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1. What Is Algebraic Geometry?

Linear Algebra can be seen (in parts at least) as the study of systems of linear
equations. In geometric terms, this can be interpreted as the study of linear (or
affine) subspaces of Cn (say).

Algebraic Geometry generalizes this in a natural way be looking at systems of
polynomial equations. Their geometric realizations (their solution sets in Cn, say)
are called algebraic varieties.

Many questions one can study in various parts of mathematics lead in a natural
way to (systems of) polynomial equations, to which the methods of Algebraic
Geometry can be applied.

Algebraic Geometry provides a translation between algebra (solutions of equations)
and geometry (points on algebraic varieties). The methods are mostly algebraic,
but the geometry provides the intuition.

Compared to Differential Geometry, in Algebraic Geometry we consider a rather
restricted class of “manifolds” — those given by polynomial equations (we can
allow “singularities”, however). For example, y = cos x defines a perfectly nice
differentiable curve in the plane, but not an algebraic curve.

In return, we can get stronger results, for example a criterion for the existence of
solutions (in the complex numbers), or statements on the number of solutions (for
example when intersecting two curves), or classification results.

In some cases, there are close links between both worlds. For example, a compact
Riemann Surface (i.e., a one-dimensional complex manifold) is “the same” as a
(smooth projective) algebraic curve over C.

As we do not have much time in this course, we will mostly look at the simplest
nontrivial (but already very interesting case), which is to consider one equation in
two variables. Such an equation describes a plane algebraic curve.

1.1. Examples. We will use x and y as the variables.

The simplest examples are provided by the equations y = 0 and x = 0; they
describe the x-axis and y-axis, respectively. More generally, a line is given by an
equation ax+ by = c with a and b not both zero.

The equation x2 + y2 = 1 describes the unit circle. Note that the set of its real
points (x, y) ∈ R2 is compact, but its set of complex points is not — there are two
“branches” extending to infinity, with x/y tending to i and to −i respectively. It
turns out that we can compactify the set of complex points by throwing in two
additional points “at infinity” corresponding to these two directions.

More formally, we introduce the projective plane P2 as the set of points (x : y : z)
with (x, y, z) ∈ C3 \ {0}, where we identify (x : y : z) and (λx : λy : λz) for
λ ∈ C \ {0}. We find the usual affine plane A2 = C2 within P2 as the subset of
points (x : y : 1); the points (x : y : 0) form the “line at infinity”, and there is one
point for each direction in the affine plane. The unit circle acquires the two new
points (1 : i : 0) and (1 : −i : 0).

A projective plane curve is now given by a homogeneous polynomial in the three
variables x, y, z. To obtain it from the original affine equation, replace x and y
by x/z and y/z, respectively and multiply by a suitable power of z to cancel the



3

denominators. For the unit circle we obtain x2 + y2 = z2; a general line in P2 is
given by ax+by+cz = 0 with a, b, c not all zero. (The line at infinity has equation
z = 0, for example.)

One of the great advantages of P2 over A2 is that in P2 any pair of distinct lines
has exactly one common point — there is no need to separate the case of parallel
lines; every pair of lines stands on the same footing.

The fact that two lines always intersect in exactly one point has a far-reaching
generalization, known as Bézout’s Theorem. It says that two projective plane
curvers of degrees m and n intersect in exactly mn points (counting multiplicities
correctly).

The first question towards a classification of algebraic curves one could ask is to
order them in some way according to their complexity. Roughly, one would expect
that the curve is more complicated when the degree of its defining polynomial is
large. However, this is not true in general, for example, a curve y = f(x) can be
transformed to the line y = 0 by a simple substitution, no matter how large the
degree of f is. But it is certainly true that a curve given by an equation of low
degree cannot be very complicated.

It turns out that there is a unique discrete invariant of an algebraic curve: its
genus g. The genus is a nonnegative integer, and for a plane curve of degree d,
we have g ≤ (d − 1)(d − 2)/2. So lines (d = 1) and conic sections (d = 2) are of
genus zero, whereas a general cubic curve (d = 3) will have genus one. Some cubic
curves will have genus zero, however; it turns out that these are the curves having
a singular point, where the curve is not smooth (not a manifold in the Differential
Geometry sense). In general, there is a formula relating the degree d of a projective
plane curve, its genus g and contributions δP associated to its singular points P :

g =
(d− 1)(d− 2)

2
−

∑
P

δP .

1.2. Example. [Iteration z 7→ z2 + c; to be added]

2. Affine Spaces and Algebraic Sets

In the following, we will do everything over the field C of complex numbers.
The reason for this choice is that C is algebraically closed, i.e., it satisfies the
“Fundamental Theorem of Algebra”:

2.1. Theorem. Let f ∈ C[x] be a non-constant polynomial. Then f has a root
in C.

By induction, it follows that every non-constant polynomial f ∈ C[x] splits into
linear factors:

f(x) = c

n∏
j=1

(x− αj)

where n = deg f is the degree, c ∈ C× and the αj ∈ C.

Essentially everything we do would work as well over any other algebraically closed
field (of characteristic zero).



4

The first thing we have to do is to provide the stage for our objects. They will
be the solution sets of systems of polynomial equations, so we need the space of
points that are potential solutions.

2.2. Definition. Let n ≥ 0. Affine n-space, An, is the set Cn of all n-tuples of
complex numbers. Note that A0 is just one point (the empty tuple). A1 is also
called the affine line, A2 the affine plane.

2.3. Definition.

(1) Let S ⊂ C[x1, . . . , xn] be a subset. The (affine) algebraic set defined by S
is

V (S) = {(ξ1, . . . , ξn) ∈ An : f(ξ1, . . . , ξn) = 0 for all f ∈ S} .
If I = 〈S〉 is the ideal generated by S, then V (S) = V (I). Note that
V (∅) = V (0) = An and V ({1}) = V (C[x1, . . . , xn]) = ∅.
An non-empty algebraic set is called an algebraic variety if it is not the
union of two proper algebraic subsets.

(2) Let V ⊂ An be a subset. The ideal of V is the set

I(V ) = {f ∈ C[x1, . . . , xn] : f(ξ1, . . . , ξn) = 0 for all (ξ1, . . . , ξn) ∈ V } .
It is clear that I(V ) is indeed an ideal of C[x1, . . . , xn].

2.4. Remark. Note that the finite union and arbitrary intersection of algebraic
sets is again an algebraic set — we have⋂

j∈J

V (Sj) = V
(⋃

j∈J

Sj

)
V (S1) ∪ V (S2) = V (S1S2) where S1S2 = {fg : f ∈ S1, g ∈ S2}.

Since the full An and the empty set are also algebraic sets, one can define a topology
on An in which the algebraic sets are exactly the closed sets. This is called the
Zariski Topology. Since algebraic sets are closed in the usual topology (the solution
set of f = 0 is closed as a polynomial f defines a continuous function), this new
topology is coarser than the usual toplogy.

2.5. Remark. We obviously have

S1 ⊂ S2 =⇒ V (S1) ⊃ V (S2) and V1 ⊂ V2 =⇒ I(V1) ⊃ I(V2) .

By definition, we have

S ⊂ I(V (S)) and V ⊂ V (I(V )) .

Together, these imply

V (I(V (S))) = V (S) and I(V (I(V ))) = I(V ) .

This means that we get an inclusion-reversing bijection between algebraic sets and
those ideals that are of the form I(V ). Hilbert’s Nullstellensatz tells us what these
ideals are.

Theorem. Let I be an ideal, V = V (I). If f ∈ I(V ), then fn ∈ I for some
n ≥ 1.

We can deduce that

I(V (I)) = rad(I) = {f ∈ C[x1, . . . , xn] : fn ∈ I for some n ≥ 1}
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is the radical of I. Note that rad(I) is an ideal (Exercise). Hence I = I(V (I)) if
and only if I is a radical ideal, which means that I = rad(I); equivalently, fn ∈ I
for some n ≥ 1 implies f ∈ I. Note that rad(rad(I)) = rad(I) (Exercise).

So we see that I 7→ V (I), V 7→ I(V ) provide an inclusion-reversing bijection
between algebraic sets and radical ideals of C[x1, . . . , xn]. Restricting this to alge-
braic varieties, we obtain a bijection between algebraic varieties and prime ideals
of C[x1, . . . , xn] (i.e., ideals I such that fg ∈ I implies f ∈ I or g ∈ I).

Note that C[x1, . . . , xn] is a noetherian ring; therefore every ideal is finitely gener-
ated. In particular, taking S ′ to be a finite generating set of the ideal 〈S〉, we see
that V (S) = V (S ′) — every algebraic set is defined by a finite set of equations.

2.6. Example. Let us consider the algebraic sets and varieties in the affine line A1.
An algebraic set is given by an ideal of C[x]. Now C[x] is a principal ideal domain,
hence every ideal I is generated by one element: I = 〈f〉. If f = 0, then the
algebraic set is all of A1. So we assume now f 6= 0. Then the ideal is radical if
and only if f has no multiple roots, and the algebraic set defined by it is just the
finite set of points corresponding to the roots of f ; these are n points, where n
is the degree of f . (This set is empty when n = 0, i.e., f is constant.) So the
algebraic sets in A1 are exactly the finite subsets and the whole line. It is then
clear that the algebraic varieties in A1 are the whole line and single points (and
indeed, the prime ideals of C[x] are the zero ideal and the ideals generated by a
linear polynomial x− α).

2.7. Example. Now consider the affine plane A2. The plane A2 itself is an al-
gebraic set — A2 = V (∅). Any single point of A2 is an algebraic set (even an
algebraic variety) — {(ξ, η)} = V (x− ξ, y − η). Therefore all finite subsets of A2

are algebraic sets. Is there something in between finite sets and the whole plane?
Yes: we can consider something like V (x) or V (x2 + y2 − 1). We get an algebraic
set that is intuitively “one-dimensional”. Here we look at ideals 〈F 〉 generated
by a single non-constant polynomial F ∈ C[x, y]. Such an ideal is radical iff F
has no repeated factors in its prime factorization (recall that C[x, y] is a unique
factorization domain), and it is prime iff F is irreducible. We call V (F ) an affine
plane algebraic curve; the curve is called irreducible if F is irreducible.

Simple examples of affine plane algebraic curves are the lines V (ax+ by− c) (with
(a, b) 6= (0, 0)) or the “unit circle” V (x2 + y2 − 1), which is a special case of a
quadric or conic section — a curve V (F ), where F has (total) degree 2. Note that
the “real picture” in R2 of the unit circle is misleading: it does not show the two
branches tending to infiniy with asymptotes of slope i and −i!

One can show that a general proper algebraic subset of A2 is a finite union of
irreducible curves and points.

Finally, we need to introduce two more notions that deal with the functions we
want to consider on our algebraic sets. As this is algebra, the only functions we
have at our disposal are polynomials and quotients of polynomials. If V is an
algebraic set, I = I(V ) its radical ideal, then two polynomial functions will agree
on V if and only if their difference is in I. This prompts the following definitions.
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2.8. Definition. Let V ⊂ An be an algebraic set with ideal I = I(V ). The
quotient ring C[V ] := C[x1, . . . , xn]/I is called the affine coordinate ring of V . If
V is an algebraic variety (hence I is prime, hence C[V ] is an integral domain), then
the field of fractions C(V ) := Frac(C[V ]) of the affine coordinate ring is called the
function field of V .

The affine coordinate ring and function field are closely analogous with the ring
of holomorphic functions and the field of meromorphic functions on a complex
manifold.

2.9. Definition. Let V ⊂ An be an algebraic set. The elements of the coordinate
ring C[V ] are called regular functions on V . If f ∈ C[V ] is a regular function
and P ∈ V is a point on V , then f(P ) ∈ C makes sense: take a representative
F ∈ C[x1, . . . , xn] of f , then f(P ) := F (P ) is well-defined — if F and G both
represent f , then their difference is in the ideal of V , hence vanishes on P .

Let V ⊂ An be an algebraic variety. The elements of the function field C(V ) are
called rational functions on V . If f ∈ C(V ) is a rational function and P ∈ V is a
point on V , then f is regular at P if f can be written f = g/h with g, h ∈ C[V ]
such that h(P ) 6= 0. In this case, we can define f(P ) = g(P )/h(P ) ∈ C. The
regular functions on V are exactly the rational functions that are regular at all
points of V .

3. Projective Spaces and Algebraic Sets

The affine space An has certain shortcomings. For example, its point set Cn is not
compact (in the usual topology), and the same is true for any algebraic set that
does not just consist of finitely many points. Or, looking at the affine plane, two
lines in A2 may intersect in one point or not intersect at all. In order to get nicer
objects and a nicer theory, we introduce a larger space. The price we have to pay
is that the definition is more involved.

3.1. Definition. Let n ≥ 0. Projective n-space, Pn, is the quotient (Cn+1\{0})/ ∼
of the set of non-zero points in Cn+1 modulo the equivalence relation

(ξ0, . . . , ξn) ∼ (η0, . . . , ηn) ⇐⇒ ∃λ ∈ C× : η0 = λξ0, . . . , ηn = λξn .

We write (ξ0 : . . . : ξn) for the point represented by a tuple (ξ0, . . . , ξn).

Note that P0 is again just one point. Again, P1 is called the projective line, and
P2 is called the projective plane.

We can find An inside Pn in a number of ways. Let Uj be the subset of Pn of
points (ξ0 : . . . : ξj : . . . : ξn) such that ξj 6= 0. Then there is a bijection between
An and Uj given by ιj : (ξ1, . . . , ξn) 7→ (ξ1 : . . . : ξj−1 : 1 : ξj : . . . : ξn) and

(ξ0 : . . . : ξn) 7→ ( ξ0
ξj
, . . . ,

ξj−1

ξj
,

ξj+1

ξj
, . . . , ξn

ξj
).

The complement of Uj is in a natural way a Pn−1 (dropping the zero coordinate ξj),
so we can write Pn = An ∪ Pn−1. In particular, the projective line P1 is A1 with
one point “at infinity” added, and the projective plane P2 is A2 with a (projective)
line “at infinity” added.

If we identify t ∈ A1 with the point (t : 1) ∈ P1, so that (t : u) ∈ P1 corresponds
to t

u
(when u 6= 0), then approaching the “point at infinity” corresponds to letting

the denominator tend to zero, keeping the numerator fixed (at 1, say). If we look
at another “chart”, that given by the coordinate u

t
, then in this chart, we approach
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zero. In this way, we can consider the projective line as being “glued together”
from two affine lines with coordinates t and u, identified on the complements of
the origins according to tu = 1. In terms of complex points, this is exactly the
construction of the Riemann Sphere Ĉ = C ∪ {∞}.
This shows that P1 is compact (in its complex topology). More generally, Pn is
compact (with the quotient topology induced by the quotient map Cn+1\{0} → Pn,
or equivalently, with the topology coming from the affine “charts” Uj).

3.2. Definition. A polynomial in C[x0, . . . , xn] is called homogeneous (of de-
gree d) if all its non-vanishing terms have the same total degree d. We will write

C[x0, . . . , xn]d =
{ ∑

k0+···+kn=d

ak0,...,knx
k0
0 · · ·xkn

n : ak0,...,kn ∈ C
}

for the (C-vector) space of homogeneous polynomials of degree d. (The zero poly-
nomial is considered to be homogeneous of any degree d.)

Note that
C[x0, . . . , xn] =

⊕
g≥0

C[x0, . . . , xn]d

as C-vector spaces: every polynomial is a (finite) sum of homogeneous ones; we
write

f = f0 + f1 + · · ·+ fn

if f has (total) degree ≤ n, where fd is homogeneous of degree d. Regarding the
multiplicative structure, we have that the product of two homogeneous polynomi-
als of degrees d and d′, respectively, is homogeneous of degree d+d′. (In algebraic
terms, C[x0, . . . , xn] is a graded ring. A graded ring is a ring R whose additive
group is a direct sum R =

⊕
d≥0Rd such that Rd ·Rd′ ⊂ Rd+d′ for all d, d′ ≥ 0.)

3.3. Definition.

(1) Let S ⊂ C[x0, . . . , xn] be a set of homogeneous polynomials. The projective
algebraic set defined by S is

V (S) = {(ξ0 : . . . : ξn) ∈ Pn : F (ξ0, . . . , ξn) = 0 for all F ∈ S} .
V (S) 6= ∅ is a projective algebraic variety if it is not the union of two proper
projective algebraic subsets.

(2) Let V ⊂ Pn be a subset. The (homogeneous) ideal of V is

I(V ) =
⊕
d≥0

{F ∈ C[x0, . . . , xn]d : F (ξ0, . . . , ξn) = 0 for all (ξ0 : . . . : ξn) ∈ V } .

3.4. Remarks. If F is homogeneous, then for (ξ0 : . . . : ξn) ∈ Pn it makes sense
to ask whether F (ξ0, . . . , ξn) = 0, as this does not depend on the representative
— F (λξ0, . . . , λξn) = λdF (ξ0, . . . , ξn) if F is homogeneous of degree d.

An ideal is called homogeneous, if it is generated by homogeneous polynomials.
I(V ) is the homogeneous ideal generated by all the homogeneous polynomials
vanishing on all points of V .

We get again an inclusion-reversing bijection between projective algebraic sets
and homogeneous radical ideals contained in the irrelevant ideal I0 = 〈x0, . . . , xn〉
(note that V (I0) = V ({1}) = ∅), and between projective algebraic varieties and
homogeneous prime ideals ( I0.
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Note that a projective algebraic set is compact (in the usual topology), since it is
a closed subset of the compact set Pn. In fact, a famous theorem due to Chow
states:

Every connected compact complex manifold is complex-analytically isomorphic to
a projective algebraic variety.

Even more is true: via this isomorphism, the field of meromorphic functions is
identified with the function field of the algebraic variety (see below).

3.5. Example. Consider the (projective) algebraic subsets of P1. Any nonzero
homogeneous polynomial F (x, y) in two variables is a product of linear factors
βx − αy (with α and β not both zero). Such a linear polynomial has the single
point (α : β) as its algebraic set. The algebraic set defined by a general (squarefree)
homogeneous polynomial is therefore again a finite set of points, and the same is
true for a homogeneous ideal, since its algebraic set is the intersection of the
algebraic sets of its generators. (In fact, the homogeneous ideals of C[x, y] are all
generated by one element.)

3.6. Example. In the projective plane P2, we again have finite sets of points
as algebraic sets (which are varieties when they consist of just one point). The
whole plane P2 is a projective algebraic variety. As before, there are also “one-
dimensional” algebraic sets and varieties; they are again defined by single equa-
tions, which are now given by (non-constant) homogeneous polynomials F (x, y, z)
in three variables. They are (surprisingly) called projective plane algebraic curves.

As before, we can define coordinate rings and function fields.

3.7. Definition. Let V ⊂ Pn be an algebraic set with homogeneous ideal I =
I(V ). The quotient ring C[V ] := C[x0, x1, . . . , xn]/I is called the homogeneous
coordinate ring of V .

If V is a projective algebraic variety, then the function field of V is defined as

C(V ) :=
{f
g

: f, g ∈ C[V ], g 6= 0,
f and g both have representatives
in C[x0, . . . , xn]d for some d ≥ 0

}
.

It is something like the “degree zero part” of the field of fractions of C[V ].

3.8. Definition. Let V ⊂ Pn be a projective algebraic variety. The elements
of the function field C(V ) are called rational functions on V . If f ∈ C(V ) is a
rational function and P ∈ V is a point on V , then f is regular at P if f can
be written f = g/h with g, h ∈ C[V ] such that h(P ) 6= 0. In this case, we can
define f(P ) = g(P )/h(P ) ∈ C. Note that this is well-defined, since g and h are
represented by homogeneous polynomials of the same degree d:

f
(
(λξ0 : . . . : λξn)

)
=
g(λξ0, . . . , λξn)

h(λξ0, . . . , λξn)
=
λd g(ξ0, . . . , ξn)

λd h(ξ0, . . . , ξn)
= f

(
(ξ0 : . . . : ξn)

)
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3.9. Example. The concept of a rational function on a projective algebraic vari-
ety is at first sight a bit involved. An example will help to clarify it. Consider the
projective version of the unit circle, given by the equation x2 + y2− z2 = 0. Then
f = (y−z)/x defines a rational function (since numerator y−z and denominator x
have the same degree, and the denominator is not in the homogeneous ideal of the
curve). Let us find out at which points of the curve f is regular. This is certainly
the case for all points with x 6= 0. Let us look at the points where x vanishes.
These are (0 : 1 : 1) and (0 : 1 : −1) (recall that projective coordinates are only
determined up to scaling). At (0 : 1 : −1), the numerator does not vanish, which
implies that f is not regular (Exercise!). At (0 : 1 : 1), the numerator and the
denominator both vanish, so we have to find an alternative representation. Note
that we have (in the function field)

y − z

x
=

(y − z)(y + z)

x(y + z)
=

y2 − z2

x(y + z)
=

−x2

x(y + z)
= − x

y + z
.

In this last representation, the denominator does not vanish at (0 : 1 : 1), so f is
regular there (and in fact takes the value zero).

There is an important result (which has some analogy to Liouville’s Theorem in
complex analysis, which can be formulated to say that any holomorphic function
on a compact Riemann Surface is constant).

3.10. Theorem. If V ⊂ Pn is a projective algebraic variety and f ∈ C(V ) is
regular everywhere on V , then f is constant.

4. Projective Closure and Affine Patches

We now are faced with an obvious question: how do we go between affine and
projective algebraic sets or varieties? There should be some correspondence related
to the idea that going from affine to projective means to add some points in order
to “close up” the algebraic set.

4.1. Definition. For a polynomial f ∈ C[x1, . . . , xn] of (total) degree d, we define

f̃ = xd
0 f

(x1

x0

, . . . ,
xn

x0

)
∈ C[x0, x1, . . . , xn]d .

This operation corresponds to multiplying every term in f with a suitable power
of x0 in order to make the total degree equal to d. This process is sometimes called
homogenization.

4.2. Definition. Let V ⊂ An be an affine algebraic set, with ideal I = I(V ) ⊂
C[x1, . . . , xn]. The projective closure Ṽ of V (with respect to the embedding ι0 :

An → Pn) is the projective algebraic set given by the equations f̃ = 0 for f ∈ I.

It can be shown that Ṽ really is the topological closure (in both the usual and the
Zariski topologies on Pn) in Pn of V ⊂ An ⊂ Pn, thus justifying the name.

4.3. Definition. Let V ⊂ Pn be a projective algebraic set, given by equations f =
0 for f ∈ S ⊂

⋃
d C[x0, x1, . . . , xn]d. Let 0 ≤ j ≤ n. The jth affine patch of V is the

affine algebraic set Vj given by the equations f(x0, . . . , xj−1, 1, xj+1, . . . , xn) = 0
for f ∈ S. (Here, we use C[x0, . . . , xj−1, xj+1, . . . , xn] as the coordinate ring of An.)

The following is quite immediate.



10

4.4. Proposition. If V ⊂ An is an affine algebraic set, then (Ṽ )0 = V .

Proof. Exercise. �

The converse needs more care.

4.5. Proposition. Let V ⊂ Pn be a projective algebraic variety such that V is
not contained in the “hyperplane at infinity”, i.e., the complement Pn \ U0. Then

(̃V0) = V .

Proof. Exercise. �

Note that V0 = ∅ when V is contained in the hyperplane at infinity.

4.6. Examples. If we consider a line L in A2, given by the equation ax+ by = c,
say (with (a, b) 6= (0, 0)), then L̃ is given by ax + by − cz = 0 (writing z for the
additional coordinate on P2). There is exactly one “point at infinity” in L̃ \ L; it
has coordinates (b : −a : 0). This is the point common to all lines parallel to L.

Conversely, if we have a (projective) line Λ ⊂ P2, given by ax+ by + cz = 0 (with
(a, b, c) 6= (0, 0, 0)), then Λ0 ⊂ A2 is given by ax+ by = −c. If (a, b) 6= (0, 0), this
is an affine line, otherwise it is the empty set (since then c 6= 0).

Now consider the “unit circle” C : x2 + y2 = 1 in the affine plane. Its projective
closure is C̃ : x2 +y2−z2 = 0. The zeroth affine patch of this is of course again C.
The first affine patch of C̃ is (set x = 1) C̃1 : z2 = 1 + y2. So in this sense, the
circle is “the same” as a hyperbola.

In the projective closure, the unit circle acquires the two new points “at infinity”
with coordinates (1 : i : 0) and (1 : −i : 0) — they come from the factorization of
the leading term x2 + y2 into a product of linear forms.

More generally, if we have any circle C in the affine plane, given by (x − a)2 +
(y − b)2 = r2, then C̃ still has the two points (1 : i : 0) and (1 : −i : 0): they are
common to all circles!

This explains, by the way, why two circles intersect at most in two points (in A2),
even though one would generically expect four points of intersection (since we are
intersecting two curves of degree 2) — two of the intersection points are out at
infinity (and not defined over R in addition to that).

4.7. Proposition. Let V ⊂ An be an affine algebraic variety, Ṽ its projective
closure. Then the function fields C(V ) and C(Ṽ ) are canonically isomorphic, and
the affine coordinate ring C[V ] can be identified with the set of rational functions
on Ṽ (or on V ) that are regular everywhere on V .

Proof. The proof of the first statement is an exercise. The second statement
follows from the fact that C[V ] is the subset of C(V ) consisting of functions that
are regular on all of V . �
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5. Morphisms and Rational Maps

So far we have defined what our objects are (affine or porjective algebraic sets
or varieties), and we have defined functions on them. But we also want to relate
these objects with each other; in particular, we want to say when two such objects
should be considered “the same”. So we need to define a suitable class of maps
between the objects.

In the affine case, this is quite straight-forward.

5.1. Definition. Let V ⊂ An and W ⊂ Am be two affine algebraic sets. A mor-
phism V → W is a map φ : V → W that is given by polynomials: if C[x1, . . . , xn]
is the coordinate ring of An and C[y1, . . . , ym] is the coordinate ring of Am, then
there are polynomials F1, . . . , Fm ∈ C[x1, . . . , xn] such that

φ(ξ1, . . . , ξn) = (F1(ξ1, . . . , ξn), . . . , Fm(ξ1, . . . , ξn)) .

In order to make sure that the image is contained in W , it is necessary and
sufficient that for every G ∈ I(W ), we have G(F1, . . . , Fm) ∈ I(V ).

Note that the Fj are only determined modulo I(V ); therefore they can also be
considered as elements of the coordinate ring C[V ]. The condition above then
amounts to saying that φ corresponds to a ring homomorphism φ∗ : C[W ] → C[V ]
that sends G to G(F1, . . . , Fm). (It is really a C-algebra homomorphism, as it has
to preserve the constants from C.) Conversely, every such ring homomorphism
leads to a morphism V → W : the polynomials Fj are obtained (modulo I(V )) as
the images of y1, . . . , ym.

As usual, a morphism is called an isomorphism if there is an inverse morphism; in
this case V and W are called isomorphic, V ∼= W . Note that it is not sufficient to
require φ to be a bijective map between the points of V and W . This is analogous
to the situation in topology, where a bijective continuous map is not necessarily a
homeomorphism.

Note also that V ∼= W if and only if C[V ] ∼= C[W ] as C-algebras.

It is clear how to compose morphisms; the composition of two morphisms is again
a morphism.

5.2. Example. Let us show that what we consider a line in A2 really is isomorphic
to the affine line A1. Let the line L be given by y = ax+ b (this excludes the case
x = c, which can be dealt with in a similar way). Let C[t] be the coordinate ring
of A1. We set up two morphims:

φ : A1 −→ L , t 7−→ (t, at+ b) ; ψ : L→ A1 , (x, y) 7−→ x

Both maps are given by polynomials, as required, and the image of the first is
contained in L — it satisfies the equation. (There is nothing to check in this
respect for the second map, as there is no equation to be satisfied.) It is then
obvious that the two morphisms are inverses of each other, hence L ∼= A1. In
terms of coordinate rings, we have an isomorphism between C[x, y]/〈y − ax − b〉
and C[t], which comes essentially down to the fact that we can eliminate y.
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5.3. Example. Now consider the cuspidal cubic curve C : y2 = x3 in A2. There
is a morphism

φ : A1 −→ C , t 7−→ (t2, t3) .

φ is even bijective on points — if (x, y) ∈ C is not (0, 0), then the unique t
that maps to it is y/x, and (0, 0) has the unique preimage 0 — but it is not
an isomorphism. One way of checking this is to notice that the image of the
corresponding C-algebra homomorphism φ∗ : C[x, y]/〈y2 − x3〉 → C[t] does not
contain t. In fact, there is no isomorphism between A1 and C, and this is a good
thing, since the point (0, 0) on C is bad (it is “singular”; we will come to that),
but there are no bad points on A1.

The projective case is a little bit more involved.

5.4. Definition. Let V ⊂ Pn and W ⊂ Pm be two projective algebraic sets. A
morphism V → W is a map φ : V → W that is “locally given by homogeneous
polynomials of the same degree”. What this means is that there are (m + 1)-

tuples (F
(j)
0 , . . . , F

(j)
m ) of homogeneous polynomials F

(j)
k ∈ C[x0, . . . , xn]dj

of the
same degree dj, for j in some index set J , such that

(1) for all homogeneous G ∈ I(W ) and all j ∈ J , G(F
(j)
0 , . . . , F

(j)
m ) ∈ I(V );

(2) for all j, j′ ∈ J , 0 ≤ k < k′ ≤ m, we have F
(j)
k F

(j′)
k′ − F

(j)
k′ F

(j′)
k ∈ I(V );

(3) for all P ∈ V , there is some j ∈ J such that not all of F
(j)
k (P ) vanish,

0 ≤ k ≤ n, and in this case

φ(P ) = (F
(j)
0 (ξ0, . . . , ξn) : . . . : F (j)

n (ξ0, . . . , ξn)) ,

if P = (ξ0 : . . . : ξn).

The first condition ensures that the image is contained inW . The second condition
ensures that φ is well-defined at points where more than one tuple of polynomials
would give a result. The third condition ensures that φ is defined everywhere.

We can again compose morphisms between projective algebraic sets (by plugging
in; note that we may have to use all possible combinations of defining polynomials
for both morphisms); the composition is again a morphism.

5.5. Example. In a similar way as for the affine case, one can show that a line
L : ax+ by + cz = 0 in P2 is isomorphic to the projective line P1.

Let us do something more interesting here: we show that P1 is isomorphic to the
unit circle C : x2 + y2 − z2 = 0. The geometric intuition behind this is the idea
that one can “rationally parametrize” the points on the unit circle by fixing one
point P on it and considering all the lines through P . The lines are parametrized
by their slope, and each line intersects C in a unique second point. In this way,
there is a correspondence between slopes and points on C. In formulas, this leads
to the morphism

φ : P1 −→ C , (t : u) 7−→ (t2 − u2 : 2 tu : t2 + u2) .

The polynomials on the right hand side are homogeneous of the same degree 2. It
is easy to see that the image is contained in C. Also, it suffices to give just this
one set of defining polynomials, since they never vanish all three at the same time
(recall that t and u do not both vanish for a point in P1).
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What about the inverse? In the affine picture (where z = 1), the point P is (−1, 0),
and u/t is the slope of the line. So we should have u/t = y/(x+ 1). Writing this
in homogeneous terms leads to

ψ : C −→ P1 , (x : y : z) 7−→ (x+ z : y) .

But here we have a problem: at P = (−1 : 0 : 1), both polynomials x + z and y
vanish, and the map is not defined. So we need to find an alternative representation
that is defined at P . We can proceed as follows.

(x+ z : y) = ((x+ z)(z − x) : y(z − x)) = (z2 − x2 : y(z − x))

= (y2 : y(z − x)) = (y : z − x)

This version is defined at P (and gives the image (0 : 1)), however, it is not
defined at (1 : 0 : 1). So we see that we really need two different sets of defining
polynomials in this case.

5.6. Remark. There are no interesting morphisms from projective to affine alge-
braic sets. One can consider morphisms from affine to projective algebraic sets,
however; they are defined in a similar way as above in the projective case, with
the modification that the defining polynomials need not be homogeneous. For
example, we can define a morphism from the affine unit circle C ′ : x2 + y2 = 1 to
the projective line:

ψ′ : C ′ −→ P1 , (x, y) 7−→ (x+ 1 : y) or (y : 1− x)

In this sense, the canonical inclusion of an affine algebraic set V into its projective
closure Ṽ is a morphism.

Sometimes one wants to be less demanding and does not require the maps to be
defined everywhere, as long as they are defined on a sufficiently large subset. This
leads to the notion of rational map.

5.7. Definition. Let V ⊂ Pn and W ⊂ Pm be two projective algebraic varieties.
A rational map φ : V → W is defined in the same way as a morphism, with the
exception that we do not require the last condition for all points P ∈ V , but just
for at least one point. If P is a point that satisfies this condition, then we say that
φ is defined at P . It is not hard to see that φ is defined on the complement of a
proper algebraic subset of V .

Now it is not true that we can always compose rational maps: the image of the
first map may be outside the (maximal) domain of definition of the second one.
Therefore, we single out a subclass of rational maps that are better behaved in
this respect. Consider some affine patch W ′ of W such that W ′ meets the image
of φ. Then we can pull back regular functions on W ′ to rational functions on V
via φ: we get a C-algebra homomorphism C[W ′] → C(V ). We call φ dominant
if this homomorphism is injective. (It can be shown that this does not depend
on the affine patch chosen and that it is equivalent to saying that the image of φ
is dense in the Zariski topology of W .) In this case, the homomorphism extends
to a C-algebra homomorphism φ∗ : C(W ) = Frac(C[W ′]) → C(V ). Explicitly,
if φ is given by homogeneous polynomials F0, . . . , Fm of the same degree and
f = g/h is a quotient of homogeneous elements of C[W ] of the same degree,
then φ∗(f) = g(F0, . . . , Fm)/h(F0, . . . , Fm). Conversely, every such homomorphism
C(W ) → C(V ) comes from a dominant rational map.
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We can compose dominant rational maps; the composition is again a dominant
rational map. More generally, if φ : V → W is a dominant rational map and
ψ : W → X is any rational map, then ψ ◦ φ is defined and a rational map.

The (dominant) rational map φ is called birational or a birational isomorphism if
there is an inverse (dominant) rational map. In view of the preceding discussion,
this is equivalent to saying that the function fields of V and W are isomorphic (as
C-algebras). Intuitively speaking, a birational isomorphism between two algebraic
varieties is an isomorphims “modulo proper algebraic subsets.”

Since the function fields of an affine algebraic variety V and of its projective
closure Ṽ can be identified, we can extend the notion of rational maps to affine
algebraic varieties.

5.8. Example. Let us look at the cuspidal cubic curve again and show that it is
birationally isomorphic to the line. This time, we are looking at the projective
situation. Then the cuspidal cubic is given by C : x3 − y2z = 0 and the line is P1.
We still have the morphism

φ : P1 −→ C , (t : u) 7−→ (t2u : t3 : u3) ,

but now we claim that it is invertible as a rational map. The inverse is

ψ : C −→ P1 , (x : y : z) 7−→ (y : x) .

This is not a morphism, since it is not defined at (0 : 0 : 1), but it is a rational
map. It is easy to check that φ and ψ are inverses:

(t : u) 7−→ (t2u : t3 : u3) 7−→ (t3 : t2u) = (t : u)

(x : y : z) 7−→ (y : x) 7−→ (xy2 : y3 : x3) = (xy2 : y3 : y2z) = (x : y : z)

In terms of function fields, the isomorphism is given by identifying t/u with y/x.

6. Curves — Local Properties

Starting with this section, we will restrict ourselves to the consideration of plane
algebraic curves. In this section, we will consider the behavior of a curve near one
of its points.

6.1. Definition. Let C : f(x, y) = 0 be an affine plane algebraic curve, and let
P = (ξ, η) ∈ C be a point on C. Let fx = ∂f/∂x and fy = ∂f/∂y be the two
partial derivatives of the polynomial f . We say that P is a regular point of C,
and that C is regular or smooth or nonsingular at P , if fx(ξ, η) and fy(ξ, η) do
not both vanish. In this case, the equation fx(ξ, η)(x − ξ) + fy(ξ, η)(y − η) = 0
describes a line through the point P ; it is called the tangent line to C at P . If
fx(ξ, η) = fy(ξ, η) = 0, we call P a singular point or a singularity of C, and we say
that C is singular at P . We call the affine curve C smooth if it has no singular
points.

Writing
f(x+ ξ, y + η) = f0(x, y) + f1(x, y) + · · ·+ fd(x, y)

with fj homogeneous of degree j, we have f0 = 0 (since P is on C) and f1 = 0 if
and only if P is a singularity of C. We call the smallest j such that fj 6= 0 the
multiplicity of P . So a singular point is one with multiplicity at least 2. If the
multiplicity is n, we speak of an n-uple point of C (e.g., double, triple point). If
the point is regular, then f1(x− ξ, y − η) = 0 gives the tangent line.
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Intuitively, the local behavior of C near P is determined by the lowest order non-
vanishing term fn (where n is the multiplicity of P ). If n = 1, then this lowest
order term is linear, and the curve looks “like a line” near P ; in particular, there
is a well-defined tangent line. If n > 1, then we can factor fn as a product of n
linear forms, which correspond to the tangent directions of the various “branches”
of the curve at P ; these directions may occur with multiplicities. If fn is a product
of n pairwise non-proportional linear forms (so that there are n distinct tangent
directions), we call the singularity ordinary. So an ordinary double point (also
called a node) is a point of multiplicity 2 with two distinct tangent directions.

6.2. Definition. Let C : F (x, y, z) = 0 be a projective plane algebraic curve,
P ∈ C a point on C. Let Ci be an affine patch of C that contains P . Then we
define the notions of regular/singular point etc. for P ∈ C by those for P ∈ Ci.
It is easy to check that this does not depend on the choice of affine patch when
several are possible (Exercise). We say that C is smooth if it has no singular
points.

It can be shown that P ∈ C is singular if and only if Fx(P ) = Fy(P ) = Fz(P ) = 0
(Exercise). Furthermore, if P = (ξ : η : ζ) is smooth on C, then the tangent line
to C at P has equation

Fx(ξ, η, ζ)x+ Fy(ξ, η, ζ)y + Fz(ξ, η, ζ)z = 0

(Exercise).

6.3. Example. An affine line ax + by = c ((a, b) 6= (0, 0)) is smooth: the partial
derivatives are a and b, and at least one of them is nonzero. Similarly, a projective
line ax+ by + cz = 0 ((a, b, c) 6= (0, 0, 0)) is smooth.

6.4. Example. The affine and projective unit circles are smooth. Consider the
affine circle x2 + y2− 1 = 0. The partial derivatives are 2x and 2y, so they vanish
together only at the origin, but the origin is not on the curve. The same kind of
argument works for the other affine patches of the projective unit circle.

6.5. Example. The reducible affine curve xy = 0 has an ordinary double point
at the origin. Indeed, both partial derivatives y and x vanish there, and the first
nonvanishing term in the local expansion is xy of degree 2, which factors into the
two non-proportional linear forms x and y.

6.6. Example. Let us consider the nodal cubic curve N : y2 = x2(x+1). Writing
f(x, y) = y2 − x3 − x2, the partial derivatives are fx = −3x2 − 2x and fy = 2y. If
they both vanish, we must have y = 0 and then x2(x+ 1) = x(3x+ 2) = 0, which
implies x = 0. So the origin is singular. There we have f2 = y2−x2 = (y−x)(y+x)
(and f3 = −x3), so we have an ordinary double point, with tangent directions of
slopes 1 and −1.

6.7. Example. Now look at the cuspidal cubic curve C : y2 = x3. The partial
derivatives are −3x2 and 2y, so the origin is again the only singularity. This time,
f2 = y2 is a square, so there is only one tangent direction (in this case, along the
x-axis). Such a singularity (where f2 is a nonzero square and f2 and f3 have no
common divisors) is called a cusp.
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6.8. Example. Consider the affine curve C : y = x3. It is smooth, since the y-
derivative is constant 1. However, if we look at the projective closure yz2−x3 = 0,
we find that there is a singularity at (0 : 1 : 0). Therefore it is not true that the
projective closure of a smooth affine plane curve is again smooth.

Our next topic is the local behavior of rational functions on a curve.

6.9. Definition. Let C be an irreducible affine plane curve, P ∈ C a smooth
point, and consider a regular function 0 6= φ ∈ C[C]. We want to define the order
of vanishing of φ at P . For this, let the equation of the curve be f(x, y) = 0 and
assume (we can make a translation if necessary) that P = (0, 0). Then

f(x, y) = ax+ by + f2(x, y) + · · ·+ fd(x, y)

with (a, b) 6= (0, 0). Assume that b 6= 0 (otherwise interchange x and y). We define
the order of vanishing or just order of φ at P to be

vP (φ) = max
{
j :

φ

xj
is regular at P

}
.

Here φ/xj is considered as a rational function on C. We set vP (0) = +∞.

The idea here is that in the situation described, x = 0 defines a line that meets the
curve transversally at P (i.e., not in the tangent direction) and therefore x has a
simple zero at P . So we should have vP (x) = 1. Also, if φ is regular and non-zero
at P , we want to have vP (φ) = 0. That the definition makes sense follows from
the following result.

6.10. Lemma. Consider the situation described in the definition above.

(1) If φ is regular at P and vanishes there, then vP (φ) > 0.

(2) Let n = vP (φ). Then φ/xn is regular at P and has a non-zero value there.
This property determines n uniquely.

(3) vP (φ1φ2) = vP (φ1) + vP (φ2).

(4) vP (φ1 + φ2) ≥ min{vP (φ1), vP (φ2)}, with equality if vP (φ1) 6= vP (φ2).

Proof.
(1) We have to show that φ/x is regular at P . By assumption, φ is represented
by a polynomial without constant term. It is therefore sufficient to show that y/x
is regular at P , since φ/x is represented by a polynomial (regular at P ) plus a
polynomial times y/x. Now we can write

f(x, y) = x(a+ F (x, y)) + y(b+G(x, y))

where F (0, 0) = G(0, 0) = 0. Then

y(b+G(x, y)) ≡ −x(a+ F (x, y)) mod f ,

hence y/x = −(a + F (x, y))/(b + G(x, y)) in C(C), where the denominator does
not vanish at P = (0, 0) (and y/x takes the value −a/b).
(2) φ/xn is regular at P by definition. If φ/xn vanishes at P , then by part (1),
φ/xn+1 is also regular, contradicting the definition of n. [The proof of part (1)
also works for rational functions.] So (φ/xn)(P ) 6= 0. It is clear that there can be
at most one n such that φ/xn is regular and non-vanishing at P .

(3) Let n1 = vP (φ1) and n2 = vP (φ2), then φ1φ2/x
n1+n2 is regular and non-

vanishing at P , hence vP (φ1φ2) = n1 + n2.



17

(4) Keep the notations from (3) and let n = min{n1, n2}. Then (φ1 + φ2)/x
n

is regular at P , so vP (φ1 + φ2) ≥ n. If n1 < n2 (say), then φ1/x
n is non-zero

at P , whereas φ2/x
n vanishes, so (φ1 + φ2)/x

n is non-zero at P , and we have
vP (φ1 + φ2) = n. �

6.11. Definition. If C is an irreducible affine curve, P ∈ C is a smooth point,
and φ ∈ C(C) is a rational function represented by the quotient f/g of regular
functions, then we define the order of φ at P to be vP (φ) = vP (f)− vP (g).

If C is an irreducible projective curve, P ∈ C is a smooth point, and φ ∈ C(C) is
a rational function, then we define the order of φ at P to be the order of φ at P
for any affine patch of C containing P .

It can be checked that the definitions do not depend on the choices made (of
numerator and denominator or affine patch).

6.12. Definition. If P ∈ C is a smooth point on an irreducible curve, then any
rational function t ∈ C(C) such that vP (t) = 1 is called a uniformizing parameter
or uniformizer at P .

We then have again for all 0 6= φ ∈ C(C) that

vP (φ) = n ⇐⇒ φ

tn
is regular and non-vanishing at P .

6.13. Lemma. Let C be an irreducible curve, P ∈ C a smooth point and φ ∈ C(C)
a rational function. Then φ is regular at P if and only if vP (φ) ≥ 0.

Proof. We work in an affine patch containing P . Write φ = f/g as a quotient
of regular functions, and let m = vP (f), n = vP (g). Let t be a uniformizer
at P . Then f = tmf0 and g = tng0 with f0 and g0 regular and non-vanishing
at P . Hence φ = tm−nf0/g0, where f0/g0 is regular and non-vanishing at P . If
m − n = vP (φ) ≥ 0, then tm−n and therefore φ is regular at P . If m − n < 0,
then φ = f0/(t

n−mg0) is a quotient of regular functions such that the denominator
vanishes at P , but the numerator does not, hence φ is not regular at P . �

6.14. Example. Let us see what these notions mean for the line (which, to satisfy
the assumptions of the definitions, we can consider as being embedded in the plane,
for example as a coordinate axis). Let t be the coordinate on A1, then a rational
function is a quotient of polynomials φ = f(t)/g(t), which we can assume is in
lowest terms. At a point P = τ , a uniformizer is given by t− τ , and we see that

vP (f) = max{n : (t− τ)n divides f}
is the multiplicity of the zero τ of f . In particular,∑

P∈A1

vP (f) = deg f and
∑
P∈A1

vP (φ) = deg f − deg g .

Now let us consider A1 ⊂ P1 and find the order of φ at ∞. There, 1/t is a
uniformizer, and a quotient f(t)/g(t) is regular if and only if deg g ≥ deg f . These
facts together imply that v∞(φ) = deg g − deg f and therefore∑

P∈P1

vP (φ) = 0 .

This is a very important result: a rational function has as many zeros as it has
poles (counted with multiplicity).
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6.15. Example. Consider again the (affine) unit circle C : x2 + y2 = 1. At the
point P = (0, 1) ∈ C, x is a uniformizer (since the tangent direction is horizontal,
x = 0 intersects C transversally at P ). So vP (x) = 1. On the other hand,
2 = vP (x2) = vP (y− 1) + vP (y + 1) = vP (y− 1). This shows again that (y− 1)/x
is regular at P and vanishes there.

6.16. Remark. Let V be an algebraic variety (affine or projective) and let W ⊂
Pm be a projective algebraic variety. Then every collection of rational functions
F0, . . . , Fm ∈ C(V ), not all the zero function, determines a rational map V → W
by evaluating (F0 : . . . : Fm) (at points where F0, . . . , Fm all are regular and at
least one of them does not vanish).

Conversely, every rational map can be written in this way (there is nothing to
do when V is affine; in the projective case, the map is given by homogeneous
polynomials of the same degree d, and we can just divide every polynomial by a
fixed homogeneous polynomial of degree d that does not vanish on all of V .)

6.17. Proposition. Let C be an irreducible plane algebraic curve and φ : C → Pm

a rational map. Let P ∈ C be a smooth point. Then φ is (or can be) defined at P .

Proof. By the remark above, we can write φ = (F0 : . . . : Fm) with ratio-
nal functions F0, . . . , Fm ∈ C(C). Let t be a uniformizer at P , and let n =
min{vP (Fj) : j = 0, . . . ,m}. Then φ = (t−nF0 : . . . : t−nFm) as well, and for all j,
vP (t−nFj) = vP (Fj)− n ≥ 0, with equality for at least one j = j0. Hence t−nFj is
regular at P for all j, and (t−nFj0)(P ) 6= 0. Therefore, we get a well-defined point
φ(P ) ∈ Pm. �

6.18. Corollary. Let C be an irreducible smooth plane curve. Then every rational
map C → Pm is already a morphism.

Proof. By the proposition, φ is defined on all of C. �

6.19. Corollary. Let C be an irreducible smooth projective plane curve. Then
there is a natural bijection between non-constant rational functions on C and dom-
inant morphisms C → P1.

Proof. The map is given by associating to a rational function φ ∈ C(C) the rational
map (φ : 1). By the previous corollary, this rational map is already a morphism;
it is dominant if φ is non-constant. Conversely, a dominant morphism gives rise to
an injective C-algebra homomorphism C[t] = C[A1] → C(C); the corresponding
rational function on C is the image of t under this homomorphism. �

6.20. Example. Consider again the nodal cubic curve N : y2 = x2(x+1) and the
rational function y/x ∈ C(N). It is not possible to extend it to the point (0, 0)
(which is a singular point of N): y/x is the slope of the line connecting (0, 0)
to (y, x), and so it will tend to 1 if you approach (0, 0) within N along the branch
where y ≈ x, and it will tend to −1 along the branch where y ≈ −x.

7. Bézout’s Theorem

Bézout’s Theorem is a very important statement on the intersection of two pro-
jective plane curves. It generalizes the statement that two distinct lines always
intersect in exactly one point.

We begin with a simple case.
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7.1. Definition. Let C : F (x, y) = 0 be a plane affine curve and L : ax+ by = c
an affine line such that L is not contained in C. Let P = (ξ, η) ∈ C ∩ L. If b 6= 0,
then we set (C · L)P equal to the multiplicity of the zero ξ of the polynomial
F (x, (c− ax)/b). If a 6= 0, we set (C · L)P equal to the multiplicity of the zero η
of the polynomial F ((c− by)/a, y). If P /∈ C ∩ L, then we set (C · L)P = 0. The
number (C · L)P is called the intersection multiplicity of C and L in P .

7.2. Lemma. The intersection multiplicity is well-defined: if both a and b are
nonzero in the above, then both definitions produce the same number.

Proof. Let f(x) = F (x, c−ax
b

) and g(y) = F ( c−by
a
, y). Then g(y) = f((c − by)/a),

f(x) = g((c−ax)/b), and the two maps x 7→ (c−by)/a, y 7→ (c−ax)/b are inverse
homomorphisms between the polynomial rings C[x] and C[y], mapping x − ξ to
y − η (up to scaling) and conversely. Therefore the multiplicities agree. (Also
note that f and g are nonzero, since the defining polynomial of C does not vanish
everywhere on L.) �

7.3. Definition. Let C be a plane projective curve, L 6⊂ C a projective line, and
P ∈ P2 a point. We define (C ·L)P to be the intersection multiplicity of (C ′ ·L′)P

for a suitable affine patch of P2 that contains P (and the corresponding affine
patches C ′ and L′ of C and L). (If L′ is empty, the number is zero.)

It can be checked that the number does not depend on the affine patch chosen if
there are several possibilities. Also, by homogenizing the affine situation, we see
that (C · L)P is the multiplicity of the linear factor ηx − ξy in the homogeneous
polynomial F (x, y,−ax+by

c
), if C : F (x, y, z) = 0, L : ax+ by + cz = 0 with c 6= 0,

and P = (ξ : η : ζ). Similar statements are true when a 6= 0 or b 6= 0.

7.4. Theorem. Let C be a projective plane curve of degree d and L ⊂ P2 a
projective line that is not contained in C. Then

C · L :=
∑
P∈P2

(C · L)P = d .

In words, C and L intersect in exactly d points, counting multiplicities.

Proof. Let C : F (x, y, z) = 0 and L : ax+ by+ cz = 0. Without loss of generality,
assume that c 6= 0. Consider the homogeneous polynomial

f(x, y) = F
(
x, y,−ax+ by

c

)
of degree d. Note that f 6= 0 since L 6⊂ C. For a point P = (ξ : η : ζ) ∈ L, we
have that (C ·L)P is the multiplicity of ηx−ξy in f (and P is uniquely determined
by (ξ : η)). The sum of these multiplicities is d, since f is a product of d linear
factors. For all other P , the multiplicity is zero. This proves the claim. �

Let us look more closely at the intersection multiplicities.
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7.5. Proposition. Let C be a plane affine curve and P ∈ C.

(1) If L is a line through P , then (C · L)P ≥ 1.

(2) If P is smooth, then for all lines L through P , we have (C ·L)P = 1, except
for the tangent line to C at P , which has intersection multiplicity at least 2
with C at P .

(3) If P is not smooth, then for all lines L through P , (C · L)P ≥ m, where
m is the multiplicity of P as a point of C. We have equality except for the
finitely many lines whose slopes are the tangent directions to C at P .

Proof. It suffices to prove the last part. Without loss of generality, assume that
P = (0, 0), and write

f(x, y) = f1(x, y) + f2(x, y) + · · ·+ fd(x, y) ,

where f(x, y) = 0 is the equation of C, and fj is homogeneous of degree j. The
multiplicity m is the smallest j such that fj 6= 0. If we plug in λx for y (to find
the intersection multiplicity with the line y = λx), then we get a polynomial in x
that is divisible by xm, hence (C · L)P ≥ m. Similarly if we plug in 0 for x (when
the line is the vertical x = 0). On the other hand, the polynomial in x will start
xmfm(1, λ) (plus higher order terms); therefore the intersection multiplicity will
be exactly m unless λ is a slope corresponding to one of the tangent directions
(and this extends to the vertical case). �

7.6. Definition. If C is a plane curve, P ∈ C a smooth point, then P is called an
inflection point or flex point or flex of C, if (C · L)P ≥ 3, where L is the tangent
line to C at P .

7.7. Remark. The property of a point P ∈ C to be a flex point is not an “in-
trinsic” property — it depends on the embedding of the curve in the plane. For
example, if C is a smooth projective cubic curve and P is any point on C, then
there is an isomorphism of C with another smooth plane cubic curve C ′ such that
the image of P on C ′ is a flex point.

7.8. Theorem. Let C : F (x, y, z) = 0 be a projective plane curve. Define the
Hessian of F to be

HF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂x2

∂2F

∂x ∂y

∂2F

∂x ∂z

∂2F

∂y ∂x

∂2F

∂y2

∂2F

∂y ∂z

∂2F

∂z ∂x

∂2F

∂z ∂y

∂2F

∂z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then a smooth point P ∈ C is an inflection point if and only if HF (P ) = 0.

Proof. Exercise. �

7.9. Example. If C is a smooth conic section (so of degree 2), then C does not
have flex points. Indeed, the Hessian is constant and nonzero in this case.
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7.10. Example. Consider C : x4 + z4 − y2z2 = 0. The partial derivatives of the
defining polynomial are

(4x3,−2 yz2, 4 z3 − 2 y2z) ;

they all vanish at P0 = (0 : 1 : 0), which is therefore a singularity. The Hessian is∣∣∣∣∣∣
12x2 0 0

0 −2 z2 −4 yz
0 −4 yz 12 z2 − 2 y2

∣∣∣∣∣∣ = −144x2z2(y2 + 2 z2) .

If x = 0, then z = 0 (this gives the singularity P0) or y = ±z; this gives two
flex points (0 : ±1 : 1). (In these two points, the tangent line meets the curve
even with multiplicity 4.) If z = 0, then x = 0, and we find P0 again. Finally, if
y2 = −2z2, then we obtain the equation x4 = −3z4, and we find eight more flex
points (ik 4

√
−3 : ±

√
−2 : 1) (with k = 0, 1, 2, 3).

When looking at the intersection of a curve and a line, we could solve the equation
of the line for one of the variables and then simply plug this into the equation of
the curve. So we have eliminated one variable and reduced the problem to a
one-dimensional one, which was easy.

If we intersect with a curve of higher degree, elimination is not so straight-forward.
However, it is possible. The tool that comes in handy here is the resultant.

7.11. Definition. Let f1, . . . , fn be polynomials of degree less than n with coeffi-
cients in a commutative ring. Write fi = ai1x

n−1 + ai2x
n−2 + · · ·+ ain. We set for

the following

det(f1, . . . , fn) = det(aij) .

Let f = anx
n + · · ·+ a1x+ a0 and g = bmx

m + · · ·+ b1x+ b0 be two polynomials
with coefficients in a commutative ring. The resultant of f and g (with respect to
the variable x) is the (n+m)× (n+m) determinant

Res(f, g) = Resx(n,m; f, g) = det(xm−1f, . . . , xf, f, xn−1g, . . . xg, g) .

7.12. Lemma. Keeping the notations of the definition above, assume that f is
monic of degree n and that R is a field. Then Res(n,m; f, g) is the determinant
of the endomorphism φ of the R-vector space V = R[x]/〈f〉, that is given by
v 7→ g · v.

Proof. If h is a polynomial of degree < n+m, then by performing row operations
on the matrix whose rows are the coefficient vectors of xm−1f, . . . , xf, f, h, we can
change the last row into r, where h = qf + r and deg r < deg f . Applying this to
xn−1g, . . . , xg, g, and denoting by h the remainder of h mod f (r in the above),
we see that

Res(n,m; f, g) = det(xm−1f, . . . , xf, f, xn−1g, . . . , xg, g) = det(xn−1g, . . . , xg, g) .

(For the second equality, note that the matrix on the left is a block matrix whose
upper left block is an upper triangular matrix with 1s on the diagonal and whose
lower left block is a zero matrix.) The last matrix represents φ in the standard

basis xn−1, . . . , x, 1, whence the claim. �



22

7.13. Corollary. Let f be a monic polynomial of degree n over a field, let g and h
be polynomials of degree ≤ m and ≤ `, respectively.

(1) Res(n,m + k; f, g) = Res(n,m; f, g) for all k ≥ 0. So we can just write
Res(n, ∗; f, g) to denote Res(n, k; f, g) for any k ≥ deg g.

(2) Res(n, ∗; f, g + hf) = Res(n, ∗; f, g).
(3) Res(n, ∗; f, gh) = Res(n, ∗; f, g) Res(n, ∗; f, h).

Proof.
(1) By Lemma 7.12, both resultants are equal to the determinant of the same
linear map.

(2) Since g + hf = g, both sides are again equal to the determinant of the same
linear map.

(3) This follows from Lemma 7.12 and the multiplicativity of determinants. �

7.14. Lemma. Let R be a general commutative ring, f and g as in the definition.

(1) For c ∈ R, Res(n,m; cf, g) = cm Res(n,m; f, g).

(2) Res(n,m; f, g) = (−1)mn Res(m,n; g, f).

Proof.
(1) This is clear from the definition: we multiply the upper m rows of the matrix
by c.

(2) The two determinants differ by the nth power of a cyclic permutation of the
(n+m) rows. The sign of this permutation is (−1)n(n+m+1 = (−1)mn(−1)n(n+1) =
(−1)mn (since n(n+ 1) is always even). �

7.15. Proposition. Let R, f , g as before, and let h be a polynomial over R of
degree ≤ `.

(1) Res(n,m+ `; f, gh) = Res(n,m; f, g) Res(n, `; f, h).

(2) If f is monic of degree n, then Res(n,m + k; f, g) = Res(n,m; f, g) =:
Res(n, ∗; f, g) =: Res(f, g) for all k ≥ 0.

(3) If f is monic of degree n, then Res(n, ∗; f, g + hf) = Res(n, ∗; f, g).

Proof. All identities are indentities between polynomials with integral coefficients
in the coefficients of f, g, h. Consider all these coefficients as independent vari-
ables, and let K be the field of fractions of the polynomial ring P in all these
variables over Z. Let F,G,H be the polynomials over P whose coefficients are the
corresponding variables. Then parts (2) and (3) are valid for F,G,H in place of
f, g, h and over K, by Cor. 7.13. Part (1) is true over any field if f is monic of
degree n. By Lemma 7.14, the statement continues to hold when f has nonzero
leading coefficient (scale f to be monic and observe that both sides scale in the
same way). Since the leading coefficient of our “generic polynomial” F is nonzero
(it is a variable), part (1) holds for F,G,H over K.

Now since both sides of all the equalities are in P , they are also true over P . But
this means that they hold in general. (For any ring R and polynomials f, g, h
over R, there is a (unique) ring homomorphism P [x] → R[x] that sends F to f ,
G to g and H to h, hence it maps the identities that hold over P to the ones we
want over R.) �

The most important property of the resultant is the following.
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7.16. Theorem. Let R be a Unique Factorization Domain and let f , g be poly-
nomials over R of degrees ≤ n and ≤ m, respectively. Then Res(n,m; f, g) = 0
if and only if either deg f < n and deg g < m, or f and g have a nonconstant
common divisor in R[x].

Proof. If deg f < n and deg g < m, then the resultant obviously vanishes, since
the first column of the matrix is zero. So we can assume that (say) deg f = n.
Let F be the field of fractions of R; then we can write f = cp1 · · · pk ∈ F [x] with
a constant c 6= 0 and irreducible monic polynomials pj. By Prop. 7.15, we have

Res(n,m; f, g) = cm Res(p1, g) · · ·Res(pk, g) .

Now if p ∈ F [x] is irreducible, then g is either invertible mod p or divisible by p.
In the first case, multiplication by g on F [x]/〈p〉 is an invertible map, hence has
nonzero determinant. In the second case, we have the zero map. Therefore:

Res(pj, g) = 0 ⇐⇒ pj | g
So Res(n,m; f, g) = 0 if and only if f and g have a nonconstant common divisor
in F [x]. But by Gauss’ Lemma, this is equivalent to the existence of a nonconstant
common divisor in R[x]. �

In other words, the vanishing of the resultant indicates that f and g have a common
root (in a suitable extension field).

Now we want to use the resultant to get information on the intersecion of two
curves.

7.17. Lemma. Let f, g ∈ C[x, y, z] be homogeneous of degree n and m, respec-
tively. Then Resz(n,m; f, g) is homogeneous of degree nm in the remaining two
variables x and y.

Proof. Consider the relevant matrix. The entry in the ith row and jth column is
homogeneous in x and y of degree j − i if 1 ≤ i ≤ m and of degree m + j − i if
m < i ≤ m+ n. Every term in the expansion of the determinant as a polynomial
in the entries therefore is homogeneous of degree
n+m∑
j=1

j−
m∑

i=1

i−
n+m∑

i=m+1

(i−m) =
(n+m)(n+m+ 1)

2
−m(m+ 1)

2
− n(n+ 1)

2
= nm .

�

7.18. Corollary. Let C and D be two projective plane curves of degrees n ≥ 1
and m ≥ 1, respectively. Then C ∩ D is nonempty. If C and D do not have a
component in common, then #(C ∩D) ≤ nm.

Proof. Let F (x, y, z) = 0 and G(x, y, z) = 0 be the equations of C and D. After
a linear change of variables, we can assume that (0 : 0 : 1) is not in C ∩ D. Let
R(x, y) = Resz(F,G); then R is homogeneous of degree nm by Lemma 7.17. If
R = 0, then F and G have a nonconstant common factor by Thm. 7.16, i.e., C
and D have a component in common. (Note that the coefficient of zn in F or the
coefficient of zm in G is nonzero since (0 : 0 : 1) /∈ C∩D.) In this case, we certainly
have C∩D 6= ∅, hence we can assume that R 6= 0. Then R is a product of nm ≥ 1
linear forms. Therefore, there is some (ξ : η) ∈ P1 such that R(ξ, η) = 0. But
then by Thm. 7.16 again, the polynomials F (ξ, η, z) and G(ξ, η, z) in C[z] have a
common root ζ. But this means that (ξ : η : ζ) ∈ C ∩D.
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Now assume that there are nm+1 distinct intersection points P1, . . . , Pnm+1. After
perhaps another linear change of variables, we can assume that Pj = (ξj : ηj : ζj) 6=
(0 : 0 : 1) such that all Qj = (ξj : ηj) are distinct. Then R(ξj, ηj) = 0 for all j (note
that ζj is a common root of F (ξj, ηj, z) and G(ξj, ηj, z)). But R is homogeneous
of degree nm, so this implies that R = 0, contradicting the assumption that C
and D do not have a component in common. �

Now this prompts the following definition.

7.19. Definition. Let C and D be two projective plane curves without common
component. Let P ∈ C ∩ D. If necessary, make a linear change of variables as
in the second part of the proof above; then we define the intersection multiplicity
of C and D at P to be the multiplicity of the factor ηx − ξy in R(x, y), where
P = (ξ : η : ζ). As before, we write (C ·D)P for that number. If P /∈ C ∩D, we
set (C ·D)P = 0.

With this definition, the following theorem is immediate.

7.20. Bézout’s Theorem. Let C and D be projective plane curves of degrees n
and m, without common component. Then

C ·D :=
∑
P∈P2

(C ·D)P = nm .

In words, C and D intersect in exactly nm points, if we count the points according
to intersection multiplicity.

7.21. Example. Let us look at the points of intersection of the two circles with
affine equations C1 : x2+y2 = 1 and C2 : (x−2)2+y2 = 4. The projective closures
are given by the polynomials

F1 = x2 + y2 − z2 and F2 = x2 − 4xz + y2 .

We compute the resultant (with respect to z)

R =

∣∣∣∣∣∣∣∣
−1 0 x2 + y2 0
0 −1 0 x2 + y2

0 −4x x2 + y2 0
0 0 −4x x2 + y2

∣∣∣∣∣∣∣∣ = −(x2 + y2)(15x2 − y2) .

Its zeros correspond to the points (i : 1), (−i : 1), (1 :
√

15), (1 : −
√

15) ∈ P1. We
find the intersection points of intersection multiplicity 1

(i : 1 : 0) , (−i : 1 : 0) , (1 :
√

15 : 4) , (1 : −
√

15 : 4) .

7.22. Example. Now consider two concentric circles C1 : x2 + y2 = 1, C2 : x2 +
y2 = 4. This time,

R =

∣∣∣∣∣∣∣∣
−1 0 x2 + y2 0
0 −1 0 x2 + y2

−4 0 x2 + y2 0
0 −4 0 x2 + y2

∣∣∣∣∣∣∣∣ = 9(x2 + y2)2 .

R now has double zeros at (±i : 1), and we get two intersection points (±i : 1 : 0)
of multiplicity 2: concentric circles touch at infinity!
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7.23. Example. Let us look at our old friends, the nodal and cuspidal cubics.
The projective equations are

N : x3 + x2z − y2z = 0 , C : x3 − y2z = 0 .

The point (0 : 0 : 1) is on both curves, as is (0 : 1 : 0), so we take the resultant
with respect to x to avoid problems.

R =

∣∣∣∣∣∣∣∣∣∣∣

1 z 0 −y2z 0 0
0 1 z 0 −y2z 0
0 0 1 z 0 −y2z
1 0 0 −y2z 0 0
0 1 0 0 −y2z 0
0 0 1 0 0 −y2z

∣∣∣∣∣∣∣∣∣∣∣
= −y4z5 .

The roots are at (η : ζ) = (0 : 1) and (1 : 0), of multiplicities 4 and 5, respectively.
So the intersection points are (0 : 0 : 1) of intersection multiplicity 4 and (0 : 1 : 0)
of intersection multiplicity 5.

7.24. Example. It is true (Exercise) that the curve H given by the Hessian of a
polynomial F defining the curve C meets C with multiplicity 1 (i.e., transversally)
in a simple flex point (i.e., such that the intersection multiplicity of the tangent
line and the curve is just 3 and not larger). If C is a smooth cubic curve, then
any line meets C in at most three points (counting multiplicities), so there are
only simple flex points. Therefore, H meets C only transversally, hence there are
exactly 9 intersection points (H is also a curve of degree 3):

A smooth plane cubic curve has exactly nine inflection points.

If the coefficients of the polynomial defining C are real numbers, then exactly
three of the inflection points are real (the other six come in three pairs of complex
conjugates).

7.25. Corollary. If C is a smooth plane projective curve, then C is irreducible.

Proof. Otherwise, C would have at least two components C1 and C2, which would
have to meet in some point P . But then P is a point of multiplicity at least 2
on C, hence a singularity. �

Now let us look at bitangents of quartic curves. A bitangent to a curve C is a line
that meets C in two points with multiplicity at least 2. (As a boundary case, we
include that the line meets C in some point with multiplicity at least 4; in this
case, the two points of tangency can be thought of as coinciding.)

7.26. Example. As an example, consider the Fermat Quartic F : x4+y4+z4 = 0.
Let P = (ξ : η : ζ) ∈ F be a point; then the tangent line to K at P has equation

L : ξ3x+ η3y + ζ3z = 0 .

For now, assume that ζ 6= 0; then we can set ζ = 1. We eliminate z = −ξ3x− η3y
from the equation for F ; we get a homogeneous polynomial in x and y of degree 4
that is divisible by (ηx − ξy)2. Dividing off this factor (one has to use that
ξ4 + η4 + 1 = 0 in this computation), a quadratic polynomial remains whose
discriminant is a constant times ξ2η2(ξ4 + η4 + ξ4η4). Taking into account points
at infinity leads to

G = x2y2z2(x4y4 + y4z4 + z4x4)
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such that the points of tangency of the bitangents are exactly the points of inter-
section of F with the curve defined by G. By Bézout, there are exactly 14 · 4 = 56
intersection points (counting multiplicity), and since every bitangent accounts for
two points, there are 28 bitangents. There are twelve lines that intersect F four-
fold in points like (0 : ζ1+2k : 1), where ζ = eπi/4 is a primitive eighth root of
unity. They correspond to the factors x2y2z2 in G, and the lines are given by
y − ζ1+2kz = 0. The other factors of G lead to points (τ 1+3k : τ 2+3` : 1) and
(τ 2+3` : τ 1+3k : 1) with τ = eπi/6. They are the points of tangency of 16 other
bitangents iax+ iby + z = 0.

These considerations can be extended to arbitrary smooth plane quartic curves:

A smooth plane quartic curve has exactly 28 bitangents.
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