∈ Zk
p \ (pZp)

k : F (x1, . . . , xk) = 0

⇐⇒ ∃(x1, . . . , xk) ∈ Qk
p \ {0} : F (x1, . . . , xk) = 0 .
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Proof. To prove the nontrivial direction (“⇒”), consider the rooted tree with
nodes (n, (x̄1, . . . , x̄k)) (at distance n from the root (0, (0, . . . , 0))) for solutions
modulo pn, where nodes at levels n and n + 1 are connected if the solution at
the upper level reduces to the solution at the lower level mod pn (compare the
motivating example at the beginning of the section, where p = 2, k = 1, and
F = X2

1 + 7). Then use König’s Lemma (see below) that says that an infinite,
finitely branched rooted tree has an infinite path starting at the root. This path
corresponds to a k-tuple of p-adic integers. �

In order to complete this proof, we need to prove König’s Lemma.

19.10. Theorem (König’s Lemma). Let T be an infinite, but finitely branched,
rooted tree. Then T has an infinite branch (starting at the root).

Proof. We construct an infinite branch inductively. Let T1, . . . , Tm be the finitely
many subtrees connected to the root of T . Since T is infinite, (at least) one of
the Tj must be infinite. Now the first step of the branch we construct leads to the
root of Tj, and we continue from there. Since Tj is again infinite, this construction
will never come to an end, thus leading to an infinite branch in T . �

Note that the proof needs the Axiom of Choice, unless there is some additional
structure that we can use in order to pick one of the infinite subtrees. In our
application, we can represent the nodes by tuples of integers between 0 and pn

and then pick the smallest one with respect to lexicographical ordering. So we can
do without the Axiom of Choice here.

19.11. Corollary. Zp is compact (and hence complete) in the topology induced by
the metric d(x, y) = |x− y|p.

Proof. Since Zp is a metric space, we can start with an open covering consisting of
open balls Bx(r) = {y ∈ Zp : |x− y|p < r}. Let T0 be the rooted tree whose nodes
at level n correspond to the elements of Z/pnZ, with node a at level n+1 connected
to node b at level n if and only if a reduces to b mod pn. Note that an open ball
Bx(p

−n) corresponds to the subtree of T0 whose root is the node x mod pn+1. Let
T be the tree obtained from T0 by removing the subtrees (except their roots)
corresponding to the balls in the given open covering. An infinite branch in T
would correspond to an element of Zp that is not in any of the open balls; since
the balls form a covering, such an infinite branch does not exist. By König’s
Lemma, T must then be finite, and the finitely many leaves of T correspond to a
finite subcovering of the given covering. �

The following result is one of the most important ones in the theory of p-adic
numbers.

19.12. Lemma (Hensel’s Lemma). If f ∈ Z[x] (or Zp[x]) and f has a simple
zero a mod p, then f has a unique (simple) zero α ∈ Zp such that α ≡ a mod p.

Proof. Strangely enough, the idea of this proof comes from Newton’s method for
approximating roots of polynomials. In the present context, closeness is measured
by the p-adic absolute value | · |p.
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First note that if α + pZp = a ∈ Fp (for α ∈ Zp), then f ′(α) reduces to f ′(a) 6= 0
in Fp; therefore f ′(α) is invertible in Zp, and vp(f

′(α)) = 0. Now let α0 ∈ Zp be
any element such that its image in Fp is a, and define recursively

αn+1 = αn − f ′(αn)−1f(αn) .

I claim that (αn) converges in Zp. Note that

f(y)− f(x) = (y − x)f ′(x) + (y − x)2g(x, y)

with a polynomial g ∈ Zp[x, y], and so

f(αn+1) = f(αn) + (αn+1 − αn)f ′(αn) + (αn+1 − αn)2g(αn, αn+1)

= f ′(αn)−2f(αn)2g(αn, αn+1)

This shows that vp(f(αn+1)) ≥ 2vp(f(αn)), and since vp(f(α0)) ≥ 1, we have
vp(f(αn)) ≥ 2n. This implies that vp(αn+1 − αn) ≥ 2n, and so (by the ultrametric
triangle inequality), the sequence (αn) is a Cauchy sequence. Since Zp is complete,
(αn) converges; let α be the limit. Note that ᾱ = a, since vp(α − α0) ≥ 1. Also,
polynomials are continuous (in the p-adic topology), so, passing to the limit in the
recursion above, we obtain

α = α− f ′(α)−1f(α) =⇒ f(α) = 0 .

To show uniqueness, assume that α and α′ are two distinct zeros of f both reducing
to a mod p. Then 1 ≤ n = vp(α

′ − α) <∞. But we have

0 = f(α′)− f(α) = (α′ − α)f ′(α) + (α′ − α)2g(α′, α)

and so

f ′(α) = −(α′ − α) g(α′, α) .

But vp(f
′(α)) = 0, whereas the valuation of the right hand side is at least n > 0,

a contradiction. �

Here is an easy consequence.

19.13. Lemma. Let p be an odd prime and a ∈ Zp such that p - a. Then a is a
square in Zp if and only if a is a quadratic residue mod p.

If a ∈ Z2 is odd, then a is a square in Z2 if and only if a ≡ 1 mod 8.

Proof. Necessity is clear in both cases. For odd p, we consider f(x) = x2 − a. If
a is a quadratic residue mod p, then there is some s ∈ Fp such that f(s) = 0; also
f ′(s) = 2s 6= 0. By Hensel’s Lemma 19.12, sufficiency follows.

For p = 2, we consider f(x) = 2x2 +x−A, where a = 8A+1. Obviously, 2 | f(A)
and 2 - f ′(A) = 4A+1, hence again by Hensel’s Lemma 19.12, f has a root α ∈ Zp.
But then we also have (4α+ 1)2 − a = 8f(β) = 0. �

For example, this shows that −7 is a square in Z2.
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19.14. Lemma. Let a ∈ Q×
p and write a = pnu with u ∈ Z×

p (and n = vp(a)).
Then a is a square in Qp if and only if n is even and u is a square in Zp.

Proof. Sufficiency is clear. If a = b2, then n = vp(a) = 2vp(b) must be even, and
u = (b/pn/2)2 ∈ Z×

p is a square in Qp. But we have vp(b/p
n/2) = 0, so u is the

square of an element in Zp. �

We can deduce that for a ternary quadratic form ax2 + by2 + cz2 with abc square-
free, the necessary conditions in 18.2 imply (and therefore are equivalent to the
statement) that there are nontrivial solutions in R and in Qp for all primes p. This
is clear for R. For p an odd prime, the conditions give us a solution mod p such
that p - gcd(x, y, z), which then lifts to a solution in Zp. For p = 2, the conditions
allow us to find a solution mod 8, which then lifts to Z2.

19.15. Theorem. Let Q(x, y, z) be a non-degenerate ternary quadratic form. Then
Q(x, y, z) = 0 has a primitive integral solution if and only if it has nontrivial so-
lutions in real numbers and in p-adic numbers for all primes p.

Proof. There is a diagonal ternary quadratic form Q′ = ax2 + by2 + cz2 with abc
squarefree that is equivalent to Q. It is clear that Q′ has nontrivial solutions in Q,
R or Qp if and only if Q does. So Q′ satisfies the conditions in 18.2. By Legendre’s
Theorem 18.3, Q′ has a primitive integral solution, hence a nontrivial soution in Q.
Therefore, Q also has a nontrivial solution in Q, which can be scaled to give a
primitive integral solution. �

This result is called the Hasse or Local-Global Principle for ternary quadratic
forms. It states that the existence of “local” solutions (in R, Qp) implies the
existence of “global” solutions (in Q). In fact, this is valid for quadratic forms in
general, but the proof is nontrivial for four or more variables.

Note that this implies that a quadratic form in five or more variables has a primi-
tive integral solution if and only if it is indefinite (i.e., has nontrivial real solutions):
there are always p-adic solutions for all p in this case (Exercise!).

Note also that the Hasse Principle does not hold in general. A famous coun-
terexample (due to Selmer) is given by 3x3 + 4y3 + 5z3 = 0, which has nontrivial
solutions in R and all Qp (Exercise), but not in Q (hard).

20. The Hilbert Norm Residue Symbol

There is a connection between the various necessary “local” conditions for the
existence of a solution for a non-degenerate ternary quadratic form. Since every
non-degenerate ternary quadratic form is equivalent to one of the form

a x2 + b y2 − z2

(first diagonalize, then scale the form and/or the variables appropriately), it suf-
fices to consider such forms.
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20.1. Definition (Hilbert Norm Residue Symbol). Let a, b ∈ Z \ {0}. For a
prime p, set (a, b

p

)
= 1

if a x2 + b y2 = z2 has a non-trivial solution in Qp. Otherwise, we set(a, b
p

)
= −1 .

Similarly, (a, b
∞

)
= 1

if there is a non-trivial real solution, and −1 otherwise.

Theorem 19.15 then says that a x2 + b y2 = z2 has a non-trivial solution in Q if
and only if (a, b

v

)
= 1 for all “places” v = p,∞.

20.2. Theorem. Let a, b ∈ Z \ {0}. Then for almost all primes p,(a, b
p

)
= 1 ,

and we have the Product Formula∏
v=p,∞

(a, b
v

)
= 1 .

(Here v runs through all primes and ∞.)

This means that the number of “places” v such that the local condition fails is
always even.

There are always solutions in Qp if p is odd and does not divide ab. By definition,
this implies that only finitely many of the symbols can be −1.

The product formula then is equivalent to the Law of Quadratic Reciprocity and
its supplements.

20.3. Useful Fact. Here is a simple but useful fact: for all nonzero a, b, c ∈ Z
and all “places” v, we have (ab, ac

v

)
=
(ab,−bc

v

)
.

This is because the forms ab x2 + ac y2 − z2 and ab x2 − bc y2 − z2 are equivalent
(multiply the form by −ab, then scale x and y to remove the squares in the
coefficients, then exchange x and z).

In the following, we will assume that a and b are squarefree. This is no loss of
generality, since we can achieve this by scaling the variables.
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20.4. Values of the Hilbert Norm Residue Symbol, I. Let p be an odd
prime. Assume u and v are not divisible by p. Then we have(u, v

p

)
= 1 ,

(u, vp
p

)
=
(u
p

)
,
(up, v

p

)
=
(v
p

)
,
(up, vp

p

)
=
(−uv

p

)
.

By an easy generalization of Lemma 15.7, we get the first equality. The next two
are equivalent, the symbol being obviously symmetric. We note that any non-
trivial solution of u x2 + vp y2 = z2 mod p2 must have x and z not divisible by p.
But then a solution mod p forces u to be a quadratic residue mod p. On the other
hand, if u is a quadratic residue mod p, then there is a solution (x, y, z) = (1, 0, z)
in Zp by Lemma 19.13. For the last equality, we make use of 20.3, with a = p,
b = u, c = v; we are then back in the previous case.

20.5. Values of the Hilbert Norm Residue Symbol, II. For p = 2, the
situation is the most complicated. Let u and v be odd. Then(u, v

2

)
= (−1)

u−1
2

v−1
2 ,

(u, 2v
2

)
= (−1)

u2−1
8 (−1)

u−1
2

v−1
2 ,(2u, v

2

)
= (−1)

v2−1
8 (−1)

u−1
2

v−1
2 ,

(2u, 2v

2

)
= (−1)

u2v2−1
8 (−1)

u−1
2

v−1
2 .

This can be verified with the help of Lemma 19.13, in a similar spirit as before.

20.6. Values of the Hilbert Norm Residue Symbol, III. Finally, we have to
deal with p = ∞. Here the situation is simple:(a, b

∞

)
= −1 ⇐⇒ a < 0 and b < 0 .

20.7. Proof of the Product Formula. We want to prove that∏
v=p,∞

(a, b
v

)
= 1 .

We first observe that the symbols are bimultiplicative:(aa′, b
v

)
=
(a, b
v

)(a′, b
v

)
and

(a, bb′
v

)
=
(a, b
v

)(a, b′
v

)
.

This follows from the values given above (but there is really a deeper reason for
that). It therefore suffices to prove the product formula in each of the following
cases (where p and q are distinct odd primes):

(a, b) = (−1,−1), (−1, 2), (−1, p), (2, 2), (2, p), (p, p), (p, q) .

Of these, the cases (2, 2) and (p, p) can be reduced to (−1, 2) and (−1, p), respec-
tively, using 20.3 again. The remaining cases are shown in the following table.
(All symbols not shown here are +1.)

(a, b)
(a, b
∞

) (a, b
2

) (a, b
p

) (a, b
q

)
(−1,−1) −1 −1 +1 +1

(−1, 2) +1 +1 +1 +1

(−1, p) +1 (−1)
p−1
2

(−1
p

)
+1

(2, p) +1 (−1)
p2−1

8

(
2
p

)
+1

(p, q) +1 (−1)
p−1
2

q−1
2

(
q
p

) (
p
q

)
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From this, we see that the product formula for the Hilbert Norm Residue Symbol is
equivalent to the Law of Quadratic Reciprocity, together with its two supplements.
In some sense, the Product Formula is a nicer way of stating these facts, because
it is just one simple statement instead of three different ones.

21. Pell’s Equation and Continued Fractions

21.1. The Equation. Let d > 0 be a nonsquare integer. The equation

x2 − d y2 = 1 or x2 − d y2 = ±1 ,

to be solved in integers x and y, is known as Pell’s Equation. The name goes back
to Euler, who for some reason mistakenly assumed that Pell had contributed to
the theory of its solution. In fact, it was Euler who did most of that (but already
Fermat had studied it), so “Euler’s Equation” might be more appropriate. . .

Exercise: Find all solutions when d ≤ 0 or d is a square!

Let us look at some examples. For d = 2, we have the following solutions (of
x2 − dy2 = 1) with x, y ≥ 0.

x 1 3 17 99 577 3363 19601
y 0 2 12 70 408 2378 13860

For d = 3, we have
x 1 2 7 26 97 362 1351
y 0 1 4 15 56 209 780

And for d = 409, the first two solutions are

x 1 25052977273092427986049
y 0 1238789998647218582160

We observe that there are nontrivial solutions, and also that they grow quite fast
(the number of digits seems to grow linearly, so the numbers grow exponentially).
The sequence of solutions seems to go on, so it appears that there are infinitely
many solutions. However, the first nontrivial solution may be rather large.

21.2. Some structure. When we studied sums of two squares, we made use of
the fact that

x2 + y2 = (x+ iy)(x− iy) = |x+ iy|2 .
Likewise, we can study the ring

Rd = Z[
√
d] = {a+ b

√
d : a, b ∈ Z} ⊂ R

and observe that
x2 − d y2 = (x+ y

√
d)(x− y

√
d) .

More generally, if R is a ring that as an additive group is a finitely generated free
Z-module (and similary for a ring that is a finite-dimensional F -algebra for some
field F ) and α ∈ R, then left multiplication by α,

mα : R 3 x 7−→ αx ∈ R
defines an endomorphism of R as a Z-module; its determinant is called the norm
of α,

N(α) = det(mα) .

Since mαβ = mα ◦mβ, it follows that

N(αβ) = det(mαβ) = det(mα ◦mβ) = det(mα) det(mβ) = N(α)N(β) ,

i.e., the norm is multiplicative.
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For Rd, we obtain, representing mα by the matrix Mα with respect to the Z-basis
1,
√
d:

N(x+ y
√
d) =

∣∣∣∣ x y
dy x

∣∣∣∣ = x2 − d y2 .

Since (by the formula for the inverse of a 2× 2 matrix)

M−1

x+y
√

d
= N(x+ y

√
d)−1Mx−y

√
d ,

we see that N(x+ y
√
d) = ±1 if and only if x+ y

√
d ∈ R×

d is a unit. This means
that what we are interested in is essentially the unit group of the ring Rd. In
particular, we see that the solution sets

Sd = {(x, y) ∈ Z2 : x2 − dy2 = 1} and Td = {(x, y) ∈ Z2 : x2 − dy2 = ±1}
have a natural structure as abelian groups under the “multiplication”

(x, y) ∗ (x′, y′) = (xx′ + dyy′, xy′ + yx′) .

Also, Sd is a subgroup of Td of index at most 2.

Let
φ : Sd −→ R× , (x, y) 7−→ x+ y

√
d .

Then 1/φ(x, y) = x− y
√
d and therefore

x =
φ(x, y) + 1/φ(x, y)

2
, y =

φ(x, y)− 1/φ(x, y)

2
√
d

.

This shows that φ is injective and that φ(x, y) > 0 if and only if x > 0, and
φ(x, y) > 1 if and only if x, y > 0. Since (−1, 0) ∈ Sd, the homomorphism

Sd → {±1}, (x, y) 7→ sign(x+ y
√
d) is onto, and the subgroup

S+
d = {(x, y) ∈ Sd : x > 0}

is of index 2 in Sd.

21.3. Lemma. Assume that S+
d is nontrivial and let (x1, y1) be the solution with

minimal x1 such that x1, y1 > 0. Then (x1, y1) generates S+
d .

Proof. Note that α = φ(x1, y1) > 1 and that there is no (x, y) ∈ S+
d such that

1 < φ(x, y) < α (since 0 < x′ < x, 0 ≤ y, y′ implies φ(x, y) < φ(x′, y′)). Now let
(x, y) ∈ S+

d be arbitrary and set β = φ(x, y). Since α > 1, there is n ∈ Z such
that αn ≤ β < αn+1. This implies that

1 ≤ α−nβ = φ((x, y) ∗ (x1, y1)
−n) < α

and so (x, y) ∗ (x1, y1)
−n = (1, 0), hence (x, y) = (x1, y1)

n. �

The idea of this proof is that a discrete subgroup of (R,+) (take the logarithm to
get into the additive group of R) is either trivial or cyclic.

We see that if there are nontrivial solutions, then Sd
∼= Z/2Z × Z as an abstract

abelian group. It remains to show that there are nontrivial solutions.

21.4. Diophantine approximation. Note that a solution to x2 − d y2 = 1 will
provide a very good rational approximation of

√
d:∣∣∣√d− x

y

∣∣∣ =
|x2 − dy2|

y2|
√
d+ x/y|

<
1

2
√
dy2

So the question is whether such good approximations always exist. That we can
get at least close is shown by the following result.
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Lemma. Let α ∈ R \ Q be an irrational real number. Then there are infinitely
many rational numbers p/q such that∣∣∣α− p

q

∣∣∣ < 1

q2
.

Proof. We make use of the “box principle”. Let 〈x〉 = x−bxc denote the fractional
part of x ∈ R. Then of the n+ 1 numbers

0, 〈α〉, 〈2α〉, . . . , 〈nα〉

in the half-open interval [0, 1), there must be two that fall into the same subinterval
[k/n, (k + 1)/n) for some 0 ≤ k < n. So there are 0 ≤ l < m ≤ n such that

1

n
> |〈mα〉 − 〈lα〉| = |(m− l)α− (bmαc − blαc)| .

Setting p = bmαc − blαc and q = m− l, we find

0 <
∣∣∣α− p

q

∣∣∣ < 1

nq
≤ 1

q2
.

(Note that α is irrational, so not equal to p/q.) By taking n larger and larger,
we find a sequence of fractions p/q such that |α − p/q| < 1/q2 and q →∞ (since
|α− p/q| → 0). �

21.5. Remarks.

(1) The property that the set{p
q
∈ Q :

∣∣∣α− p

q

∣∣∣ < 1

q2

}
is infinite in fact characterizes the irrational numbers among the real num-
bers α. In fact, if α = r/s, then |α − p/q| is either zero or else at least
1/qs, so 0 < |α− p/q| < 1/q2 implies q < s.

(2) If α ∈ R is algebraic (i.e., α is a root of a monic polynomial with rational
coefficients), then α cannot approximated much better by rational numbers
than in the result above. More precisely, for every ε > 0, there are only
finitely many fractions p/q such that∣∣∣α− p

q

∣∣∣ < 1

q2+ε
.

This is known as Roth’s Theorem (or also the Thue-Siegel-Roth Theorem,
since Thue and Siegel obtained similar, but weaker results earlier) and a
quite deep result. It implies for example that an equation

F (x, y) = m

where F ∈ Z[x, y] is homogeneous of degree ≥ 3 and 0 6= m ∈ Z can have
only finitely many integral solutions. (Such equations are called Thue
Equations; Thue used his result mentioned above to prove this statement.)
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21.6. Application to Pell’s Equation. In order to show that nontrivial solu-
tions to Pell’s Equation exist, we use the result we just prove as a starting point
and apply the box principle two more times. First let us show the following.

There are infinitely many pairs (x, y) ∈ Z2 such that |x2 − dy2| < 2
√
d+ 1.

Indeed, by Lemma 21.4 there are infinitely many (x, y) such that |x/y−
√
d| < 1/y2

(note that
√
d is irrational, since d is not a square). Then

|x2 − d y2| = y2
∣∣∣x
y
−
√
d
∣∣∣(x
y

+
√
d
)
< 2

√
d+

∣∣∣x
y
−
√
d
∣∣∣ < 2

√
d+

1

y2
≤ 2

√
d+ 1 .

Now there are only finitely many integers m such that |m| < 2
√
d+ 1. Therefore

there must be one m such that there are infinitely many pairs (x, y) such that
x2 − dy2 = m (note the use of the box principle).

Now the idea is to “divide” two suitably chosen solutions to x2 − dy2 = m to
obtain a solution of x2 − dy2 = 1. To this end, we use the box principle another
time to conclude that there must be two pairs (x, y) and (u, v) with 0 < x < u,
0 < y, 0 < v, x2 − dy2 = u2 − dv2 = m and x ≡ u, y ≡ v mod m. Then

(xu− d yv)2 − d(uy − xv)2 = m2

and

xu− d yv ≡ x2 − d y2 = m ≡ 0 mod m, uy − xv ≡ xy − xy = 0 mod m,

so ( |xu− d yv|
m

,
uy − xv

m

)
∈ S+

d

is a nontrivial solution (otherwise u/v = x/y which implies (u, v) = (x, y), since
y, v > 0 and x ⊥ y, u ⊥ v). We have proved:

21.7. Theorem. Pell’s Equation has nontrivial solutions. The solution set Sd has
a natural structure as an abelian group, and as such it is isomorphic to Z/2Z×Z.

The generator (x1, y1) of S+
d with x1, y1 > 0 is called the fundamental solution of

the equation. All other solutions then are of the form

±(xn, yn) with xn + yn

√
d = (x1 + y1

√
d)n , n ∈ Z .

Note that for n large,

xn ≈
(x1 + y1

√
d)n

2
, yn ≈

(x1 + y1

√
d)n

2
√
d

,

which explains the observed linear growth in the number of digits in the solutions.

21.8. Continued fractions. The question remains how to actually find the fun-
damental solution to a given Pell Equation, or more generally, how to find the good
rational approximations to irrational numbers that we are promised in Lemma 21.4.
The answer is provided by continued fractions.

Let α ∈ R \Q be an irrational real number again. We set α0 = α and then define
recursively for n ≥ 0

an = bαnc , αn+1 =
1

αn − an

.

Note that all αn are irrational, so we can never have αn = an. Note also that
αn > 1 and therefore an ≥ 1 as soon as n ≥ 1.
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We then have

α = a0 +
1

a1 +
1

a2 +
1

· · ·+ 1

an−1 +
1

αn

and we denote the nested fraction on the right hand side by

[a0; a1, a2, . . . , an−1, αn]

(where a0, a1, . . . , an−1, αn can be arbitrary numbers). Note that we have the
recurrence

[a0] = a0 , [a0; a1, . . . , an−2, an−1, x] = [a0; a1, . . . , an−2, an−1 + 1/x] (n ≥ 1) .

We call the formal expression

[a0; a1, a2, a3, . . . ]

the continued fraction expansion of α.

Given integers a0, a1, a2, . . . (with a1, a2, · · · ≥ 1), it is clear that [a0; a1, . . . , an] is
a rational number. Let us find a way to compute its numerator and denominator
efficiently.

21.9. Lemma. Set p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0 and define recursively

pn+1 = an+1pn + pn−1 , qn+1 = an+1qn + qn−1 .

Then we have the following.

(1) pn+1qn − pnqn+1 = (−1)n for all n ≥ −2. In particular, pn ⊥ qn.

(2) [a0; a1, . . . , an] = pn/qn for all n ≥ 0.

(3) If [a0; a1, a2, . . . ] is the continued fraction expansion of α, then for n ≥ 0,∣∣∣α− pn

qn

∣∣∣ < 1

qnqn+1

≤ 1

q2
n

.

Also, sign(α− pn/qn) = (−1)n.

(4) Under the assumptions of (3), we have

p0

q0
<
p2

q2
<
p4

q4
< · · · < α < · · · < p5

q5
<
p3

q3
<
p1

q1
.

The fractions pn/qn are called the convergents of the continued fraction expansion
[a0; a1, a2, . . . ].

Proof.

(1) This is an easy induction.

(2) We claim that more generally, for n ≥ −1 we have

[a0; a1, . . . , an, x] =
pnx+ pn−1

qnx+ qn−1

.
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This is clear for n = −1: x = (p−1x + p−1)/(q−1x + q−2). Assuming it is
OK for n, we find

[a0; a1, . . . , an, an+1, x] = [a0; a1, . . . , an, an+1 + 1/x]

=
pn

(
an+1 + 1

x

)
+ pn−1

qn
(
an+1 + 1

x

)
+ qn−1

=
(an+1pn + pn−1)x+ pn

(an+1qn + qn−1)x+ qn

=
pn+1x+ pn

qn+1x+ qn

Specializing x to an+1, the statement of the lemma follows.

(3) We have α = [a0; a1, . . . , an, αn+1]. Using the claim established above, we
obtain

α− pn

qn
=
αn+1pn + pn−1

αn+1qn + qn−1

− pn

qn
=

(−1)n

qn(αn+1qn + qn−1)
.

This proves the assertion about the sign. Also, αn+1 > an+1, hence
αn+1qn + qn−1 > an+1qn + qn−1 = qn+1, so∣∣∣α− pn

qn

∣∣∣ < 1

qnqn+1

.

(4) Note that

pn+2

qn+2

− pn

qn
=
an+2(pn+1qn − pnqn+1)

qnqn+2

=
an+2(−1)n

qnqn+2

is positive for n even and negative for n odd.

�

21.10. Corollary. Let a0, a1, a2, · · · ∈ Z with a1, a2, · · · ≥ 1. Then the sequence
(pn/qn)n, where

pn

qn
= [a0; a1, a2, . . . , an] ,

converges to a limit α, and [a0; a1, a2, . . . ] is the continued fraction expansion of α.

Proof. By the above, we have |pn+1/qn+1 − pn/qn| = 1/(qnqn+1). Also, qn ≥ n− 1
for n ≥ 2, hence

∑
n≥0 1/(qnqn+1) converges. This implies that the sequence is

Cauchy and therefore has a limit α. Since a0 ≤ pn/qn < a0 +1 for n ≥ 3, we must
have a0 = bαc. Then

α1 =
1

α− a0

= lim
n→∞

[a1; a2, . . . , an] .

Continuing, we find successively that the an are the numbers making up the con-
tinued fraction expansion of α. �

In order to conclude that we can use the continued fraction expansion of
√
d in

order to find the fundamental solution to a Pell Equation, we need to know that
any sufficiently good approximation appears as a convergent.
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21.11. Lemma. Let α ∈ R \Q, and let p/q ∈ Q such that∣∣∣α− p

q

∣∣∣ < 1

2q2
.

Then p/q is a convergent of the continued fraction expansion of α.

Proof. We first consider the case q = 1. Then p/q = p is the integer closest to α,
so p = a0 = p0/q0 (and we are done) or p = a0 +1. In the latter case, a0 +1/2 < α,
and we find α1 < 2, so a1 = 1 and p1/q1 = a0 + 1 = p, so we are done again.

For q ≥ 2, we claim a slightly stronger result, namely that |α−p/q| < 1/(q(2q−1))
implies that p/q = pn/qn for some n. We can assume that p/q is in lowest terms.

We will prove this by induction on q. First observe that we can assume that
0 < α < 1 (since shifting everything by a0 does not affect the assumption nor
the conclusion). Then we must have 0 < p/q < 1 as well: first we cannot have
equality on either end since q > 1. Second, assume that p/q < 0. Then

1

q(2q − 1)
>
∣∣∣α− p

q

∣∣∣ > ∣∣∣p
q

∣∣∣ ≥ 1

q
,

which contradicts q ≥ 2. Similarly if p/q > 1. So we have 0 < p < q. We now
observe that ∣∣∣ 1

α
− q

p

∣∣∣ =
∣∣∣α− p

q

∣∣∣ q
pα

<
1

pα(2q − 1)
.

Also,

α(2q − 1) ≥
(p
q
− 1

q(2q − 1)

)
(2q − 1) = 2p− p

q
− 1

q
≥ 2p− 1 ,

so that ∣∣∣ 1
α
− q

p

∣∣∣ < 1

p(2p− 1)
.

If p ≥ 2, we are therefore done by induction. If p = 1, then we have

2q − 2

q(2q − 1)
=

1

q
− 1

q(2q − 1)
< α <

1

q
+

1

q(2q − 1)
=

2

2q − 1

and so

q − 1
2
<

1

α
< q +

q

2(q − 1)
< q + 1 .

If a1 = q, then p1/q1 = 1/q and we are done. Otherwise, a1 = q − 1 and a2 = 1
and then p2/q2 = 1/q and we are done again. �

21.12. Theorem. Let d ≥ 1 be a nonsquare integer. Then the fundamental solu-
tion to the Pell Equation

x2 − d y2 = 1

is given by (x1, y1) = (pn, qn), where n ≥ 0 is minimal such that p2
n − d q2

n = 1.

Here, pn/qn are the convergents of the continued fraction expansion of
√
d.

Proof. We have seen that any nontrivial positive solution (x, y) satisfies∣∣∣√d− x

y

∣∣∣ < 1

2
√
dy2

≤ 1

2y2
.

By the previous lemma, every such solution must be of the form (x, y) = (pn, qn),

where pn/qn is a convergent of the continued fraction expansion of
√
d. Since all

an are positive (including a0), the sequence of numerators p0, p1, . . . is strictly
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increasing. Therefore the fundamental solution (which is the smallest positive
solution) must be the first one we encounter. �

21.13. Example. Let us illustrate the result by an example. Take d = 31, then
5 <

√
31 < 6. We obtain the following table.

n αn an pn qn p2
n − 31 q2

n

0
√

31 5 5 1 −6

1 1√
31−5

=
√

31+5
6

1 6 1 5

2 6√
31−1

=
√

31+1
5

1 11 2 −3

3 5√
31−4

=
√

31+4
3

3 39 7 2

4 3√
31−5

=
√

31+5
2

5 206 37 −3

5 2√
31−5

=
√

31+5
3

3 657 118 5

6 3√
31−4

=
√

31+4
5

1 863 155 −6

7 5√
31−1

=
√

31+1
6

1 1520 273 1

8 6√
31−5

=
√

31 + 5

We find the fundamental solution (1520, 273). Note that if we had first found a
solution to x2 − d y2 = −1, we can simply “square” it to find the fundamental
solution to x2 − d y2 = +1.

Note also that it can be shown (Exercise!) that p2
n − d q2

n = ±1 if and only if

αn+1 =
√
d+ a with an integer a (which must be b

√
dc unless n = −1).

22. Elliptic Curves

After we have looked at equations of degree 2 in some detail, let us now move up
one step and consider equations of degree 3. We will restrict our attention to the
case of two variables. It turns out that a very interesting class of such equations
can be brought into the following form.

y2 = x3 + Ax+B ,

where A and B are rational numbers (which we can even assume to be integers,
by scaling the variables x and y appropriately). We will see that we should require
that 4A3 + 27B2 6= 0. In this case, the equation above is said to define an elliptic
curve E.

As this is a Number Theory course, we will be interested in the rational solutions
of the equation (also called rational points on E). However, it makes sense to
study solutions (or points) with coordinates in any field. For example, we can
easily visualize the set of real points as a curve in the xy-plane.
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x

y

0 1

1

y2 = x3 − x+ 1

x

y

0 1

1

y2 = x3 − x

It turns out that it is advantageous to “complete” (or “close up”, or “compactify”)
the curve by not considering it in the usual affine plane, but by considering it in
the projective plane, which is obtained by adding a “point at infinity” to the affine
plane for each direction (represented by a family of parallel lines). For a formal
definition, see below.

What it comes down to is the following. We replace x and y in the equation by x/z
and y/z, respectively, and then multiply by an appropriate power of z to obtain a
homogeneous polynomial. For our elliptic curve, we obtain

y2 = x3 + Ax+B −→
(y
z

)2

=
(x
z

)3

+ A
x

z
+B −→ y2z = x3 + Axz2 +B z3 .

The points are now given by triples (ξ, η, ζ), but we have to identify triples that
are related by scaling with a constant factor (and (0, 0, 0) is not allowed). We
write (ξ : η : ζ) for the point given by (ξ, η, ζ); then we have

(ξ : η : ζ) = (λξ : λη : λζ)

for all (ξ, η, ζ) 6= (0, 0, 0) and λ 6= 0. We find the points in the affine xy-plane
as (ξ : η : 1); all points with ζ 6= 0 come up in that way. The remaining points
(with ζ = 0) are the “points at infinity”; the point (ξ : η : 0) corresponds to the
direction of lines parallel to ηx = ξy.

The set of all these points with ξ, η, ζ rational is denoted P2(Q), where P2 stands
for the projective plane. We then set

E(Q) = {(ξ : η : ζ) ∈ P2(Q) : η2ζ = ξ3 + Aξζ2 +Bζ3} ;

this is the set of rational points on the elliptic curve E. Note that this set is always
non-empty: it contains the point

O = (0 : 1 : 0) ,

which is the only point at infinity on E. (To see this, put z = 0 in the homogeneous
equation for E; we find x3 = 0, so the points at infinity are all of the form
(0 : η : 0). Because of the identification modulo scaling, this is always the same
point (0 : 1 : 0).)
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22.1. Group Structure.
We now want to define a group structure on the points on E, and in particular
on E(Q). For this, we note that a line intersects the curve E in exactly three
points, counting multiplicity. There are some remarks to make here. First of
all, “counting multiplicity” means that a point on E that has the line as its
tangent has to be counted twice (or even three times, when the point is a point of
inflection). Second, some of the points may have coordinates in a larger field (for
example, a line may intersect E(Q) only in one point, even counting multiplicity;
the other two points will then have complex coordinates). Third, some (or all)
of the intersection points may be at infinity. For example, the “line at infinity”
z = 0 intersects E just in the point O = (0 : 1 : 0), which is a point of inflection
with tangent z = 0, and so must be counted three times. (To see that O is an
inflection point, consider the affine plane on which y 6= 0. In terms of the curve
equation, this comes down to setting y equal to 1:

z = x3 + Axz2 +B z3 ;

O then has coordinates (x, z) = (0, 0), and from the equation, we see that the
curve looks very much like z = x3 near the origin.)

But note that when two of the intersection points are rational (or real), then so
must be the third: its x-coordinate (say) is a root of a cubic polynomial with
rational (real) coefficients, and the other two roots are rational (real) numbers.

We now define addition on E by saying that O is the origin (zero element) of the
group and that three points P1, P2, P3 add up to zero if and only if they are the
three points of intersection of E with a line.

Assuming this really defines a group law, how do we find the negative −P of a
point P , and how do we find the sum P +Q of two points?

For the negative, note that O + P + (−P ) = O, so O,P,−P must be the three
points of intersection of E with a line. This line is determined by the two points O
and P (in the affine picture, it is the vertical line through P ), and −P is the third
point of intersection. In terms of coordinates, if P = (ξ, η), then −P = (ξ,−η).
In particular, P = −P , and so 2P = O, if and only if η = 0 (or P = O).

To find the sum, note that P + Q + (−(P + Q)) = O, so −(P + Q) must be the
third point of intersection of E with the line through P and Q. (This line is the
tangent line to E at P when P = Q.) We then find P +Q as the negative of this
point.

It is pretty obvious that the operation defined in this way satisfies all axioms of
an abelian group except associativity. The proof of associativity is a bit involved,
so we skip it here.

22.2. Example. Let us consider a specific curve,

E : y2 = x3 − x+ 1 .

(See the left hand picture on page 51.) There are some obvious points:

±P = (1,±1) , ±Q = (0,±1) , ±R = (−1,±1)

Let us do some computations with them. It is clear that P,Q,R are the points of
intersection of E with the line y = 1, so we have

P +Q+R = O .
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Let us find P − R = P + (−R). For this, we first have to find the line through
P = (1, 1) and −R = (−1,−1); this line is y = x. We use the equation of the line
to eliminate y form the equation of E:

x2 = x3 − x+ 1 ⇐⇒ x3 − x2 − x+ 1 = (x− 1)2(x+ 1) = 0 .

We see that the three points of intersection have x-coordinates 1 (counted twice)
and −1, so (using y = x) the points are P (twice) and −R. This means that the
third point of intersection is P , and

P −R = −P and therefore R = 2P .

Since P +Q+R = 0, we also find that

Q = −3P .

So all the points we listed at the beginning are multiples of P . Let us find some
more multiples. We can compute 4P by doubling 2P . So we have to find the
tangent line to E at 2P = R = (−1, 1). What is its slope? We can find it by
implicit differentiation:

y2 = x3 − x+ 1 =⇒ 2y dy = (3x2 − 1) dx =⇒ dy

dx
=

3x2 − 1

2y
.

So the slope of the tangent at 2P is (3 − 1)/2 = 1, and the line has equation
y = x+ 2. We find

(x+ 2)2 = x3 − x+ 1 ⇐⇒ x3 − x2 − 5x− 3 = (x+ 1)2(x− 3) = 0 ,

so the third point of intersection is −4P = (3, 5), and 4P = (3,−5).

Note that when the line has slope λ, so its equation is y = λx+ µ for some µ, the
cubic polynomial in x we get is of the form

x3 − λ2 x2 + lower order terms .

So λ2 is the sum of the three roots, and we can find the x-coordinate ξ3 of P +Q,
where P = (ξ1, η1), Q = (ξ2, η2), as

ξ3 = λ2 − ξ1 − ξ2 and then the y-coordinate is η3 = −(λξ3 + µ) .

Let us compute 6P in order to see that we can also get non-integral points. The
slope of the tangent at 3P = −Q = (0,−1) is −1/−2 = 1/2, so the line is
y = 1

2
x−1. Hence the x-coordinate of 6P is (1

2
)2−0−0 = 1

4
, and the y-coordinate

is −(1
2
· 1

4
− 1) = 7

8
.

For this curve E, it can be shown that the group E(Q) is infinite cyclic and
generated by P .

Let us now put these things on a more formal basis. In the following, K will be
an arbitrary field (sometimes assumed not to have characteristic 2 or 3).

22.3. Definition.

(1) The affine plane over K is the set

A2(K) = K2 = {(ξ, η) : ξ, η ∈ K} .
(2) The projective plane over K is the set of equivalence classes

P2(K) = (K3 \ {(0, 0, 0)})/ ∼ ,
where the equivalence relation ∼ is given by

(ξ, η, ζ) ∼ (λξ, λη, λζ) for λ ∈ K×.
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We write (ξ : η : ζ) for the equivalence class of (ξ, η, ζ) (and call it a
K-rational point on the projective plane).

Note that we have an injection A2(K) → P2(K), given by (ξ, η) 7→ (ξ : η : 1); its
image is the set of points (ξ : η : ζ) with ζ 6= 0. (On that set, the inverse map is
(ξ : η : ζ) 7→ (ξ/ζ, η/ζ).) Points with ζ = 0 are called points at infinity.

22.4. Definition.

(1) An affine (plane algebraic) curve over K is given by a nonzero polynomial
F ∈ K[x, y].

(2) A projective (plane algebraic) curve C over K is given by a nonzero ho-
mogeneous polynomial F ∈ K[x, y, z]. If F has degree d, then the curve
is said to be of degree d as well. A curve of degree 1 is called a line. We
write

C : F (x, y, z) = 0 .

The set

C(K) = {(ξ : η : ζ) ∈ P2(K) : F (ξ, η, ζ) = 0}

is called the set of K-rational points on C.

(3) If C : F (x, y) = 0 is an affine curve, and the (total) degree of F is d, then

C̃ : F̃ (x, y, z) = 0 where F̃ (x, y, z) = zdF
(x
z
,
y

z

)
is a projective curve of degree d, called the projective closure of C. (Note
that F (x, y) = F̃ (x, y, 1).)

We will only consider projective curves in the following, but it is often convenient to
give an affine equation. The curve under consideration will then be the projecetive
closure of this affine curve.

22.5. Definition.

(1) Let C : F (x, y, z) = 0 be a projective curve over K, P ∈ C(K). The point
P = (ξ : η : ζ) is said to be a singular point of C if

∂F

∂x
(ξ, η, ζ) =

∂F

∂y
(ξ, η, ζ) =

∂F

∂z
(ξ, η, ζ) = 0 .

(2) The curve C is said to be singular, if there is a field K ′ ⊃ K (which can be
taken to be an algebraic extension of K) and a singular point P ∈ C(K ′).
Otherwise, C is said to be regular or smooth.

The motivation behind this definition is that if not all the partial derivatives
vanish, then there is a well-defined tangent line to the curve at the point P , given
by

∂F

∂x
(ξ, η, ζ)x+

∂F

∂y
(ξ, η, ζ) y +

∂F

∂z
(ξ, η, ζ) z = 0 .

Such a point is “nice”, whereas a point without a tangent line is “bad”.

Now we can define what an elliptic curve is.
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22.6. Definition. An elliptic curve over K is a smooth projective curve over K
given by an equation of the form

E : y2z + a1 xyz + a3 yz
2 = x3 + a2 x

2z + a4 xz
2 + a6 z

3

(with a1, a2, a3, a4, a6 ∈ K). When the characteristic of K is not 2 or 3, then by a
suitable linear change of variables, we can put this into the form

E : y2z = x3 + Axz2 +B z3 .

(First complete the square on the left (need to divide by 2), then the cube on the
right (need to divide by 3).)

We will usually just write the affine form of these equations:

y2 + a1 xy + a3 y = x3 + a2 x
2 + a4 x+ a6 , y2 = x3 + Ax+B .

A perhaps better definition is “a smooth projective curve of degree 3 with a spec-
ified K-rational point on it.” It turns out that there is always a (in general
nonlinear) transformation that puts this more general cubic equation into one of
the form above, such that the specified point is the point at infinity O = (0 : 1 : 0).

For the definition to be useful, we need a way to find out whether a given equation
defines a smooth curve.

22.7. Proposition. Assume that K is not of characteristic 2 or 3. A curve

C : y2z = x3 + Axz2 +B z3

is smooth if and only if 4A3 + 27B2 6= 0.

Proof. First assume that P = (ξ : η : ζ) is a singular point. Then ζ 6= 0 (since
the only point at infinity on C is (0 : 1 : 0), which is not singular), so we can take
ζ = 1. Let F (x, y, z) = −y2z + x3 + Axz2 +Bz3. Then the conditions are

∂F

∂x
(ξ, η, 1) = 3ξ2 + A = 0

∂F

∂y
(ξ, η, 1) = −2η = 0

∂F

∂z
(ξ, η, 1) = −η2 + 2Aξ + 3B = 0

Since 2 6= 0 in K, this implies η = 0 and then 2Aξ+3B = 3ξ2+A = 0. Multiplying
the second equation by 4A2 and plugging in the first, we find that 4A3 +27B2 = 0.

Now assume that 4A3 + 27B2 = 0. If A 6= 0, one checks that P = (−3B : 0 : 2A)
is a singular point on C. If A = 0, then B = 0 as well (since 3 6= 0 in K), and
P = (0 : 0 : 1) is singular on C : y2z = x3. �

In order to define the group structure on an elliptic curve, we need a statement
about the intersection of a line and a curve.
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22.8. Proposition. Let L : ax + by + cz = 0 be a line and C : F (x, y, z) =
0 a projective curve of degree d such that L 6⊂ C (i.e., F is not divisible by
ax + by + cz). Then for every sufficiently large field K ′ ⊃ K (we can take K ′ to
be an algebraic closure of K), the intersection L(K ′)∩C(K ′) has exactly d points,
counting multiplicity.

Proof. Here is a sketch of a proof. Not all of a, b, c are zero, so let us assume
without loss of generality that c 6= 0. Then we can solve the equation of L for z:

z = −a
c
x− b

c
y

and plug this into the equqation of C:

F1(x, y) = F
(
x, y,−a

c
x− b

c
y
)

= 0 ,

where F1 is a homogeneous polynomial of degree d in two variables. (Note that
F1 6= 0 since there are points on L on which F does not vanish.) Therefore F1

splits into linear factors over some finite field extension K ′ of K:

F1(x, y) = γ
k∏

i=1

(αix− βiy)
ei

with αi, βi, γ ∈ K ′, αiβj 6= αjβi for i 6= j, ei ≥ 1, and
∑k

i=1 ei = d. The points in
L ∩ C are then

Pi = (cβi : cαi : −aβi − bαi) ∈ L(K ′) ∩ C(K ′) ,

and the statement is true if we count Pi with multiplicity ei. �

22.9. Remark. If, in the situation above, d − 1 of the intersection points are
defined over K (i.e., are in P2(K)), then so is the last, dth, one. The reason for
this is that (assuming for simplicity that y does not divide F1) F1(x, 1) ∈ K[x] is a
polynomial of degree d such that d− 1 of its roots are in K, and therefore the last
root must be in K as well (the sum of the roots is minus a quotient of coefficients
of F1(x, 1) and therefore in K).

Using this remark, we can define the group law (as we did earlier).

22.10. Theorem. Let E be an elliptic curve over K. Then the set E(K) of K-
rational points on E has the structure of an abelian group with zero element O =
(0 : 1 : 0) and addition

P +Q = (P ∗Q) ∗O (and negation − P = P ∗O)

where P ∗ Q denotes the third point of intersection of the line through P and Q
(the tangent line to E at P when P = Q) with E.

We will not give a full proof here, but we note that all axioms other than associa-
tivity are easily verified. To show associativity, it is enough to show that

(P +Q) ∗R = P ∗ (Q+R)

for all triples of points P,Q,R ∈ E(K). If the points are in sufficiently general
position, one can make use of the following fact.
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22.11. Theorem. Let L1, L2, L3 and L′1, L
′
2, L

′
3 be six lines in sufficiently general

position. Let Pij be the point of intersection of Li and L′j. Then every cubic curve
that passes through Pij for all i, j except i = j = 3 also passes through P33.

Proof. Here is a sketch. To pass through a given point P imposes a linear condition
on the coefficients of a general homogeneous cubic polynomial in three variables.
The “sufficiently general position” ensures that the eight conditions we obtain are
linearly independent (this is essentially the definition of “sufficiently general posi-
tion”). Since a general homogeneous polynomial of degree 3 has ten coefficients,
the space of cubics passing through the eight points has dimension two. Now
(writing L1 etc. for the linear form defining L1 etc.) L1L2L3 and L′1L

′
2L

′
3 are two

such cubics, and they are linearly independent. So any F giving a curve passing
through the eight points is a linear combination of these two cubics, and therefore
F vanishes also on P33. �

Now we take L1 = L(P,Q), L2 = L(O,Q∗R), L3 = L(P+Q,R) and L′1 = L(Q,R),
L′2 = L(O,P ∗Q), L′3 = L(P,Q+ R), where L(X, Y ) denotes the line through X
and Y . Then by the theorem above, we find that E passes through P33, which is
therefore the third point of intersection of E with L3 and with L′3. This means
that (P +Q) ∗R = P ∗ (Q+R), as was to be shown.

Note that this proof does not work as described if some of the nine points coincide,
and one either has to consider a whole lot of special cases separately, or use some
sort of “continuity argument” to get rid of them.

22.12. Definition. Let E be an elliptic curve given by a “short Weierstrass Equa-
tion”

y2 = x3 + Ax+B .

Then the number ∆(E) = −16(4A3 + 27B2) is called the discriminant of E.

22.13. Remark. The number −4A3−27B2 is the discriminant of the polynomial
f(x) = x3 + Ax+B, which is defined to be

disc(f) = (α− β)2(β − γ2)(γ − α)2 ,

where α, β, γ are the three roots of f . Therefore the discriminant vanishes if and
only if f has multiple roots.

The strange factor 16 makes things work in characteristic 2: one can define ∆(E)
for “long Weierstrass Equations”

E : y2 + a1 xy + a3 y = x3 + a2 x
2 + a4 x+ a6

by formally transforming it into a short one (using a substitution x 7→ x + α,
y 7→ y + βx + γ) and then taking ∆ of the result. With the factor 16, ∆(E) is a
polynomial in the coefficients a1, . . . , a6, with integral coefficients, and vanishes if
and only if there is a singularity, also when the characteristic is 2 or 3.

As an example, consider y2 − y = x3 − x. What would be the discriminant? We
complete the square on the left and obtain (y − 1/2)2 = x3 − x+ 1/4. Replacing
y − 1/2 by a new y, we have a short Weierstrass Equation, and its discriminant
is −16(4 · (−1)3 + 27 · (1/4)2) = 37. Since this is not divisible by 2, the original
equation defines an elliptic curve over any field of characteristic 2 (in fact, any
field of characteristic different from 37).
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22.14. The rational torsion group. In an abelian group, the subset of elements
of finite order forms a subgroup. Let E be an elliptic curve, then a point P on E
is called a torsion point, if nP = O for some n ≥ 1. The smallest such n is then
the order of P (as usual for group elements). When G is an abelian group, we
write

G[n] = {g ∈ G : ng = 0}
for the n-torsion subgroup of elements killed by n and Gtors =

⋃
n≥1G[n] for the

torsion subgroup of G.

What can the torsion subgroup of E(Q) look like? It is a fact that as groups,

E(C) ∼= (R/Z)2 and E(R) ∼= R/Z or Z/2Z× R/Z
(the first when x3 +Ax+B has only one real root, the second when it has three).
This implies that any finite group of rational torsion points must be of the form
Z/nZ or Z/2Z× Z/2nZ.

The following result tells us that E(Q)tors is finite and therefore must be of one of
these types.

22.15. Theorem (Nagell-Lutz). Let E be given by y2 = x3 +Ax+B, where A
and B are integers. Then for every torsion point P = (ξ, η) ∈ E(Q) \ {O}:

(1) ξ and η are integers.

(2) η = 0 or η2 divides 4A3 + 27B2.

In particular, E(Q)tors is finite: there are only finitely many possible y-coordinates,
and for each y-coordinate, there are at most three corresponding x-coordinates.

Furthermore, this result provides us with an algorithm to find all the torsion points:
first, we find all integral points (x, y) on E such that y2 divides 4A3 +27B2. Then
for each such point P , we compute its multiples nP , n = 2, 3, . . . , until we either
obtain O (then the point is a torsion point, and we will also have found its order),
or we obtain a point that does not belong to the set of points we have determined
in the first step (then P must have infinite order).

Proof. (Sketch) We begin with the easy part, and this is that the first statement
implies the second. Assume P is a torsion point such that 2P 6= O (then P = (ξ, η)
with η 6= 0). We have to show that η2 divides 4A3 + 27B2. Now observe that 2P
is also a torsion point (and 6= O), so by the first statement, its x-coordinate ξ′ is
integral. It is easy to compute

ξ′ =
ξ4 − 2Aξ2 − 8Bξ + A2

4(ξ3 + Aξ +B)
.

Consider the following trivially verified equality:

(3x2 +4A)(x4−2Ax2−8Bx+A2)−(3x3−5Ax−27B)(x3 +Ax+B) = 4A3 +27B2

We plug in ξ for x and divide by η2 = ξ3 + Aξ +B 6= 0 to get

4A3 + 27B2

η2
= 4(3ξ2 + 4A)ξ′ − (3ξ3 − 5Aξ − 27B) ∈ Z .

It is quite a bit harder to prove the first part. First observe the following.

A point P = (ξ, η) ∈ E(Q) \ {O} has the form

P =
( r
t2
,
s

t3

)
where r, s, t ∈ Z with r ⊥ t , s ⊥ t .
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Proof. We look at one prime p at a time and have to show that

vp(ξ) < 0 ⇐⇒ vp(η) < 0 ⇐⇒ vp(ξ) = −2ν , vp(η) = −3ν with ν > 0 .

Now if vp(ξ) < 0, then 2vp(η) = vp(ξ
3 + Aξ + B) = 3vp(ξ) < 0, so vp(η) < 0 and

2vp(η) = 3vp(ξ), which implies the last statement. If vp(ξ) ≥ 0, then vp(η) ≥ 0, so
vp(η) < 0 implies vp(ξ) < 0. This completes the proof. �

The basic idea is now this. Suppose that P = (ξ, η) is not integral. Then ξ =
r/t2, η = s/t3, and t > 1, so there is some prime p dividing t. Let ν = vp(t).

Then I claim that pP = (r′/t′2, s′/t′3) with vp(t
′) = ν + 1. This implies that

the denominators (of the x-coordinates, say) of the points P, pP, p2P, . . . are all
distinct, hence the points are all distinct, hence P cannot have finite order (because
then it would only have finitely many distinct multiples).

The idea for proving the claim is that in the p-adic metric, a large ν in the above
means that ξ and η are large, and hence P is close to O. Then the claim says that
multiplying P by p moves it closer to O.

For a point P = (ξ, η) ∈ E(Q) such that 2P 6= O, we define w(P ) = ξ/η. If
vp(ξ) = −2ν < 0 as above, then vp(w(P )) = ν. It is now possible (and not very
hard) to show that if P1, P2 ∈ E(Q) are points with p dividing the denominators
of their x-coordinates and such that vp(w(Pj)) ≥ ν (j = 1, 2), then

w(P1) + w(P2) ≡ w(P1 + P2) mod p5ν .

By induction, this implies, for w(P ) = ν > 0,

w(mP ) ≡ mw(P ) mod p5ν ,

and from this we get

vp(w(pnP )) = vp(w(P )) + n = ν + n ,

as claimed above. �

22.16. Examples. Consider the curve E : y2 = x3 +1. We find 4A3 +27B2 = 27.
Hence all the torsion points P 6= O have

y(P ) ∈ {0,±1,±3} .
For y = 0, we find x = −1; this gives a point (−1, 0) of order 2. For y = ±1, we
find x = 0, and (0,±1) is a triple intersection point of E with the line y = ±1.
This implies that these points have order 3. The sum (−1, 0) + (0, 1) must then
have order 6, and indeed, for y = 3, we find x = 2 and the points (2,±3) of
order 6.

Note that in general, we have to test the integral points we find whether they
really are torsion points. For example, on y2 = x3 + 3x, there is the integral
point P = (1, 2) the square of whose y-coordinate divides 4A3 + 27B2 = 108. We
find 2P = (1/4,−7/8), therefore P cannot be a torsion point (and this proves
that there are infinitely many rational points on that curve). Let us see what the
torsion subgroup is in this example. The other possibilities for the y-coordinate
are 0,±1,±3,±6. We find the point (0, 0) of order 2, but no other integral points.

Having proved that for each individual elliptic curve, the rational torsion subgroup
is finite, one can ask whether the order of this group is uniformly bounded (the
alternative would be that the group can be arbitrarily large). The answer to this
question is yes.
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22.17. Theorem (Mazur). If E is an elliptic curve over Q, then the torsion
subgroup E(Q)tors is one of the following 15 groups.

Z/nZ for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or

Z/2Z× Z/2nZ for n = 1, 2, 3, 4.

All of these groups occur (even in a one-parameter family of elliptic curves).

The proof of this theorem is far beyond what we can do in this course.

22.18. Reduction mod p. In general, if we have a Weierstrass equation with
integral coefficients, it makes sense to ask whether we obtain an elliptic curve over
the finite field Fp if we reduce the coefficients mod p. Since the discriminant is a
polynomial with integral coefficients in the coefficients of the Weierstrass equation,
we obtain its value for the mod p reduced equation by reducing the discriminant
mod p. This implies that we get an elliptic curve Ep over Fp if and only if the
discriminant is not divisible by p. In this case, we say that p is a prime of good
reduction for our elliptic curve.

In this case, we have the group E(Q) on the one side and the finite group Ep(Fp) on
the other side. Is there any relation between the two? Ideally, we would like to take
a point in E(Q) and reduce its coordinates mod p to get a point in Ep(Fp). There
may be a problem, however, when p divides the denominator of the coordinates.
To see how we can avoid this problem, let us consider reduction mod p of points
in the projective plane.

22.19. Lemma. There is a canonical map ρp : P2(Q) → P2(Fp), which is defined
as follows. Let P = (ξ : η : ζ) ∈ P2(Q). Then we can scale the coordinates to get
P = (ξ′ : η′ : ζ ′) with coprime integers ξ′, η′, ζ ′. Then ρp(P ) = (ξ̄′ : η̄′ : ζ̄ ′).

It is easy to check that the map is well-defined: the only ambiguity in the triple
(ξ′, η′, ζ ′) is a simultaneous sign change, which leads to the same point ρp(P ).
Also, since ξ′, η′, ζ ′ are coprime, at least one of ξ̄, η̄′ and ζ̄ ′ will be non-zero.

We see that the use of projective coordinates eliminates problems with denomina-
tors; this is another advantage of the projective plane over the affine plane.

We can now restrict ρp to the points on our elliptic curve.

22.20. Proposition. Let E be an elliptic curve over Q, given by an equation with
integral coefficients, and let p be a prime of good reduction for E (i.e., such that
p - ∆E). Then

ρp : E(Q) −→ Ep(Fp)

is a group homomorphism.

It is clear that this is well-defined as a map. In order to show that it is a group
homomorphism, one needs to check that the points of intersection of E with a
line are mapped to the points of intersection of Ep with a line, with multiplicities
behaving as they should. This is not hard.

Let P = (r/t2, s/t3) be in the kernel of ρp. To see what this means, we first have
to write P as a point with projective coordinates that are coprime integers. We
get P = (rt : s : t3). This reduces to Ō = (0̄ : 1̄ : 0̄) if and only if t̄ = 0̄, i.e., if and
only if p divides t. We see that ker ρp is the subgroup of E(Q) consisting of O and
the points whose coordinates have denominators divisible by p.



61

22.21. Corollary. If E : y2 = x3 + Ax + B with A,B ∈ Z, and p - ∆E, then the
homomorphism ρp is injective on E(Q)tors.

Proof. By the Nagell-Lutz Theorem 22.15, every point P ∈ E(Q)tors \ {O} has
integral coordinates, hence P /∈ ker ρp. So ker ρp ∩ E(Q)tors = {O}. �

This can be used to bound the size of the torsion subgroup: ρp identifies it with a
subgroup of Ep(Fp); therefore #E(Q)tors must divide #Ep(Fp).

22.22. Example. Consider E : y2 − y = x3 − x. We saw earlier that ∆E = 37.
Counting points, we find #E2(F2) = 5 and #E3(F3) = 7. So the order of E(Q)tors

must divide both 5 and 7, therefore E(Q)tors = {O}.

Integral Points. We know that there can be infinitely many rational points on
an elliptic curve. What about integral points?

22.23. Example. Consider E : y2 = x3 + 17. We find the following integral
points:

(−2,±3) , (−1,±4) , (2,±5) , (4,±9)

(8,±23) , (43,±282) , (52,±375) , (5234,±378661)

The example shows that there can be quite a number of integral points, and it is
clear that this number is not bounded: take any elliptic curve with infinitely many
rational points, then by scaling the variables suitably, we can make as many of
them integral as we like. So the question remains whether any given elliptic curve
can have infinitely many integral points.

22.24. Theorem (Siegel). Let E be an elliptic curve over Q, given by an equation
with integral coefficients. Then E has only finitely many integral points.

This is not easy to prove. Siegel’s proof is not effective: it does not provide
a bound for the coordinates of the integral points. It also does not lead to an
algorithm that determines all integral points. Note that the difficulty is not to
find the points, but to know when we have found all of them. What Siegel proves
is roughly that when there is a very large integral point, then there can be no
integral point that is still very much larger. This leads to a contradiction when we
assume that there are infinitely many integral points. But it does not tell us that
the list we have produced is complete (unless we really find a very large point).

Later, Baker found an effective bound (using his bounds on linear forms in loga-
rithms of algebraic numbers); however this bound is really huge (something like
doubly exponential in the coefficients). So this is a big theoretical improvement,
but it does not lead to a practical algorithm.

However, if we know generators of the group E(Q), then there is a method that,
given a bound, produces a new bound that usually is smaller. Iterating this, one
arrives at a bound that is manageable for most reasonable example cases. So in
practice, we usually can find the set of integral points. For example, it can be
shown that the points we listed above in Example 22.23 are all the integral points
on y2 = x3 + 17.

The Group of Rational Points. The last result I would like to discuss in this
section is the fundamental structure theorem for the group of rational points on
an elliptic curve.
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22.25. Theorem (Mordell-Weil). If E is an elliptic curve over Q, then the
group E(Q) is a finitely generated abelian group.

The result as stated was proved by Mordell in a paper from 1922. Weil later
generalized it to higher-dimensional “abelian varieties” (one-dimensional abelian
varieties are the same as elliptic curves) and arbitrary number fields (i.e., finite
field extensions of Q) instead of Q.

By the general result on the structure of finitely generated abelian groups, this
implies that as abelian groups,

E(Q) ∼= E(Q)tors ⊕ Zr

for some r ≥ 0, which is called the (Mordell-Weil) rank of E(Q). It is an open
problem (but widely believed to be true) whether r can be arbitrarily large. The
latest record example I know of had r ≥ 24, but nobody so far was able to produce
a sequence of elliptic curves whose ranks tend to infinity.

The next question is if and how we can actually determine r for a given elliptic
curve. This is also an open problem: there is no method for which one could prove
that it determines the rank in all cases. There are, however, methods that work
in practice for more or less all examples (with reasonably-sized coefficients). If
one could prove another standard conjecture (“the Shafarevich-Tate group of E is
finite”), then (at least in principle) these methods would find the rank eventually.

Now let me briefly indicate how the theorem is proved. The first step is to prove
the following result (which clearly must hold if E(Q) is finitely generated).

22.26. Theorem (Weak Mordell-Weil Theorem). The group E(Q)/2E(Q) is
finite.

Proof. (Sketch) I will give the idea of the proof in a special case, namely that all
the points of order 2 on E are rational. Then E has an equation of the form

E : y2 = (x− a)(x− b)(x− c)

with integers a, b, c, and the three points of order 2 are (a, 0), (b, 0) and (c, 0).
Note that a, b, c are pairwise distinct.

The idea of the proof is to embed E(Q)/2E(Q) into a group which can be shown
to be finite. To do this, we define a map

ϕ : E −→ Q×/(Q×)2 ×Q×/(Q×)2 ×Q×/(Q×)2

O 7−→ (1, 1, 1)

(ξ, η) 7−→ (ξ − a, ξ − b, ξ − c) if ξ 6= a, b, c

(a, 0) 7−→ ((a− b)(a− c), a− b, a− c)

(b, 0) 7−→ (b− a, (b− a)(b− c), b− c)

(c, 0) 7−→ (c− a, c− b, (c− a)(c− b))

(the values given are representatives of the classes mod (Q×)2). Now I make a
number of claims.

(1) If ϕ(P ) = (α, β, γ), then αβγ is a square (i.e., αβγ = 1 in Q×/(Q×)2).
(2) ϕ is a group homomorphism.
(3) kerϕ = 2E(Q).
(4) ϕ(E(Q)) ⊂ H × H × H, where H is the subgroup of Q×/(Q×)2 that

is generated by the classes of −1, 2, and the prime numbers p dividing
(b− a)(c− b)(a− c).
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Note that H is finite and hence so is H × H × H. Statements (2) and (3) then
show that ϕ induces an injection of E(Q)/2E(Q) into the finite group H×H×H,
and the statement of the theorem follows (in the special case considered).

The proofs of these claims are not very hard, but too lengthy to do them here.

In the general case (with non-rational 2-torsion points), one still uses the same
idea, but one has to work with the number fields obtained by adjoining roots of
x3 + Ax + B to Q. This requires some knowledge of Algebraic Number Theory
(which studies such fields). This proof generalizes to the case that E is an elliptic
curve over any number field. �

22.27. Remark.

(1) Since by the first claim in the proof above, the product of the three compo-
nents of ϕ(P ) is always 1 (in Q×/(Q×)2), the first two components deter-
mine the last one uniquely. This implies that we even obtain an injection
of E(Q)/2E(Q) into H ×H.

(2) If r is the rank of E(Q), then E(Q) = T ⊕ Zr with a finite group T =
E(Q)tors. Then

E(Q)/2E(Q) = T/2T ⊕ (Z/2Z)r ∼= T [2]⊕ (Z/2Z)r ,

where T [2] = E(Q)[2] = {P ∈ E(Q) : 2P = O} is the 2-torsion subgroup
of T (and of E(Q)). Hence

#(E(Q)/2E(Q)) = #T [2] · 2r = 2r+2

(the last equality is only valid in the special case considered in the proof).
This then implies that

r ≤ 2 + 2#{p : p odd, p | (a− b)(b− c)(c− a)} = 2 + 2s

(note that #H = 22+s and 22+r ≤ #H2).
Exercise. If T is a finite abelian group and p is a prime number, then
#(T/pT ) = #T [p] (which implies that there is a (non-canonical) isomor-
phism between T/pT and T [p]).

(3) By using “local information” (signs or p-adic considerations for the “bad”
primes p), it is possible to restrict the image of ϕ further. For example,
if a < b < c, then the first component of ϕ(P ) is always positive, which
means that the image of ϕ is contained in a subgroup of index 2 of H×H.
This improves the bound given above to

r ≤ 1 + 2s .

22.28. Example. Consider

E : y2 = x3 − x = (x+ 1)x(x− 1) .

The only prime dividing one of the differences of the roots of the right hand side
is 2. Therefore, H in the proof above is generated by (the classes of) −1 and 2,
and s above is zero. From Remark 22.27 above, we see that the image of ϕ is
contained in

{(α, β, γ) ∈ 〈−1, 2〉3 : αβγ = 1, α > 0} ,
a group of order 8, and the rank of E(Q) is bounded by 1. Now we consider to what
extent 2 can show up in α, β and γ. One can check (this is part of the argument in
the proof of claim (4) in the proof of the weak Mordell-Weil Theorem 22.26) that
points that have even denominators in their x-coordinate will map to elements
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that do not involve 2 (the 2-adic valuations are even). Otherwise, x(P ) is either
even (even numerator) or odd (odd numerator). In the first case, x(P )±1 are both
odd, hence v2(α) = v2(γ) = 0, which implies that v2(β) is even (by claim (1)),
hence β does not involve 2. In the second case, v2(β) = v2(x(P )) = 0. We see
that β can only be ±1, hence

ϕ(E(Q)) ⊂ {(α, β, αβ) : α ∈ 〈2〉, β ∈ 〈−1〉} .

This group has order 4. But we know

ϕ((−1, 0)) = (2,−1,−2) , ϕ((0, 0)) = (1,−1,−1) , ϕ((1, 0)) = (2, 1, 2) .

This means that we have equality above, and the rank is zero, so E(Q) is finite.
(Since #ϕ(E(Q)) ≥ #E(Q)[2], we know that we must have equality even without
computing images of points!)

In order to determine E(Q) completely, we note that all possibly existing addi-
tional points are torsion points and therefore must be integral, with the square
of the y-coordinate dividing 4A3 + 27B2 = 4, see the Nagell-Lutz Theorem 22.15.
But neither x3 − x− 1 nor x3 − x− 4 have integral roots. Hence we can conclude
that

E(Q) = {O, (−1, 0), (0, 0), (1, 0)} .

To conclude the proof of the Mordell-Weil Theorem, we need to establish a way of
measuring the “size” of a point in E(Q). Then we can apply the following result.

22.29. Lemma. Suppose that G is an abelian group and that h : G → R+ is a
map satisfying the following assumptions.

(1) G/2G is finite.

(2) For each Q ∈ G, there is some CQ ≥ 0 such that

h(P +Q) ≤ 2h(P ) + CQ for all P ∈ G.

(3) There is a constant C ≥ 0 such that

h(2P ) ≥ 4h(P )− C for all P ∈ G.

(4) For every B > 0, the set {P ∈ G : h(P ) ≤ B} is finite.

Then G is finitely generated.

Proof. By the first assumption, we can pick a finite set S ⊂ G of coset represen-
tatives of 2G. Let D = max{C−Q : Q ∈ S}. We show that G is in fact generated
by S, together with all elements P such that h(P ) ≤ (C +D)/2. Call this set T .
By the last assumption, this generating set T is finite, which proves the lemma.

Assume the claim is false. Then there is some P ∈ G such that P is not in the
subgroup generated by T . By the last assumption, we can asume that h(P ) is
minimal among all such elements. Trivially, we must have h(P ) > (C + D)/2.
Now, there is some Q ∈ S such that P −Q = 2P ′ ∈ 2G. Then we have

h(P ′) ≤ (h(2P ′) + C)/4 ≤ (2h(P ) + C−Q + C)/4 ≤ (2h(P ) + C +D)/4 < h(P ) .

By our choice of P , P ′ is in the subgroup generated by T , but then P = Q+ 2P ′

must be in there as well, a contradiction. �
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22.30. The height. We have proved so far that G = E(Q) satisfies the first
assumption (at least when all the 2-torsion points are rational). So it remains to
define a suitable map h in order to finish the proof of the Mordell-Weil Theorem.

Let P = (r/t2, s/t3) ∈ E(Q), where r ⊥ t, s ⊥ t. Then we define

h(P ) = log max{|r|, t2} and h(O) = 0 .

(This is called the logarithmic naive height on E(Q).)

We have to show that this map h satisfies the asumptions in Lemma 22.29. The
last one is the easiest one to see: When h(P ) is bounded, then numerator and de-
nominator of x(P ) are bounded (by eh(P )), so there are only finitely many possible
x-coordinates. But for each x-coordinate, there are at most two points in E(Q),
hence any set of points of bounded height is finite.

22.31. Lemma. There is a constant C such that for all P,Q ∈ E(Q),

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)| ≤ C .

We skip the proof. Since h(P − Q) ≥ 0, this provides us with the middle two
assumptions in Lemma 22.29. Therefore, all the assumptions of Lemma 22.29 are
satisfied. Hence E(Q) is finitely generated.

22.32. Discussion. How can we try to determine E(Q)? The first step is to bound
the order of E(Q)/2E(Q) as tightly as possible, by embedding it into a finite group
like H ×H in the proof of Thm. 22.26 and making use of all the restrictions we
can derive from considerations at bad primes, compare Example 22.28. Then we
hope to find sufficiently many points in E(Q) to show that our bound is actually
tight. If we are successful, then we know the rank of E(Q). What is more, we
also know generators of a subgroup of finite odd index (by taking a set of points
whose images under ϕ generate the image of ϕ). We can then use refinements
of the height estimates used in the lemma above to find actual generators of the
free part E(Q). The torsion subgroup can be dealt with using the Nagell-Lutz
result 22.15.

If we are not successful in establishing that the bound on E(Q)/2E(Q) is tight,
then this can be for two reasons. It is possible that the bound is tight, but
that we just have not found some of the preimages (usually this happens because
these points are simply too large to be found by search). But it is also possible
that the bound is not tight. To make progress in this situation, one can write
down equations whose solutions parametrize the points in the preimage under ϕ
of a given element of the group bounding the image of ϕ. Then one can search
for solutions of these equations; the advantage here is that these solutions are
(usually) smaller than the points in E(Q) they give rise to, hence they are found
more easily. This often helps resolve the first case (when the points are too large).
It does not help in the second case, when there are no solutions to be found for
some of the equations. In this case, one can try to iterate the procedure that
produced these equations (also known as “first descents”) to produce so-called
“second descents”. Sometimes, this enables one to deduce that a first descent
does not have a solution (because it does not produce any second descents). In
other cases, one can use the second descents (the solutions of which are again
smaller) to produce solutions to a first descent.
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An alternative approach is to play a similar game with E(Q)/3E(Q) (orE(Q)/5E(Q)
or . . . ). Working out methods for doing this or second (and third, . . . ) descents
is the subject of current active research.

23. Primes in arithmetic progressions

Euclid showed that there are infinitely many primes. His argument can be refined
to give more information, for instance:

23.1. Theorem. There are infinitely many primes congruent to 3 mod 4.

Proof. Suppose not, and so suppose that p1, . . . , pk is the complete list of primes
congruent to 3 mod 4. Form their product; if that is 1 mod 4, add 2. Otherwise
add 4. The resulting number n is congruent to 3 mod 4, and is not divisible by
any pi. Hence all prime factors of n must be 1 mod 4, which implies n ≡ 1 mod 4.
This contradiction completes the proof. �

To show that there are infinitely many primes p ≡ 1 mod 4, one can use that an
odd prime p is 1 mod 4 if and only if −1 is a quadratic residue mod p. So, taking

P = 4(p1p2 · · · pk)
2 + 1 ,

P ≥ 5 is not divisible by any of the pj, and all its prime divisors are ≡ 1 mod 4.
By the same kind of argument as above, this implies that there are infinitely many
primes p ≡ 1 mod 4.

Exercise: Prove in a similar spirit that there are infinitely many primes p ≡
1 mod 2n, for every n ≥ 1.

It is true, however, that all residue classes contain infinitely many primes, except
when there is an obvious reason why not.

23.2. Theorem (Dirichlet). Suppose N and a are coprime integers. Then there
are infinitely many primes congruent to a modulo N .

Dirichlet proved this in the 1830s or so, and the rest of this section discusses his
proof. Dirichlet’s approach grows out of an exotic proof that there are infinitely
many primes given by Euler a century earlier. Consider the function

ζ(s) :=
∞∑

n=1

1

ns

defined on the set of complex numbers s with Re s > 1. This is the Riemann zeta
function, as it has been known since “Riemann’s memoir” from 1860, in which
Riemann outlined a strategy for proving the prime number theorem, which pre-
dicts how frequently prime numbers occur among positive integers, using complex
analytic properties of ζ(s). That is a story for another section.

Note that for Re s > 1, the series defining ζ(s) converges absolutely. Now, observe
the formal identity∏

p prime

(
1− 1

ps

)−1

=
∏

p prime

(
1 +

1

ps
+

1

p2s
+ . . .

)
=

∞∑
n=1

1

ns
,

which expresses the fact that each positive integer n can be written as a product of
primes in exactly one way. For each Re s > 1, all the sums and products converge
absolutely, so one may change the order of the terms, and therefore both sides
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converge to the same value. (In fact, both sides define the same analytic function
on Re s > 1.)

Recall that
∑∞

n=1
1
n

diverges. Equivalently, lims→1+ ζ(s) = +∞, since for real

values of s, all the terms in
∑∞

n=1
1
ns are positive. Hence,

lim
s→1+

∏
p prime

(
1− 1

ps

)−1

= +∞ ,

which implies there must be infinitely many primes. This was essentially Euler’s
proof. Of course, one can also get some quantitative information out of it. One

sees that
∏

p prime

(
1− 1

p

)−1

must diverge, which implies by a calculation that∑
p prime

1
p

must diverge (see below). This would not be the case if, for instance,

the primes were distributed as thinly as the squares. In fact, since
∑∞

n=1
1

n1+ε

converges for any fixed real number ε > 0, we must have

#{prime p < N} > N1−ε ,

for infinitely many different integers N . We will learn more about the distribution
of primes in the next section.

The Strategy. Let us now discuss the strategy for the proof of the general state-
ment in Thm. 23.2. The proof mentioned above that there are infintely many can
be phrased like this. Consider

log ζ(s) = log
∏

p

1(
1− 1

ps

) =
∑

p

log
1(

1− 1
ps

)
=
∑

p

( 1

ps
+

1

2p2s
+ . . .

)
=
∑

p

1

ps
+ f(s)

where f(s) remains bounded as s→ 1+:

f(s) =
∑

p

∞∑
k=2

1

kpks
≤ 1

2

∑
p

1

p2

1

1− 1/p
≤
∑

p

1

p2
≤

∞∑
n=1

1

n2
=
π2

6

Now, as s → 1+, ζ(s) → ∞, and therefore
∑

p p
−s → ∞ as well, showing that

there are infintely many primes (and even that
∑

p 1/p diverges).

Now the idea is to show in a similar way that∑
p≡a mod N

p−s →∞ as s→ 1+.

However, there is no simple way to set this up directly, using some modification
of ζ(s), so we have to use a slight detour. We basically only can hope to prove
something about functions like ζ(s) if they involve all the primes. We also want
these functions to have a similar product structure (so that we can take logarithms
easily). This leads to the following notion.

23.3. Definition. A Dirichlet character mod N is a function χ : Z → C with the
following properties.

(1) χ(n) only depends on the residue class of n mod N .

(2) χ(n) 6= 0 if and only if n ⊥ N .

(3) χ(mn) = χ(m)χ(n) for all m,n ∈ Z.
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The L-series associated to χ is defined for s > 1 by

L(χ, s) =
∞∑

n=1

χ(n)

ns
=
∏

p

(
1− χ(p)

ps

)−1

.

(The second equality is seen in the same way as for ζ(s), using the multiplicativity
of χ. A product representation of this type is called an Euler product.)

23.4. Example. For N = 4, a Dirichlet character χ mod 4 is determined by its
values at 1 and 3 (the values at even numbers must be zero). The multiplicativity
forces χ(1) = 1. Since 32 ≡ 1 mod 4, we must have χ(3)2 = χ(1) = 1, so χ(3) =
±1. One checks easily that both choices give a Dirichlet character mod 4. Call
them χ0 and χ1, respectively. Then

L(χ0, s) = 1 +
1

3s
+

1

5s
+ · · · =

∏
p-4

(
1− 1

ps

)−1

=
(
1− 1

2s

)
ζ(s)

and

L(χ1, s) = 1− 1

3s
+

1

5s
− 1

7s
+ . . . .

Note that (by the alternating series criterion) L(χ1, s) converges for real s > 0
(uniformly for s ≥ δ > 0), and L(χ1, 1) = arctan 1 = π/4 6= 0.

It is a fact (which we will prove soon) that

1

φ(N)

∑
χ

χ(a)χ(n) =

{
1 if a ≡ n mod N

0 else

(where χ runs through all the Dirichlet characters mod N .) This means that
we can take suitable linear combinations of logL(χ, s) in order to single out the
residue class we are interested in. We have

logL(χ, s) =
∑

p

χ(p)

ps
+ fχ(s)

as before, where again fχ remains bounded as s→ 1+. So

1

φ(N)

∑
χ

χ(a) logL(χ, s) =
∑

p≡a mod N

1

ps
+ fa(s)

with fa bounded as s → 1+. In order to finish the proof, we have to show that
the left hand side tends to infinity as s→ 1+.

23.5. Example. For N = 4 again, we find

1

2

(
logL(χ0, s) + logL(χ1, s)

)
=

∑
p≡1 mod 4

p−s + bounded

1

2

(
logL(χ0, s)− logL(χ1, s)

)
=

∑
p≡3 mod 4

p−s + bounded

We have seen that L(χ1, s) is a continuous function for real s > 0 that does not
vanish for s ≥ 1. This implies that logL(χ1, s) stays bounded as s → 1+. Since
L(χ0, s) is essentially ζ(s), logL(χ0, s) tends to +∞ as s→ 1+. This proves again
that there are infinitely many primes p ≡ 1 mod 4 and infinitely many primes
p ≡ 3 mod 4.
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Like χ0 in the example above, there is always one special Dirichlet character
mod N , the so-called trivial Dirichlet character χ0, which takes the value 1 on all
numbers coprime with N (and the value 0 otherwise). It is easy to see that its
L-series is, up to a simple factor, ζ(s), and so

logL(χ0, s) →∞ as s→ 1+.

It remains to prove that the other summands cannot lead to any cancellation.
This is done by showing that

(1) the series defining L(χ, s) converges for s > 0, hence the function is defined
(and continuous) there, and

(2) L(χ, 1) 6= 0.

These statements imply that logL(χ, s) → logL(χ, 1) stays bounded as s → 1+

for χ 6= χ0, concluding the proof.

Now we have to fill in the various details.

Characters. Let us first deal with the Dirichlet characters. There is a general
notion of characters, as follows.

23.6. Definition. Let G be a group. A character of G is a group homomorphism
χ : G → C×. Let Ĝ be the set of all characters of G; then Ĝ is an abelian group
(the character group of G) under point-wise multiplication:

(χψ)(g) = χ(g)ψ(g) .

23.7. Remark. There is a bijection between Dirichlet characters mod N and the
character group of (Z/NZ)×, as follows. If χ is a Dirichlet character mod N ,
then ψ(ā) := χ(a) defines a character on (Z/NZ)× (well-defined since χ(a) only
depends on ā, and for ā ∈ (Z/NZ)×, χ(a) 6= 0). If ψ is a character of (Z/NZ)×,
then χ(a) = ψ(ā) for a ⊥ N , χ(a) = 0 otherwise, defines a Dirichlet character
mod N .

Now for finite abelian groups (like (Z/NZ)×), the character group behaves partic-
ularly nicely.

23.8. Proposition. If G is a finite abelian group, then its character group Ĝ is
isomorphic to G.

Proof. Assume first that G is cyclic of order n, and pick a generator g. Then
for any character χ, we must have χ(gk) = χ(g)k; therefore, χ is completely
determined by the value χ(g). Now there is only one relation for g ∈ G, namely
gn = 1. Therefore, χ(g)n = 1 as well, and every choice of χ(g) satisfying this will
define a character. This shows that

µn −→ Ĝ, ζ 7−→ (gk 7→ ζk)

sets up an isomorphism of Ĝ with the group µn of nth roots of unity, which is
a cyclic group of order n, hence isomorphic to G. (Note that the isomorphism

G ∼= Ĝ we construct depends on choices of generators of G and of µn: it is not
canonical.)

Now we prove that Ĝ×H ∼= Ĝ × Ĥ. The isomorphism is given as follows. Let
χ ∈ Ĝ and ψ ∈ Ĥ. then φ(g, h) = χ(g)ψ(h) defines a character of G × H.
Conversely, if φ is a character of G × H, then φ|G and φ|H are characters of G
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and H, respectively, and one easily checks that the two maps are inverses of each
other. (Note that this isomorphism is canonical; it does not depend on choices.)

Finally, we use that every finite abelian group is a direct product of cyclic groups:

G = G1 × · · · ×Gk
∼= Ĝ1 × · · · × Ĝk

∼= (G1 × · · · ×Gk )̂ = Ĝ

�

For example, this implies that there are exactly #(Z/NZ)× = φ(N) distinct
Dirichlet characters mod N . Next we want to state and prove the “orthogonality
relations” we need for the proof of Dirichlet’s Theorem 23.2.

23.9. Lemma. Let G be a finite abelian group and 1 6= g ∈ G. Then there is a
character χ ∈ Ĝ such that χ(g) 6= 1.

Proof. First assume G is cyclic. Then we can take any character χ that gener-
ates Ĝ. (Compare the preceding proof.)

In the general case, write G = G1 × · · · ×Gk as a product of cyclic groups. Then
g = (g1, . . . , gk) with at least one gj 6= 1. Take a character χj of Gj such that
χj(gj) 6= 1, and define χ(h1, . . . , hk) = χj(hj). �

23.10. Proposition. Let G be a finite abelian group. Then

(1) For all χ ∈ Ĝ, ∑
g∈G

χ(g) =

{
#G if χ = 1Ĝ

0 else

and therefore for all χ1, χ2 ∈ Ĝ

1

#G

∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2

0 else

(2) For all g ∈ G, ∑
χ∈Ĝ

χ(g) =

{
#G if g = 1G

0 else

and therefore for all g1, g2 ∈ G

1

#G

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
1 if g1 = g2

0 else

Proof. If χ = 1Ĝ, then χ(g) = 1 for all g ∈ G, and the first claim is trivial.
Otherwise, there is an h ∈ G such that χ(h) 6= 1. Then

(1− χ(h))
∑

g

χ(g) =
∑

g

χ(g)−
∑

g

χ(hg) =
∑

g

χ(g)−
∑

g

χ(g) = 0 ,

and so
∑

g χ(g) = 0 as well (since 1− χ(h) 6= 0). To get the assertion on χ1 and

χ2, apply the result to χ = χ1χ2 = χ−1
1 χ2.
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If g = 1G, then χ(g) = 1 for all χ ∈ Ĝ, and the second claim is trivial (using

#Ĝ = #G). Otherwise, by Lemma 23.9, there is a ψ ∈ Ĝ such that ψ(g) 6= 1.
Then

(1− ψ(g))
∑

χ

χ(g) =
∑

χ

χ(g)−
∑

χ

(ψχ)(g) =
∑

χ

χ(g)−
∑

χ

χ(g) = 0 ,

and so
∑

χ χ(g) = 0. To get the assertion on g1 and g2, apply this to g = g−1
1 g2

and note that χ(g−1
1 ) = χ(g1)

−1 = χ(g1). �

23.11. Corollary. Applying the preceding orthogonality relation to Dirichlet char-
acters, we get for a ⊥ N that

1

φ(N)

∑
χ

χ(a)χ(n) =

{
1 if a ≡ n mod N

0 else

where the sum is over the Dirichlet characters mod N .

This is one of the ingredients needed in the proof of Dirichlet’s Theorem.

The other essential part of the proof is to deal with the behavior of the functions
logL(χ, s) as s → 1+. Let us first consider the trivial character χ0 (it is the
Dirichlet character corresponding to 1

Ẑ/NZ×
).

23.12. Lemma. Let χ0 be the trivial Dirichlet character mod N . Then for s > 1,

L(χ0, s) =
∏
p|N

(
1− 1

ps

)
ζ(s)

and therefore

logL(χ0, s)− log ζ(s) =
∑
p|N

log(1− p−s)

is bounded as s→ 1+.

Proof. Compare the formulas

ζ(s) =
∏

p

(1− p−s)−1

and

L(χ0, s) =
∏

p

(1− χ0(p)p
−s)−1 =

∏
p-N

(1− p−s)−1 .

�

Before we can proceed, we need a basic result on the convergence properties of
“Dirichlet series”

∑∞
n=1 ann

−s.

23.13. Proposition.

(1) Let (an), (bn) be two sequences of complex numbers, and let An =
∑n

k=1 ak.
Then

N∑
n=1

anbn =
N−1∑
n=1

An(bn − bn+1) + ANbN .
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(2) Keeping the notations, assume that (An) is bounded and that (bn) is a
decreasing sequence of real numbers such that bn → 0. Then

∑∞
n=1 anbn

converges, and

∞∑
n=1

anbn =
∞∑

n=1

An(bn − bn+1) .

(3) Let f(s) =
∑∞

n=1 cnn
−s. If the series converges for s = s0, then it converges

uniformly for all s ≥ s0+δ, for any δ > 0, and defines an analytic function
on s > s0.

Proof. (1) This is an easy exercise.
(2) Let |An| ≤ A for all n. Then for M < N , we have by (1)

N∑
n=M+1

anbn =
N−1∑
n=M

An(bn − bn+1) + ANbN − AMbM .

Hence∣∣∣ N∑
n=M+1

anbn

∣∣∣ ≤ A(
N−1∑
n=M

(bn− bn+1)+ bM + bN) = A(bM − bN + bM + bN) = 2AbM → 0

as M → ∞, hence the sequence of partial sums is Cauchy. Since ANbN → 0, we
get the stated formula by taking limits in (1).
(3) Set an = cnn

−s0 and bn = ns0−s. Then the assumptions in (2) are satisfied
for s ≥ s0 + δ (since An converges to f(s0)). From the proof of (2), we get the
uniform bound ∣∣∣ N∑

n=M+1

cnn
−s
∣∣∣ ≤ 2AM−δ ,

which shows uniform convergence. Now a uniformly convergent series of analytic
functions converges to an analytic function (compare Introductory Complex Anal-
ysis), and since we can take δ > 0 as small as we like, we get a function that is
analytic on s > s0. �

The following result tells us more precisely what the behavior of ζ(s) is near s = 1.

23.14. Lemma. There is an analytic function f(s) for s > 0 such that for s > 1,

ζ(s) =
1

s− 1
+ f(s) .

We define ζ(s) for 0 < s < 1 by this formula.

Proof. First note that

F (s) =
∞∑

n=1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+− . . .

defines an analytic function for s > 0: by part (2) in Prop. 23.13 (with an =
(−1)n−1 and bn = n−s), the series converges for s > 0, and by part (3) it gives an
analytic function there. Now for s > 1,(

1− 2

2s

)
ζ(s) = 1 +

1

2s
+

1

3s
+

1

4s
+ · · · − 2

2s
− 2

4s
− · · · = F (s) .
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Therefore,

ζ(s) =
1

1− 21−s
F (s) =

1

s− 1
· s− 1

1− 21−s
F (s)

=
1

s− 1

(F (1)

log 2
+ (s− 1)f(s)

)
=

1

s− 1
+ f(s)

with an analytic function f(s); note that F (1) = 1−1/2+1/3−+ · · · = log 2. �

23.15. Corollary. We have

log ζ(s) = log
1

s− 1
+ bounded as s→ 1+.

Now we look at the L-series L(χ, s).

23.16. Proposition. Let χ be a nontrivial Dirichlet character mod N . Then the
series

L(χ, s) =
∞∑

n=1

χ(n)

ns

converges for s > 0 and defines therefore an analytic function on this domain.

Proof. We apply Prop. 23.13 again. Set an = χ(n) and bn = n−s. Then |An| ≤
φ(N), since

∑(k+1)N
n=kN+1 χ(n) = 0 for all k. Hence the assumptions in part (2)

are satisfied, and the argument proceeds as for F (s) in the proof of the lemma
above. �

It remains to show that L(χ, 1) 6= 0, for then logL(χ, s) will stay bounded as
s → 1+. This is the hardest part in the proof of Dirichlet’s Theorem 23.2. We
will state an auxiliarly result first.

23.17. Theorem (Landau). Suppose that an ≥ 0 for all n and that the series
f(s) =

∑∞
n=1 ann

−s converges for some, but not for all s ∈ R. Let

s0 = inf{s ∈ R : the series converges} .
Then f(s) cannot be continued to the left of s0 as an analytic function.

We will not prove this result here; it makes use of the fact that f(s) is even analytic
for Re s > s0. (Here is a sketch: Under the assumption that f(s) is analytic on a
neighborhood of s0, the power series expansion of f(s) around s0 + 1 has radius
of convergence > 1; convergence of this at s0 − δ then implies convergence of the
series definig f(s) there: a contradiction.)

As an example, consider ζ(s): here s0 = 1, and ζ(s) has a pole at s = 1 (it can be
extended to a meromorphic function on C with just this one pole, though). On
the other hand, for

log ζ(s) =
∑

p

∞∑
k=1

1

kpks
,

we have again s0 = 1, but this time, there is no meromorphic continuation
across s0. As a last example, consider L(χ, s) for a non-trivial Dirichlet char-
acter χ. Then s0 = 0, but one can show that L(χ, s) extends to an entire function.
So the conclusion of the theorem is false in this case, showing that the assumption
(an ≥ 0) is essential.

To finish the proof of Dirichlet’s Theorem 23.2, we need one more lemma.
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23.18. Lemma. Let F (s) =
∏

χ L(χ, s), where the product is over all Dirichlet
characters mod N . Then for s > 1,

F (s) =
∞∑

n=1

an

ns
,

where an ≥ 0 for all n and an ≥ 1 for n = mφ(N) with some m ≥ 1, m ⊥ N .

Proof. We first need a formula about characters: Let G be a finite abelian group,
and lat g ∈ G be an element of order f . Then∏

χ∈Ĝ

(1− χ(g)X) = (1−Xf )#G/f

as polynomials in X. To see this, we observe that Ĝ 3 χ 7−→ χ(g) ∈ µf is a
surjective group homomorphism. If we let ζ = exp(2πi/f) be a generator of µf ,
then it follows that∏

χ∈Ĝ

(1− χ(g)X) =

f−1∏
k=0

(1− ζkX)#G/f = (1−Xf )#G/f .

Now we consider the Euler product of F (s) (everything converges absolutely for
s > 1, justifying the rearrangements):

F (s) =
∏
χ

L(χ, s) =
∏
χ

∏
p

(1− χ(p)p−s)−1 =
∏

p

(∏
χ

(1− χ(p)p−s)
)−1

and by the result above:

=
∏
p-N

(1− p−fps)φ(N)/fp =
∏
p-N

(1 + p−fps + p−2fps + . . . )φ(N)/fp

In each factor of the last product, all terms have nonnegative coefficients, and all
terms of the form ckp

−kφ(N)s have coefficient ≥ 1. The claim follows by expanding
the product. �

Now we can finish the proof.

23.19. Theorem. If χ is a non-trivial Dirichlet character mod N , then we have
L(χ, 1) 6= 0.

Proof. Assume that L(χ, 1) = 0 for some (non-trivial) χ. Then the simple pole of
L(χ0, s) at s = 1 is canceled by the zero of L(χ, s) at s = 1; therefore the function
F (s) =

∏
χ L(χ, s) is analytic for s > 0. But by the preceding lemma, we have

that F (s) =
∑∞

n=1 ann
−s with an ≥ 0. Furthermore, amφ(N) ≥ 1 for all m ⊥ N ,

and so the series does not converge for s = 1/φ(N):

∞∑
n=1

ann
−1/φ(N) ≥

∑
m≥1,m⊥N

(mφ(N))−1/φ(N) =
∑

m≥1,m⊥N

1

m
= ∞

So by Landau’s Theorem 23.17, F (s) has no analytic continuation across s0, where
1/φ(N) ≤ s0 ≤ 1, a contradiction. So our assumption that L(χ, 1) = 0 for some χ
must be false. �
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24. The Prime Number Theorem

The distribution of the prime numbers among the integers is a mystery that was
(and is) studied by many mathematicians for a long time. Let π(x) (for x ∈ R)
denote the number of primes p ≤ x. After extensive computations of tables of
primes, Gauss conjectured around 1800 (and others, like Legendre, did the same
at about the same time) that the “density” of primes near x should be 1/ log x.
More precisely, he conjectured that for large x,

π(x) ∼ li(x) = li(2) +

x∫
2

dt

log t

(here, li(2) is defined by the Cauchy principal value of the integral:

li(2) = lim
ε→0+

1−ε∫
0

dt

log t
+

2∫
1+ε

dt

log t
≈ 1.045)

This notation means that

lim
x→∞

π(x)

li(x)
= 1 .

Legendre’s version was

π(x) ∼ x

log x
;

integrating by parts, it is easy to see that the two versions are equivalent.

It took nearly 100 years before this statement, known as the Prime Number The-
orem was finally proved. The most important input came again from Riemann’s
memoir of 1860, where he introduced the study of the (now so-called) Riemann
zeta function ζ(s) as a function of a complex argument s.

About ten years earlier, Chebyshev could at least prove that the order of magni-
tude was correct: there are constants 0 < c < C such that for x ≥ 2 (say),

c
x

log x
≤ π(x) ≤ C

x

log x
.

The argument is rather elementary. First we define two more functions that are
easier to deal with. In the following, p always denotes a prime number. Let

θ(x) =
∑
p≤x

log p

and (the first sum runs over pairs (p, k))

ψ(x) =
∑
pk≤x

log p =
∑
p≤x

⌊ log x

log p

⌋
log p =

∑
n≤x

Λ(n) =
∞∑

k=1

θ(x1/k) .

Here, the von Mangoldt function Λ is defined as

Λ(pk) = log p , Λ(n) = 0 otherwise .

Now we have that

θ(x) ≤ ψ(x) =
∑
p≤x

⌊ log x

log p

⌋
log p ≤ π(x) log x .

Also, for ε > 0 small,

θ(x) ≥
∑

x1−ε<p≤x

log p ≥ (π(x)− π(x1−ε))(1− ε) log x ≥ (1− ε) log x(π(x)− x1−ε)
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Now let us consider the prime factorization of the binomial coefficient
(
2n
n

)
.

24.1. Lemma. We have

θ(2n)− θ(n) ≤ log

(
2n

n

)
≤ ψ(2n) .

Proof. Let n < p ≤ 2n be a prime. Then p divides the numerator of
(
2n
n

)
=

(2n)!/n!2 once, but does not divide the denominator. Hence the binomial coeffi-
cient is divisible by

∏
n<p≤2n p. This implies the first inequality.

For the second inequality, observe that

vp

((2n

n

))
=

∞∑
k=1

(⌊2n

pk

⌋
− 2
⌊ n
pk

⌋)
≤
⌊ log(2n)

log p

⌋
.

�

Since
(
2n
n

)
∼ 4n/

√
πn by Stirling’s formula, we get

ψ(2n) ≥ 2n log 2−O(log n)

and

θ(2k) =
k∑

j=1

(θ(2j)− θ(2j−1)) ≤
k∑

j=1

2k log 2 ≤ 2k · 2 log 2 .

These imply
ψ(x) ≥ log 2 · x−O(log x)

and
θ(x) ≤ θ(2dlog x/ log 2e) ≤ 2 log 2 · 2dlog x/ log 2e ≤ 4 log 2 · x .

We already see that

π(x) ≥ ψ(x)

log x
≥ log 2

x

log x
−O(1) .

If we set ε = 2 log log x/ log x above, we obtain

π(x) ≤ θ(x)

log x

(
1 +O

( log log x

log x

))
≤ 4 log 2

x

log x

(
1 +O

( log log x

log x

))
.

However, in order to prove the Prime Number Theorem completely, more is needed.
The ground-breaking ideas were formulated by Riemann in his memoir Über die
Anzahl der Primzahlen unter einer gegebenen Größe (On the number of primes
below a given quantity), relating the asymptotics of π(x) with analytic properties
of ζ(s) as a meromorphic function. However, it still took more than 30 years, until
Hadamard and De la Vallée Poussin independently were able to carry through the
program sketched by Riemann.

24.2. Lemma. We have

lim
x→∞

(ψ(x)

x
− π(x)

x/ log x

)
= 0 .

Proof. We have already seen that

(1− ε) log x(π(x)− x1−ε) ≤ θ(x) ≤ ψ(x) ≤ π(x) log x .

We divide by x, set ε = 2 log log x/ log x and let x tend to infinity; the result
follows. �
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To prove the prime number theorem, it therefore suffices to show that

ψ(x) ∼ x , i.e., lim
x→∞

ψ(x)

x
= 1 .

The following lemma shows why it is advantageous to work with ψ(x) instead of
π(x).

24.3. Lemma. For Re s > 1, we have

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
.

Proof. We compute the logarithmic derivative using the Euler product for ζ(s).
(Note that for Re s > 1, everything converges absolutely and locally uniformly,
hence all manipulations with the series below are justified.)

−ζ
′(s)

ζ(s)
=
∑

p

d

ds
log(1− p−s) =

∑
p

log p
p−s

1− p−s
=
∑

p

∞∑
k=1

log p

pks
=
∑

n

Λ(n)

ns

�

Now it is easy to see that ζ(s) extends to a meromorphic function on Re s > 0
with only a simple pole at s = 1. (In fact, ζ(s) extends to a meromorphic function
of all of C, with still only this one simple pole.) Hence −ζ ′(s)/ζ(s) likewise is a
meromorphic function there, with simple poles at the pole of ζ(s) (residue 1) and
the zeros of ζ(s) (residue −the order of the zero).

If one would want to work directly with π(x), the corresponding function is∑
p p

−s, which does not have nice properties. One could try to use log ζ(s) =∑
p

∑∞
k=1 p

−ks/k (the difference between π(x) and the corresponding function for

log ζ(s) is negligible), but this function has logarithmic singularities at s = 1 and
at the zeros of ζ(s), which complicates things considerably.

24.4. Proposition (Perron’s Formula and an Application).

(1) Let c > 0, y > 0. Then

lim
T→∞

1

2πi

c+iT∫
c−iT

ys

s
ds =


0 if 0 < y < 1,
1
2

if y = 1,

1 if y > 1.

(2) Let f(s) =
∑∞

n=1 an n
−s, and suppose that the series converges absolutely

for s = c > 0. Then for x > 0,

lim
T→∞

1

2πi

c+iT∫
c−iT

f(s)
xs

s
ds =


∑
n≤x

an if x /∈ Z,∑
n<x

an + 1
2
ax if x ∈ Z.

Proof. I will not give the details of the proof. The idea for part (1) is to move the
line segment [c − iT, c + iT ] far off to the right (if 0 < y < 1) or to the left (if
y > 1). In the first case, the integral around the rectangle one gets is zero by the
residue theorem, and the integrals over the three sides different from [c−iT, c+iT ]
can be estimated to tend to zero (as the right hand vertical edge moves to infinity
and T → ∞). In the second case, the argument is similar, but here, the integral
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around the rectangle picks up the residue of ys/s at s = 0, which is 1. The case
y = 1 is done by direct calculation.

To prove (2), one applies (1); one has to justify the swapping of the sum with the
integral and limit, but this can be done using the estimates one obtains in the
proof of (1) and the assumption that the series converges absolutely for s = c.

lim
T→∞

1

2πi

c+iT∫
c−iT

f(s)
xs

s
ds = lim

T→∞

1

2πi

c+iT∫
c−iT

∞∑
n=1

an
(x/n)s

s
ds

=
∞∑

n=1

an lim
T→∞

1

2πi

c+iT∫
c−iT

(x/n)s

s
ds

=
∞∑

n=1

an


1 if n < x,
1
2

if n = x,

0 if n > x.

�

24.5. Corollary. Let c > 1. Then for x > 0,

lim
T→∞

1

2πi

c+iT∫
c−iT

(
−ζ

′(s)

ζ(s)

xs

s

)
ds =

{
ψ(x) if x /∈ Z,

ψ(x)− 1
2
Λ(x) if x ∈ Z.

Proof. Clear. �

So in order to prove the Prime Number Theorem ψ(x) ∼ x, we have to evalu-
ate/estimate the integral. The idea is to move the line over which we integrate a
little bit to the left (at least some part of it with bounded imaginary part). Then
the integral will pick up the residue of −ζ ′(s)xs/(ζ(s)s) at s = 1, which is x. But
this will only work if we do not pick up any other poles. This in turn means that
ζ(1 + it) 6= 0 for all (real) t 6= 0 (otherwise, there will be poles on Re s = 1, and
we cannot move our integration contour across this line).

24.6. Lemma. ζ(s) does not vanish on Re s = 1.

Proof. First we show that for σ > 1 and t ∈ R, we have

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1 .

To see this, we take the logarithm of the left hand side:

log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| = Re
(
3 log ζ(σ) + 4 log ζ(σ + it) + log ζ(σ + 2it)

)
=
∑

p

∞∑
k=1

1

kpkσ
Re(3 + 4e−kti log p + e−2kti log p)

=
∑

p

∞∑
k=1

1

kpkσ
(3 + 4 cos(kt log p) + cos(2kt log p))

≥ 0

since 3 + 4 cosα+ cos 2α = 2(1 + cosα)2 ≥ 0.
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Now assume that ζ(1 + it) = 0 for some t 6= 0. Then ζ(σ + it)/(σ − 1) remains
bounded as σ → 1+; also ζ(σ)(σ − 1) is bounded as σ → 1+. Hence

1 ≤ |ζ(σ)3ζ(σ+it)4ζ(σ+2it)| =
∣∣∣(ζ(σ)(σ−1)

)3(ζ(σ + it)

σ − 1

)4

ζ(σ+2it)
∣∣∣(σ−1) → 0

as σ → 1+, a contradiction. �

To finish the proof of the Prime Number Theorem, one has to obtain a suitable
“zero-free region” for ζ(s) to the left of Re s = 1 and a bound on ζ ′(s)/ζ(s) there.
This is a bit technical (though not really hard), and we will omit the details here.

What one gets fairly easily is that ζ(σ+it) does not vanish for σ > 1−C/max{1, log |t|}
for some constant C; this then translates into an error term in the Prime Number
Theorem of the form

ψ(x) = x+O(xe−c
√

log x) or π(x) = li(x) +O(xe−c
√

log x) .

(There are some improvements on this, replacing the square root by a higher power
of log x, like (log x)3/5−ε.)

24.7. Final Remarks. Here are some more facts about the Riemann zeta func-
tion ζ(s).

(1) ζ(s) can be extended to a meromorphic function on C; its only pole is the
simple pole at s = 1 with residue 1.

(2) ζ(s) has simple zeros at negative even integers (“trivial zeros”); it also has
infinitely many zeros in the “critical strip” 0 < Re s < 1.

(3) ζ(s) satisfies a functional equation: define

ξ(s) = s(1− s)π−s/2Γ
(s

2

)
ζ(s) ;

then ξ(s) is an entire function satisfying ξ(1− s) = ξ(s). Its zeros coincide
with the nontrivial zeros of ζ(s).
(Γ(s) is the Gamma function; it can be defined for Re s > 0 by the integral

Γ(s) =

∞∫
0

e−tts−1 dt ;

it satisfies the functional equation sΓ(s) = Γ(s+ 1), which can be used to
define it as a meromorphic function on all of C. It has no zeros, and has
simple poles at the nonpositive integers. Also Γ(1) = 1 and therefore (by
induction), Γ(n+ 1) = n!.)

(4) Riemann (in his 1860 memoir) stated it was “likely” that all the nontrivial
zeros are actually on the “critical line” Re s = 1/2. This is the famous
Riemann Hypothesis.

Using this (and suitable estimates for ζ ′(s)/ζ(s) when Re s� 0), one can continue
moving the line of integration to the left and finally obtain the Explicit Formula

ψ(x) = x−
∑

ρ

xρ

ρ
− log 2π − log(1− x−2) .

Here, ρ runs through the zeros of ζ(s) in the critical strip, with multiplicities, and
the sum has to be taken in ascending order of | Im ρ|. (Note that ζ ′(0)/ζ(0) =
log 2π.) There is a similar formula for π(x).
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From this explicit formula or the idea of the proof of the Prime Number Theorem,
one obtains the following.

24.8. Proposition. Let 1/2 ≤ β < 1.

(1) If ζ(s) does not vanish for Re s > β, then

ψ(x) = x+O(xβ(log x)2) and π(x) = li(x) +O(xβ(log x)2) .

(2) If
ψ(x) = x+O(xβ) or π(x) = li(x) +O(xβ) ,

then ζ(s) does not vanish for Re s > β.

As a corollary, we see that the Riemann Hypothesis is equivalent to the purely
number theoretic statement

ψ(x) = x+O(x1/2+ε) for all ε > 0.

In some sense, this expresses that the distribution of the prime numbers is as even
as possibly allowed by the fact that ζ(s) does have infinitely many zeros in the
critical strip.

Another view on this is the following. Let µ(n) be the Möbius function:

µ(n) =

{
(−1)r if n = p1 . . . pr is squarefree (r ≥ 0),

0 otherwise.

Then it is easy to see that
∑∞

n=1 µ(n)n−s = 1/ζ(s). Now, applying the above
approach to 1/ζ(s) instead of −ζ ′(s)/ζ(s), we obtain that the Riemann Hypothesis
is equivalent to ∑

n≤x

µ(n) = O(x1/2+ε) for all ε > 0.

This can be interpreted as saying that the sequence of the nonzero values of µ(n)
behaves statistically like an unbiased random walk.
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