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1. Basics

In the following, we assume that basic properties of the field of complex numbers C
are known.

1.1. Definition.

(1) For a ∈ C and r > 0, we denote by

Br(a) = {z ∈ C : |z − a| < r}

the open disk of radius r around a. We write

Br(a) = {z ∈ C : |z − a| ≤ r}

for the closed disk of radius r around a.
(2) A subset U ⊂ C is open, if for every a ∈ U there is ε > 0 such that

Bε(a) ⊂ U .
(3) A subset U ⊂ C is connected, if for every pair of open subsets V1, V2 ⊂ C

such that V1 ∩ V2 = ∅ and U ⊂ V1 ∪ V2, we have U ∩ V1 = ∅ or U ∩ V2 = ∅.
If U is open, this is equivalent to saying that U cannot be written as the
union of two non-empty disjoint open sets.

(4) A non-empty connected open subset of C is called a domain.

Domains are the most natural domains of definition for the functions we will
consider in this course.

1.2. Definition.

(1) Let U ⊂ C. A path in U is a continuous map

γ : [a, b] −→ U

where a < b. The path γ is piece-wise C1, if there is a subdivision a = a0 <
a1 < · · · < an = b of the interval such that γ is continuously differentiable
on each subinterval [ak, ak+1].

(2) We say that γ connects γ(a) to γ(b). If γ(a) = γ(b), then the path is closed.
(3) A subset U ⊂ C is path-connected, if for every pair of points w, z ∈ U ,

there is a path in U that connects them. It is easy to see (by ‘composing’
paths) that this induces an equivalence relation on U .

For us, the following will be important.
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1.3. Proposition. A domain is path-connected.

Proof. Let U ⊂ C be a domain. Then U is non-empty, and we can pick a point
a ∈ U . Let U1 be the subset of U of points that can be connected to a by a path
in U , and let U2 = U \ U1. Then it is clear that U1 and U2 are disjoint and that
their union is U . We will show that they are both open. Since U is connected,
this will imply that one of U1 and U2 is empty, and since a ∈ U1, it follows that
U2 = ∅, hence U1 = U . So we can connect any point in U to a, and then it follows
that any two points in U can be connected by a path.

It remains to show that U1 and U2 are both open. Let z ∈ U1. Since U is open,
there is a disk Bε(z) ⊂ U . It is clear that any point in the disk can be connected
to z, so by transitivity, Bε(z) ⊂ U1. This shows that U1 is open. Now let z ∈ U2.
Again, there is a disk Bε(z) ⊂ U . If w ∈ U1 for some w ∈ Bε(z), then it would
follow that z ∈ U1 (again by transitivity), a contradiction. So Bε(z) ⊂ U2, and U2

is open as well. ¤

2. Complex Differentiability and Holomorphic Functions

In this course, we will study functions of a complex variable that are complex
differentiable. It will turn out soon that this property is much stronger than its
real counterpart.

2.1. Definition. Let U ⊂ C be a domain and f : U → C a function.

(1) f is complex differentiable at a ∈ U , if the limit

f ′(a) = lim
z→a

f(z)− f(a)

z − a

exists (in C). In this case, f ′(a) is called the derivative of f at a.
(2) f is holomorphic (on U) if f is complex differentiable at every a ∈ U . Then

f ′ is a function U → C. We also write d
dz

f for f ′.
(3) f is holomorphic at (or near) a ∈ U if f is holomorphic on some open disk

around a.
(4) A holomorphic function f : C → C is an entire function.

2.2. Remark. If f is holomorphic at a, then f is continuous at a (same proof
as for real functions). We have the usual alternative formulation: f is complex
differentiable at a with derivative f ′(a), if we can write

f(z) = f(a) + f ′(a)(z − a) + (z − a)r(z)

for z close to a, where limz→a r(z) = 0.

We have the usual properties.

2.3. Proposition.

(1) Let f, g : U → C be complex differentiable at a ∈ U . Then f + g, f − g,
fg are complex differentiable at a, and we have (f ± g)′(a) = f ′(a)± g′(a)
and (fg)′(a) = f ′(a)g(a) + f(a)g′(a). If g(a) 6= 0, then f/g is complex
differentiable at a, and (f/g)′(a) = (f ′(a)g(a)− f(a)g′(a))/g(a)2.

(2) Let f : U → C, g : V → C and a ∈ U such that b = f(a) ∈ V . If f is
complex differentiable at a and g is complex differentiable at b, then g ◦ f
is complex differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).
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(3) Any constant function is holomorphic, with derivative zero.
(4) The identity function idC : z 7→ z is holomorphic, with id′C(z) = 1.

Proof. The proofs are identical to those in the real setting. ¤

2.4. Corollary. All polynomials p ∈ C[z] give rise to entire functions. Quotients
of polynomials (rational functions) are holomorphic on C with the zeros of the
denominator removed.

Proof. This is clear from Prop. 2.3. ¤

3. Power Series and the Abel Limit Theorem

To get more interesting examples, we need to go beyond the algebraic operations
and use analysis, i.e., sequences or series. The most important class of examples
is given by power series.

3.1. Theorem. Let (an)n≥0 be a sequence of complex numbers. Consider the
power series f(z) =

∑∞
n=0 anz

n.

(1) There is 0 ≤ ρ ≤ ∞ (the radius of convergence) such that the series
converges for |z| < ρ and diverges for |z| > ρ. If 0 < r < ρ, then the series
converges absolutely and uniformly on Br(0).

(2) ρ =
1

lim supn→∞
n
√
|an|

. If the limit exists, we have ρ = lim
n→∞

|an|
|an+1|

.

(3) On Bρ(0), the function f defined by the series is holomorphic, and f ′(z) =∑∞
n=1 nanz

n−1. This series has again radius of convergence ρ.

Proof.

(1) Assume that the series converges for some z0 ∈ C, z0 6= 0. Let r = |z0|.
Then |an|rn is bounded. If 0 < r′ < r, then for |z| ≤ r′, the series
converges absolutely and uniformly, since it is dominated by a constant
times the geometric series in r′/r. If we set

ρ = sup{r : the series converges for some z with |z| = r} ,

the claim follows.
(2) Both statements follow from a comparison with a geometric series.
(3) We need to show that

lim
z→a

(∑∞
n=0 anz

n −
∑∞

n=0 ana
n

z − a
−

∞∑
n=1

nana
n−1
)

= 0 .

First note that∑∞
n=0 anz

n −
∑∞

n=0 ana
n

z − a
=

∞∑
n=1

an(zn−1 + azn−2 + · · ·+ an−1) ,

and
∞∑

n=1

nana
n−1 =

∞∑
n=1

an(an−1 + an−1 + · · ·+ an−1) ,
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so the term under the limit is
∞∑

n=1

an

(
(zn−1 − an−1) + a(zn−2 − an−2) + · · ·+ an−2(z − a)

)
= (z − a)g(z, a) ,

where

g(z, a) =
∞∑

n=2

an

(
zn−2 + 2azn−3 + · · ·+ (n− 2)an−3z + (n− 1)an−2

)
.

We can assume that |a|, |z| ≤ ρ′ < ρ, then |g(z, a)| ≤
∑∞

n=2
n(n−1)

2
|an|(ρ′)n−2

is bounded. Therefore (z− a)g(z, a) tends to zero as z tends to a, and the
claim is proved. The statement about the radius of convergence of the
differentiated series follows from limn→∞

n
√

n = 1.

¤

In the same way, we can consider power series centered at a of the form
∑∞

n=0 an(z−
a)n. Such a series will converge on an open disk around a.

3.2. Corollary. A function that is given on a disk Br(a) by a converging power
series

∑∞
n=0 an(z − a)n has complex derivatives of every order. The coefficients

are given by

an =
f (n)(a)

n!
.

Proof. This is clear from Thm. 3.1 and an easy induction. ¤

3.3. Remark. A function that is given locally (i.e., on a small disk around each
point in its domain of definition) by a convergent power series is said to be analytic.
(A similar definition can be made for real functions in several variables.) We have
seen that an analytic function is holomorphic. It will turn out that the converse
is true as well! Note that this is far from true for real differentiable functions.

3.4. Abel Limit Theorem. Let f(z) =
∑∞

n=0 anz
n be a power series such that∑∞

n=0 an = a converges (so the radius of convergence is at least 1). Then for any
K ≥ 1, f(z) tends to a as z tends to 1 within

DK = {z ∈ C : |z| < 1 and |1− z| ≤ K(1− |z|)} .

Proof. By replacing f(z) with f(z) − a, we can assume that a = 0. Let An =
a0 + a1 + · · ·+ an, then An → 0 by assumption. We use ‘Abel partial summation’
(setting A−1 = 0) to obtain

N∑
n=0

anz
n =

N∑
n=0

(An − An−1)z
n =

N∑
n=0

Anz
n −

N−1∑
n=0

Anz
n+1

= (1− z)
N−1∑
n=0

Anz
n + ANzN .
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Note that for |z| < 1, the series
∑∞

n=0 Anz
n converges (since (An) is bounded as a

convergent sequence), that ANzN → 0 as N →∞ and that
∑∞

n=N+1 anz
n → 0 as

N →∞. Combining these, we get, again for |z| < 1,

f(z) = (1− z)
∞∑

n=0

Anz
n ,

and we have to show that this tends to zero as z approaches 1 within DK .

Let ε > 0, then there is N ∈ N such that |An| < ε for n ≥ N . We then have

f(z) = (1− z)
N−1∑
n=0

Anz
n + (1− z)

∞∑
n=N

Anz
n .

The first term tends to zero as z → 1. For the second term, we have∣∣∣(1− z)
∞∑

n=N

Anz
n
∣∣∣ ≤ |1− z|

∞∑
n=N

|An||z|n ≤ ε|z|N |1− z|
1− |z|

≤ εK .

(The last inequality uses z ∈ DK .) Since ε can be made arbitrarily small, this
shows that f(z) → 0. ¤

There is an obvious more general version where we assume that
∑∞

n=0 anz
n
0 con-

verges for some arbitrary z0 6= 0.

3.5. Remark. The ‘Abel partial summation’ trick can also be used to prove the
following statement (Exercise).

Let (an) be a sequence of complex numbers such that its partial sums

An = a0 + a1 + · · ·+ an

are bounded, and let (bn) be a decreasing sequence of positive real numbers tending
to zero. Then

∑∞
n=0 anbn converges.

This has as a special case the familiar Leibniz convergence criterion for alternating
series: we take an = (−1)n.

3.6. Examples. Taking f(z) = log(1 + z) = z − 1
2
z2 + 1

3
z3 −+ . . . , we obtain

1− 1

2
+

1

3
− 1

4
+− · · · = log 2 .

Similarly, with f(z) = arctan z = z − 1
3
z3 + 1

5
z5 −+ . . . , we get

1− 1

3
+

1

5
− 1

7
+− · · · = π

4
.

(Note that these series converge by Leibniz.)

Beautiful as they are, these series converge far too slowly to be of any practical
use.
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3.7. Remark. The condition “z approaches 1 within DK”, which means that we
approach 1 in such a way that the angle between the line segment from 1 to z
and the real axis stays bounded by a fixed acute angle, is necessary. One example
is given by f(z) = exp(1/(z − 1)). By Thm. 5.17 below, f(z) is given on B1(0)
by a converging power series. It is not hard to see that limx↑1 f(x) = 0, but
limε↓0 f(1 − ε2 + iε) 6= 0 (in fact, limε↓0 |f(1 − ε2 + iε)| = e−1, and the previous
limit does not exist). The hard part is to show that the power series converges
at 1. This is a challenge problem for you!

Add: Examples (exponential function, sine, cosine, logarithm).

4. The Cauchy-Riemann Differential Equations

To be added.

5. The Cauchy Integral Theorem and its Consequences

In order to formulate our first important theorem about holomorphic functions,
we need to introduce line integrals.

5.1. Definition. Let U ⊂ C be a domain and f : U → C a continuous function.
Let γ : [a, b] → U be a path that is piece-wise C1. Then we define the line integral
of f along γ by ∫

γ

f(z) dz =

b∫
a

f
(
γ(t)

)
γ′(t) dt .

(The integral on the right really is a sum of integrals, one for each subinterval on
which γ is continuously differentiable.)

5.2. Examples. Let γ : [0, 1] → C, t 7→ e2πit. Then γ is a closed path that goes
around the unit circle once in the counter-clockwise direction. We find∫

γ

dz =

1∫
0

2πi e2πit dt = 0

(and more generally,
∫

γ
zn dz = 0 for n 6= −1), but

∫
γ

1

z
dz =

1∫
0

1

e2πit
2πi e2πit dt = 2πi

1∫
0

dt = 2πi .

Here are some basic properties of line integrals.
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5.3. Lemma. Let γ : [a, b] → U be a path in the domain U , f : U → C continuous.

(1) If τ : [c, d] → [a, b] is monotonically increasing and piece-wise C1 invertible,
then ∫

γ◦τ

f(z) dz =

∫
γ

f(z) dz .

This means that the integral is invariant under reparametrization of the
path: it only depends on the image of γ and its orientation.

(2) Define −γ : [−b,−a] 3 t 7→ γ(−t) ∈ U . Then∫
−γ

f(z) dz = −
∫
γ

f(z) dz .

(3) If F : U → C is holomorphic and F ′ = f (so F is an antiderivative or
primitive of f), then∫

γ

f(z) dz = F
(
γ(b)

)
− F

(
γ(a)

)
.

(4) If |f(z)| ≤ M on the image of γ, then∣∣∣∫
γ

f(z) dz
∣∣∣ ≤ M`(γ) ,

where `(γ) =
∫ b

a
|γ′(t)| dt is the length of γ. This is called the standard

estimate for the line integral.

Proof.

(1) This follows from the change-of-variables formula for integrals.
(2) This, too.
(3) This follows from the fundamental theorem of calculus:∫
γ

f(z) dz =

b∫
a

F ′(γ(t)
)
γ′(t) dt =

b∫
a

d

dt
F
(
γ(t)

)
dt = F

(
γ(b)

)
− F

(
γ(a)

)
.

(4) We have∣∣∣∫
γ

f(z) dz
∣∣∣ =

∣∣∣ b∫
a

f
(
γ(t)

)
γ′(t) dt

∣∣∣ ≤ b∫
a

∣∣f(γ(t)
)∣∣ |γ′(t)| dt ≤ M

b∫
a

|γ′(t)| dt .

¤

5.4. Corollary. Let f be holomorphic on the domain U , such that f ′ = 0. Then
f is constant.

Proof. Let a ∈ U . Then by Prop. 1.3, for every z ∈ U , there is a path γ connecting
a to z. We then have by Lemma 5.3 that

f(z)− f(a) =

∫
γ

f ′(z) dz = 0 ,

so f(z) = f(a) is constant. ¤

We can now state and prove a first crucial result.
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5.5. Theorem (Cauchy Integral Theorem for Triangles). Let U ⊂ C be a
domain, f : U → C holomorphic. Let ∆ ⊂ U be a closed triangle (i.e., the convex
hull of three points), and denote by ∂∆ the closed path that goes once around the
triangle in counter-clockwise orientation. Then∫

∂∆

f(z) dz = 0 .

Proof. The idea of the proof is to construct a sequence of nested triangles, each
half the size of the preceding one, and then use complex differentiability at their
limit point.

So let ∆0 = ∆, and denote by d the diameter of ∆. We proceed recursively.
Suppose ∆n has been constructed. Use the line segments connecting the midpoints
of the three edges to subdivide ∆n into four triangles ∆

(1)
n , ∆

(2)
n , ∆

(3)
n and ∆

(4)
n ,

each of half the size of ∆n. We have∣∣∣ ∫
∂∆n

f(z) dz
∣∣∣ =

∣∣∣ 4∑
j=1

∫
∂∆

(j)
n

f(z) dz
∣∣∣ ≤ 4 max

1≤j≤4

∣∣∣ ∫
∂∆

(j)
n

f(z) dz
∣∣∣ .

(Note that the contributions of the paths inside ∆n cancel.) We let ∆n+1 = ∆
(j)
n

where the maximum above is attained at j. Then by induction, we have for
all n ≥ 0: ∣∣∣∫

∂∆

f(z) dz
∣∣∣ ≤ 4n

∣∣∣ ∫
∂∆n

f(z) dz
∣∣∣

diam(∆n) = 2−nd

`(∂∆n) = 2−n`(∆)

Since ∆ is compact and the diameters of the triangles tend to zero, there is a ∈ ∆
such that for every δ > 0, the disk Bδ(a) contains all triangles ∆n for n sufficiently
large. Now pick ε > 0. Since f is complex differentiable at a, there is δ > 0 such
that Bδ(a) ⊂ U and

f(z) = f(a) + f ′(a)(z − a) + (z − a)r(z)

with |r(z)| < ε for all z ∈ Bδ(a). Note that f(a) + f ′(a)(z − a) has an obvious
antiderivative, hence

∫
∂∆n

(
f(a)+ f ′(a)(z−a)

)
dz = 0 for all n. Picking n so large

that ∆n ⊂ Bδ(a), we find that∣∣∣∫
∂∆

f(z) dz
∣∣∣ ≤ 4n

∣∣∣ ∫
∂∆n

f(z) dz
∣∣∣ = 4n

∣∣∣ ∫
∂∆n

(z − a)r(z) dz
∣∣∣

≤ 4n diam(∆n)`(∂∆n)ε = d`(∆)ε .

Since ε > 0 was arbitrary, the claim follows. ¤

5.6. Remark. There is a converse to this statement, known asMorera’s Theorem:

If f : U → C is continuous, and
∫

∂∆
f(z) dz = 0 for all closed triangles ∆ ⊂ U ,

then f is holomorphic.

We leave the proof as an exercise, to be attempted after reading the remainder of
this section.
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5.7. Definition. A set U ⊂ C is star-shaped (with respect to a ∈ U), if for every
z ∈ U , the line segment connecting a to z is contained in U .

5.8. Examples. Any convex subset of C is star-shaped with respect to any of its
points. The slit plane C \ R≤0 is star-shaped with respect to any point on the
positive real axis. The punctured plane C \ {0} is not star-shaped with respect to
any point.

5.9. Corollary. Let U ⊂ C be a star-shaped domain and f : U → C holomorphic.
Then f has an antiderivative on U .

Proof. Let a ∈ U such that U is star-shaped with respect to a. We denote by∫ b

a
f(z) dz the line integral with respect to the oriented line segment from a to b.

For z ∈ U , define

F (z) =

z∫
a

f(ζ) dζ ;

since U is star-shaped, this makes sense. Now let b ∈ U , and pick ε > 0. Since
f is continuous, there is δ > 0 such that Bδ(b) ⊂ U and |f(z) − f(b)| < ε for
z ∈ Bδ(b). For z ∈ Bδ(b) \ {b}, we then have by the Cauchy Integral Theorem 5.5
that∣∣∣F (z)− F (b)

z − b
− f(b)

∣∣∣ =
∣∣∣ 1

z − b

z∫
b

(
f(z)− f(b)

)
dz
∣∣∣ ≤ 1

|z − b|
|z − b|ε = ε .

This shows that F is complex differentiable at b, and F ′(b) = f(b). ¤

5.10. Example. The function f(z) = 1/z has an antiderivative on the slit plane
C \R≤0. The antiderivative that takes the value 0 at z = 1 is the principal branch
of the logarithm.

On the other hand, there is no antiderivative on C\{0}: otherwise, we would have∫
∂B1(0)

dz

z
= 0 ,

but the integral evaluates to 2πi.

5.11. Theorem (Cauchy Integral Theorem for Star-Shaped Domains).
Let U ⊂ C be a star-shaped domain and f : U → C holomorphic. Let γ : [a, b] → U
be a closed path. Then ∫

γ

f(z) dz = 0 .

Proof. By Cor. 5.9, f has an antiderivative F on U . Since γ is closed, by Lemma 5.3,
we get ∫

γ

f(z) dz = F
(
γ(b)

)
− F

(
γ(a)

)
= 0 .

¤
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5.12. Theorem (Cauchy Integral Formula for Disks). Let U be a domain,
f : U → C holomorphic. Let a ∈ U and r > 0 such that Br(a) ⊂ U . Then for all
z ∈ Br(a), we have

f(z) =
1

2πi

∫
∂Br(a)

f(ζ)

ζ − z
dζ .

(As usual, the path of integration goes around the circle counter-clockwise.)

Proof. Let z ∈ Br(a). We pick ε > 0 so small that Bε(z) ⊂ Br(a). We connect
the two circles by two line segments contained in the line ` through a and z. We
obtain two domains whose union is Br(a) \ (`∪Bε(z)). Let γ1 and γ2 denote their
boundaries, oriented counter-clockwise. Then∫

γ1

f(ζ)

ζ − z
dζ +

∫
γ2

f(ζ)

ζ − z
dζ =

∫
∂Br(a)

f(ζ)

ζ − z
dζ −

∫
∂Bε(z)

f(ζ)

ζ − z
dζ .

Each of the paths γ1 and γ2 is contained in a star-shaped domain on which f is
holomorphic. (There is a larger open disk Br(a) ⊂ Br′(a) ⊂ U ; remove any line
segment joining z to its boundary, not contained in ` and not meeting γj.) So by
Thm. 5.11, the integrals along γ1 and γ2 vanish, and we get∫

∂Br(a)

f(ζ)

ζ − z
dζ =

∫
∂Bε(z)

f(ζ)

ζ − z
dζ =

∫
∂Bε(z)

f(ζ)− f(z)

ζ − z
dζ + f(z)

∫
∂Bε(z)

1

ζ − z
dζ .

The second integral easily evaluates to 2πi, compare the example in 5.2. Near z,
the function under the first integral is bounded, hence the integral is bounded by
a constant times ε. Since we can make ε as small as we like, the claim follows. ¤

Before we state the next consequence, we need to remind ourselves of a result
connecting integrals and sequences of functions.

5.13. Lemma. Let fn : U → C be a sequence of continuous functions on a do-
main U . Let γ : [a, b] → U be a path and assume that fn converges uniformly to a
function f on the image of γ. Then

lim
n→∞

∫
γ

fn(z) dz =

∫
γ

f(z) dz .

Proof. Let ε > 0. Then there is some N ∈ N such that for all n ≥ N , we have
|fn

(
γ(t)

)
− f

(
γ(t)

)
| < ε for all n ≥ N and t ∈ [a, b]. By the standard estimate,

we then find∣∣∣∫
γ

fn(z) dz −
∫
γ

f(z) dz
∣∣∣ ≤ ∫

γ

|fn(z)− f(z)| dz ≤ ε`(γ) ,

which implies the claim. ¤
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5.14. Proposition. Under the assumptions of Thm. 5.12, we have that

f ′(z) =
1

2πi

∫
∂Br(a)

f(ζ)

(ζ − z)2
dζ

for all z ∈ Br(a).

Proof. Let w, z ∈ Br(a), w 6= z. Then by the Cauchy Integral Formula 5.12, we
have

f(w)− f(z)

w − z
=

1

2πi

∫
∂Br(a)

f(ζ)

(ζ − w)(ζ − z)
dζ .

Pick a sequence wn → z in Br(a). If wn, z ∈ Bρ(a) with 0 < ρ < r and |f(ζ)| ≤ M
on ∂Br(a), then∣∣∣ f(ζ)

(ζ − wn)(ζ − z)
− f(ζ)

(ζ − z)2

∣∣∣ =
∣∣∣ f(ζ)(z − wn)

(ζ − wn)(ζ − z)2

∣∣∣ ≤ M

(r − ρ)3
|z − wn| ,

hence f(ζ)/((ζ −wn)(ζ − z)) converges uniformly as a function of ζ on ∂Br(a) to
f(ζ)/(ζ − z)2. By Lemma 5.13, we then have

f ′(z) = lim
n→∞

f(wn)− f(z)

wn − z
=

1

2πi

∫
∂Br(a)

f(ζ)

(ζ − z)2
dζ .

¤

5.15. Corollary. Let U ⊂ C be a domain and f : U → C holomorphic. Then f ′

is again holomorphic on U . In particular, f has complex derivatives of any order
on U .

Proof. Let a ∈ U ; then there is r > 0 such that Br(a) ⊂ U . By Prop. 5.14, for
z ∈ Br(a), we have

f ′(z) =
1

2πi

∫
∂Br(a)

f(ζ)

(ζ − z)2
dζ .

We show that f ′ is complex differentiable at a: for z close to a, we have

f ′(z)− f ′(a)

z − a
=

1

2πi

∫
∂Br(a)

( f(ζ)

(ζ − a)(ζ − z)2
+

f(ζ)

(ζ − a)2(ζ − z)

)
dζ .

As z tends to a, the integrand converges uniformly on ∂Br(a), hence the complex
derivative of f ′ at a exists. The second claim then follows by induction. ¤

5.16. Corollary. Under the assumptions of Thm. 5.12, we have for n ≥ 0 and
z ∈ Br(a) that

f (n)(z) =
n!

2πi

∫
∂Br(a)

f(ζ)

(ζ − z)n+1
dζ .
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Proof. This proceeds by induction. Using the arguments in the proofs of Cor. 5.14
and Cor. 5.15, we find that

f (n)(z) =
(n− 1)!

2πi

d

dz

∫
∂Br(a)

f(ζ)

(ζ − z)n
dζ

=
(n− 1)!

2πi

∫
∂Br(a)

d

dz

f(ζ)

(ζ − z)n
dζ =

n!

2πi

∫
∂Br(a)

f(ζ)

(ζ − z)n+1
dζ .

¤

We see that a holomorphic function is even C∞. But even more is true.

5.17. Theorem. Let U ⊂ C be a domain, f : U → C holomorphic. Assume that
Br(a) ⊂ U . Then on Br(a), f is given by a power series:

f(z) =
∞∑

n=0

an(z − a)n

with radius of convergence at least r. We have an = f (n)(a)/n!.

Proof. After a translation, we can assume (for simplicity) that a = 0. We expand
the integrand in the Cauchy Integral Formula 5.12 as a power series in z. Let
z ∈ Br(0); then there is 0 < ρ < r such that |z| < ρ. We then have

f(z) =
1

2πi

∫
∂Bρ(0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Bρ(0)

f(ζ)

ζ

1

1− z/ζ
dζ

=
1

2πi

∫
∂Bρ(0)

f(ζ)

ζ

∞∑
n=0

zn

ζn
dζ =

1

2πi

∫
∂Bρ(0)

∞∑
n=0

(f(ζ)

ζn+1

)
zn dζ .

If |z| ≤ ρ′ < ρ and |f(ζ)| ≤ M on ∂Bρ(0), then the nth term of the series under
the integral is bounded by M/ρ(ρ′/ρ)n, hence by the Weierstrass M-test, the series
converges uniformly. By Lemma 5.13, we can therefore interchange integral and
summation to obtain, using Cor. 5.16,

f(z) =
∞∑

n=0

1

2πi

( ∫
∂Bρ(0)

f(ζ)

ζn+1
dζ
)
zn =

∞∑
n=0

f (n)(0)

n!
zn .

Since the series converges on Br(0), its radius of convergence is at least r. ¤

This says that a holomorphic function is analytic.

5.18. Corollary (Cauchy’s Bound on Taylor Coefficients). If f : U → C
is holomorphic and Br(a) ⊂ U , then for the coefficients an in the power series
expansion f(z) =

∑∞
n=0 an(z − a)n, we have the bound

|an| ≤
M

rn
,

where |f(ζ)| ≤ M for |ζ − a| = r.
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Proof. This follows from the formula in Cor. 5.16 by the standard estimate:

|an| =
|f (n)(a)|

n!
=
∣∣∣ 1

2πi

∫
∂Br(a)

f(ζ)

(ζ − a)n+1
dζ
∣∣∣ ≤ 1

2π

M

rn+1
· 2πr =

M

rn
.

¤

5.19. Corollary (Liouville’s Theorem). A bounded entire function is constant.

Proof. Let f : C → C be holomorphic and bounded: |f(z)| ≤ M for all z ∈ C. By
Thm. 5.17, f is given by a power series

f(z) =
∞∑

n=0

anz
n

that converges everywhere. Then for every r > 0, we have by Cor. 5.18 that

|an| ≤
M

rn
.

Letting r →∞, we see that an = 0 for n ≥ 1, hence f(z) = a0 is constant. ¤

5.20. Corollary (Fundamental Theorem of Algebra). Let p ∈ C[z] be a
non-constant polynomial. Then p has a root in C.

Proof. Let p ∈ C[z] and assume p does not have a root in C. Then f(z) = 1/p(z)
is an entire function. Write

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

with an 6= 0. Then

p(z) = anz
n
(
1 +

an−1

z
+ · · ·+ a1

zn−1
+

a0

zn

)
,

so there is R > 0 such that for |z| ≥ R we have |p(z)| ≥ |an|Rn/2 ≥ |an|/2. Hence
|f(z)| ≤ 2/|an| is bounded for |z| ≥ R. On the other hand, BR(0) is compact,
hence f(z) is also bounded for |z| ≤ R. So f is a bounded entire function and
therefore constant by Liouville’s Theorem 5.19. Hence p(z) = 1/f(z) is constant
as well. ¤

6. Local Behavior of Holomorphic Functions

We will study the behavior of holomorphic functions near their zeros. But first we
need a result about the behavior at the other points.

6.1. Lemma. Let g be holomorphic near a ∈ C such that g(a) 6= 0. Let k ≥ 1.
Then there is ε > 0 and a holomorphic function h : Bε(a) → C such that g = hk

on Bε(a).

Proof. Write g(z) = αg1(z) with g1(a) = 1 (so α = g(a)). Since g1 is continuous,
there is ε > 0 such that g1 is defined on Bε(a) and |g1(z) − 1| < 1 for z ∈ Bε(a).
On B1(1), the principal branch of the logarithm is defined (by the usual power
series). Picking a kth root β of α, we set on Bε(a)

h(z) = β exp
( log g1(z)

k

)
;

then h(z)k = βk exp(log g1(z)) = αg1(z) = g(z). ¤
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6.2. Definition. Let f be holomorphic near a ∈ C. Then we call

orda f = min{n ∈ N : f (n)(a) 6= 0}
the order of vanishing of f at a.

Note that orda f > 0 if and only if f(a) = 0. When orda f = 1, we say that f has
a simple zero at a.

6.3. Lemma. Let f be holomorphic near a. If orda f = ∞, then f = 0 on a
neighborhood of a.

Proof. On some disk around a, f is holomorphic. Therefore, f is given there by
the power series

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n .

If orda f = ∞, then all coefficients vanish, hence f = 0 on that disk. ¤

6.4. Lemma. Let f be holomorphic near a ∈ C, with a simple zero at a. Then
for every sufficiently small ε > 0, there is an open neighborhood Vε of a such that
f : Vε → Bε(0) is biholomorphic.

Proof. Since f ′(a) 6= 0, f has an inverse near a, which is again holomorphic (e.g.,
first construct it as a real differentiable function, then note that the derivative
is the inverse of multiplication by a complex number (the derivative of f) and
therefore complex linear). So for ε > 0 sufficiently small, taking Vε = f−1(Bε(0))
we get the result. ¤

Now we consider the case that f has a zero at a, but is not zero in a whole
neighborhood.

6.5. Theorem. Let f be holomorphic near a ∈ C such that 0 < k = orda f < ∞.
Then there is ε > 0 and a holomorphic function h on Bε(a) such that f is defined
on Bε(a) and f = hk there, h(a) = 0, and h′(a) 6= 0.

Proof. On a small disk around a, we have

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n = (z − a)k

∞∑
n=k

f (n)(a)

n!
(z − a)n−k = (z − a)kg(z)

where g is holomorphic and g(a) = f (k)(a)/k! 6= 0. By Lemma 6.1, on some Bε(a),
there is a holomorphic function h1 such that g = hk

1. We have h1(a) 6= 0. If we
set h(z) = (z − a)h1(z), then f(z) = h(z)k, h(a) = 0, and h′(a) = h1(a) 6= 0. ¤

6.6. Corollary. In the situation of Thm. 6.5, the following holds. For every
sufficiently small ε > 0, there is an open neighborhood Vε of a such that f maps
Vε surjectively onto Bε(0) and such that f−1(0)∩ Vε = {a} and for every 0 6= w ∈
Bε(0), we have #(f−1(w) ∩ Vε) = k.

So every sufficiently small w 6= 0 has exactly k preimages under f near a.

Proof. By Lemma 6.4, for every sufficiently small ε > 0, there is a neighborhood
Vε of a such that h : Vε → B k√ε(0) is biholomorphic. In particular, h is a bijection
between these sets. Now the claim follows from f = hk. ¤

The following is a kind of converse to Cor. 6.4.
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6.7. Corollary. If f is holomorphic and injective near a, then f ′(a) 6= 0.

Proof. Let g(z) = f(z) − f(a); then g(a) = 0, and g is injective near a. By the
preceding results, this implies orda g = 1, hence f ′(a) = g′(a) 6= 0. ¤

The following important result states that zeros of finite order are isolated.

6.8. Corollary. If f is holomorphic near a ∈ C and orda f < ∞, then there is
ε > 0 such that f(z) 6= 0 for z ∈ Bε(a) \ {a}.
If there is a sequence zn → a, zn 6= a, such that f(zn) = 0 for all n, then f = 0
on a neighborhood of a.

Proof. If f(a) 6= 0, this follows from the continuity of f . Otherwise, it is a conse-
quence of Cor. 6.6. The second statement follows from the first and Lemma 6.3.

¤

The following result shows (again) that holomorphic functions are very ‘rigid’:
they are determined by a rather small amount of information.

6.9. Theorem. Let U ⊂ C be a domain, f, g : U → C holomorphic. Assume that

(i) f |A = g|A on a subset A ⊂ U that has an accumulation point in U , or that
(ii) f (n)(a) = g(n)(a) for some a ∈ U and all n ≥ 0.

Then f = g on U .

Proof. We set h = f − g. Then we have to show that h = 0 on U . Let

U1 = {z ∈ U : h = 0 on a neighborhood of z} and U2 = U \ U1 .

I claim that both U1 and U2 are open, and that U1 6= ∅. Since U is a domain (open
and connected), it follows that U2 = ∅, i.e., U1 = U , and therefore h = 0 on U .

U1 is open essentially by definition: let z ∈ U1, then there is ε > 0 such that
h = 0 on Bε(z). But this implies Bε(z) ⊂ U1, since for w ∈ Bε(z), we have
Bδ(w) ⊂ Bε(z), where δ = ε− |w − z|.
To show that U2 is open, let z ∈ U2. Then h does not vanish identically near z,
so ordz f < ∞. Hence by Cor. 6.8, h(w) 6= 0 for w ∈ Bε(z) \ {z} if ε > 0 is small
enough. But then for each such w, h does not even have a zero on B|w−z|(w), so
Bε(z) ⊂ U2.

Finally, we show that U1 6= ∅. In case (ii), we have orda h = ∞, so a ∈ U1 by
Lemma 6.3. In case (i), we let a ∈ U be an accumulation point of A and use
Cor. 6.8 to obtain the same conclusion. ¤

6.10. Examples. The condition that A has an accumulation point in U is neces-
sary, as the examples U = C, A = Z, f(z) = 0, g(z) = sin(πz) or U = C \ {0},
A = {1/n : 0 6= n ∈ N}, f(z) = 0, g(z) = sin(π/z) show.

6.11. Remark. In fact, a subset A ⊂ U has the property that for holomorphic
functions f, g : U → C, f |A = g|A implies f = g if and only if A has an accumula-
tion point in U : we will see later that otherwise, there is a holomorphic function
f 6= 0 on U such that f |A = 0.
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6.12. Theorem. A non-constant holomorphic function f is open (i.e., the image
under f of an open set is open).

Proof. Let U ⊂ C open, f : U → C holomorphic and non-constant (everywhere,
i.e., on a neighborhood of every point in U). Let a ∈ U , b = f(a). We have
0 < orda(f − b) < ∞, hence by Cor. 6.6, there is a neighborhood V of a and
ε > 0 such that (f − b)(V ) = Bε(0), i.e., f(V ) = Bε(b). So Bε(b) ⊂ f(U). Since
b ∈ f(U) was arbitrary, f(U) is open. ¤

6.13. Corollary (Maximum Principle). Let U ⊂ C be a domain, f : U → C
holomorphic. If f is non-constant, then |f(z)| does not have a maximum in U .

If K ⊂ U is compact, then |f(z)| attains its maximum on K on the boundary ∂K.
If the maximum is also obtained in the interior, then f is constant.

Proof. Assume that |f(z)| has a maximum at a ∈ U . By Thm. 6.12, then f(U)
contains a neighborhood of f(a). But this neighborhood will contain points of
larger absolute value than f(a), a contradiction.

The second statement follows by considering f on the interior of K. ¤

6.14. Corollary (Schwarz Lemma). Let f : B1(0) → B1(0) be holomorphic
with f(0) = 0. Then |f(z)| ≤ |z| for all z ∈ B1(0) and |f ′(0)| ≤ 1. If we have
|f(z0)| = |z0| for some 0 6= z0 ∈ B1(0) or |f ′(0)| = 1, then f is a rotation:
f(z) = eiφz for some φ ∈ R.

Proof. We can write f(z) = zg(z) with g holomorphic on B1(0). For 0 < |z| =
r < 1, we have |g(z)| = |f(z)|/|z| ≤ 1/r. By the maximum principle Cor. 6.13,
this implies that |g(z)| ≤ 1/r for all |z| ≤ r. Letting r → 1, we see that |g(z)| ≤ 1
for all |z| < 1. This implies the first statement (note that f ′(0) = g(0)).

If we have equality somewhere, then g must be constant (since then |g(z)| attains
its maximum on B1(0)), and the constant has absolute value 1, so is of the form
eiφ with φ ∈ R. Hence f(z) = zg(z) = eiφz. ¤

7. Isolated Singularities

7.1. Definition. Let a ∈ C, U ⊂ C an open neighborhood of a. If f is holomor-
phic on U \ {a}, then a is an isolated singularity of f .

7.2. Definition. Let a be an isolated singularity of f , where f is holomorphic on
U \ {a} as above.

(1) a is a removable singularity of f , if there is a holomorphic function f̃ on U

such that f̃ = f on U \ {a}.
(2) a is a pole of f if a is not a removable singularity and there is m ≥ 0 such

that (z − a)mf(z) has a removable singularity at a. The smallest such m
is called the order of the pole.

(3) If none of the above holds, then a is an essential singularity of f .

Typical examples are (1) z/(ez − 1) at a = 0, (2) 1/zm at a = 0 (for m ≥ 1), (3)
exp(1/z) at a = 0.

We first deal with removable singularities.
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7.3. Theorem. If a is an isolated singularity of f , and f is bounded near a, then
a is a removable singularity of f .

Proof. Let ε > 0 such that Bε(a) ⊂ U , where U is a neighborhood of a such that
f is holomorphic on U \ {a}. By assumption, f is bounded on Bε(a). In the
same way as in the proof of the Cauchy Integral Formula 5.12, we find that for
a 6= z ∈ Bε(a), we have

f(z) =
1

2πi

∫
∂Bε(a)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂Bδ(a)

f(ζ)

ζ − z
dζ ,

where 0 < δ < |z − a|. Now let M be a bound for f on Bε(a). Then∣∣∣ 1

2πi

∫
∂Bδ(a)

f(ζ)

ζ − z
dζ
∣∣∣ ≤ δM

|z − a| − δ
→ 0 as δ ↓ 0,

so

f(z) =
1

2πi

∫
∂Bε(a)

f(ζ)

ζ − z
dζ .

The right hand side makes sense for z = a; define f̃ on Bε(a) by the right hand side
(and f̃ = f elsewhere). Then f̃ is a holomorphic (compare Prop. 5.14) extension
of f to U . ¤

Now let us consider poles.

7.4. Theorem. Let a be an isolated singularity of f .

(1) If |f(z)| → ∞ as z → a, then a is a pole of f .
(2) If a is a pole of order m of f , then f(z) = h(z)/(z−a)m on U \{a}, where

h is holomorphic on U and h(a) 6= 0.

Proof. Assume that |f(z)| → ∞ as z → a. Then on a sufficiently small punctured
disk around a, f(z) 6= 0, hence 1/f(z) is defined on the punctured disk and is
bounded there. By Thm. 7.3, a is a removable singularity of 1/f , and g(a) = 0,
where g is the extension of 1/f into a. so g(z) = (z−a)mh1(z) near a for some m >
1 and a holomorphic function h1 such that h1(a) 6= 0. Then f(z) = h(z)/(z− a)m

near a, where h = 1/h1. Since we can define h(z) = (z − a)mf(z) for z ∈ U \ {a}.
the representation is valid on all of U \ {a}. It is then clear that f has a pole of
order m at a.

Conversely, if a is a pole of order m of f , then (z − a)mf(z) has a removable
singularity, so h(z) = (z − a)mf(z) extends to a holomorphic function on U . We
must have h(a) 6= 0; otherwise we can reduce m. Hence f(z) = h(z)/(z − a)m as
claimed. It is then clear that |f(z)| → ∞ as z → a. ¤

So poles are in some sense well-behaved and constitute fairly harmless singularities.

7.5. Definition. Let U ⊂ C be a domain. A function f that is holomorphic on U
except for isolated singularities that are poles is said to be meromorphic in U .

If a is a pole of f , we define orda f = −m, where m is the order of the pole. Then for
functions f and g that are meromorphic near a, we have orda(fg) = orda f+orda g.
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7.6. Remark.

(1) If f is meromorphic on U , then neither the zeros nor the poles accumulate
at a point in U .

(2) Thm. 6.9 holds for meromorphic functions.
(3) The set of all meromorphic functions on a domain U forms a field (with

respect to point-wise addition and multiplication).

Indeed, it is clear that we have a ring. It remains to show that if f 6= 0,
then 1/f is again meromorphic. But zeros and poles of f are isolated in U
(U is connected, so if f is locally zero somewhere, f must be zero on U)
and turn into poles and zeros of 1/f .

As to essential singularities, we have the following result, which shows that they
are (in some precise sense) as bad as they can possibly be.

7.7. Theorem (Casorati-Weierstrass). Let a be an essential singularity of f .
Then for all sufficiently small ε > 0, f(Bε(a) \ {a}) is dense in C.

Proof. Let ε > 0 be so small that f is holomorphic on Bε(a) \ {a}. Assume that
f(Bε(a) \ {a}) is not dense in C. Then there is b ∈ C and δ > 0 such that
Bδ(b) ∩ f(Bε(a) \ {a}) = ∅. Now consider

g(z) =
1

f(z)− b
for z ∈ Bε(a) \ {a}.

Since |f(z) − b| ≥ δ for all relevant z, g is bounded (by 1/δ) on Bε(a) \ {a} and
therefore has a removable singularity at a. But then

f(z) =
1

g(z)
+ b

has at worst a pole at a, contradicting the assumption. ¤

7.8. Remark. In fact, much more is true: Picard’s Theorem says that either
f(Bε(a) \ {a}) = C, or f(Bε(a) \ {a}) = C \ {b} for some b ∈ C.

An example of the former is a = 0, f(z) = sin(1/z), an example of the latter is
a = 0, f(z) = exp(1/z) (with b = 0).

If f has a pole at a, then f(z) = g(z)/(z−a)m with g holomorphic near a, g(a) 6= 0.
Then g has a Taylor series near a:

g(z) =
∞∑

n=0

cn(z − a)n , c0 6= 0 .

Hence, for a 6= z near a, we have

f(z) =
∞∑

n=−m

an(z − a)n with an = cn+m, a−m 6= 0.

This is a special case of a Laurent series.



20

7.9. Definition. A Laurent series centered at a ∈ C is a series of the form
∞∑

n=−∞

an(z − a)n .

∑−1
n=−∞ an(z − a)n =

∑∞
n=1 a−n/(z − a)n is called the principal part of the series.

The series is said to be (absolutely, uniformly, . . . ) convergent if both
∞∑

n=1

a−n

(z − a)n
and

∞∑
n=0

an(z − a)n

are. In this case, the value of the series is the sum of the values of the two parts.

7.10. Remark. The series
∑∞

n=0 an(z − a)n converges in BR(a), where

R = 1/ lim sup
n→∞

n
√
|an| ,

and the series
∑−1

n=−∞ an(z − a)n converges in C \Br(a), where

r = lim sup
n→∞

n
√
|a−n| .

So if r < R, the Laurent series
∑∞

n=−∞ an(z − a)n converges absolutely (and
uniformly on compact subsets) on the annulus Ar,R(a) = {z ∈ C : r < |z−a| < R}.
It defines a holomorphic function f there, and we have

f ′(z) =
∞∑

n=−∞

nan(z − a)n−1 .

Note that the series for f ′ has no 1/(z − a) term.

If r ≥ R, then the Laurent series does not converge on any open set, and if r > R,
it does not converge anywhere.

We have now an analogue for annuli of the Taylor expansion on open disks.

7.11. Theorem. Let f be holomorphic on the domain U ⊂ C, and assume that
A = Ar,R(a) ⊂ U . Then f is given on A by a convergent Laurent series centered
at a: we have

f(z) =
∞∑

n=−∞

an(z − a)n with an =
1

2πi

∫
∂Bρ(a)

f(ζ)

(ζ − a)n+1
dζ

for any r < ρ < R.

Proof. Without loss of generality, we may assume that a = 0. Let z ∈ A, let
δ, ε > 0 such that r + δ + ε < |z| < R− δ − ε. Then by a by now already familiar
argument, we have

f(z) =
1

2πi

∫
∂Bε(z)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂BR−δ(0)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂Br+δ(0)

f(ζ)

ζ − z
dζ .

In the first integral on the right, we substitute 1/(ζ − z) =
∑∞

n=0 zn/ζn+1 (valid
for |z| < |ζ|) and obtain

1

2πi

∫
∂BR−δ(0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂BR−δ(0)

∞∑
n=0

f(ζ)

ζn+1
zn dζ =

∞∑
n=0

( 1

2πi

∫
∂BR−δ(0)

f(ζ)

ζn+1
dζ
)
zn .
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In the second integral, we substitute 1/(ζ − z) = −
∑∞

n=1 ζn−1/zn (valid for |z| >
|ζ|) and obtain

− 1

2πi

∫
∂Br+δ(0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Br+δ(0)

∞∑
n=1

f(ζ)

ζ−n+1
z−n dζ =

−1∑
n=−∞

( 1

2πi

∫
∂Br+δ(0)

f(ζ)

ζn+1
dζ
)
zn .

Finally, observe that ∫
∂Bρ(0)

f(ζ)

ζn+1
dζ

is independent of r < ρ < R (the difference of two such integrals can be written
as a sum of closed line integrals in star-shaped subdomains of A). ¤

In particular, if f has an isolated singularity at a, then on some punctured disk
Bε(a) \ {a}, f is given by a Laurent series.

7.12. Definition. In this situation, the principal part of this Laurent series is
called the principal part of the singularity.

7.13. Remark. Let f(z) =
∑∞

n=−∞ an(z − a)n on Bε(a) \ {a}. Then
a is removable ⇐⇒ an = 0 for all n < 0

⇐⇒ the principal part is zero;
a is a pole ⇐⇒ a is not removable and an = 0 for n ¿ 0

⇐⇒ the principal part is a non-zero finite sum;
a is essential ⇐⇒ an 6= 0 for infinitely many n < 0

⇐⇒ the principal part is an infinite series.

8. Cycles, Homology, and Homotopy

So far, we have proved the Cauchy Integral Theorem
∫

γ
f(z) dz = 0 for (closed)

paths in star-shaped domains. However, we have already seen some more general
statements of a similar nature, for example most recently in the proof of Thm. 7.11,
where we used that ∫

∂Br1 (a)

f(z) dz −
∫

∂Br2 (a)

f(z) dz = 0

where f is holomorphic on the annulus Ar,R(a) and r < r1 < r2 < R.

Our goal in this section is to state (in some sense) the most general form of the
Cauchy Integral Theorem.

First we need a notion of how often a path winds around a given point.

8.1. Lemma and Definition.
Let γ : [α, β] → C be a closed path and a ∈ C \ γ := C \ γ([α, β]). Then

nγ(a) =
1

2πi

∫
γ

dz

z − a
∈ Z .

nγ(a) is called the winding number of a with respect to γ.
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Proof. Without loss of generality, a = 0. The idea behind the proof is that
∫

dz/z
gives us a logarithm, so the value is something like log |z| + i arg z. If we come
back to the same point, the argument may have changed by an integral multiple
of 2π.

To make this precise, consider for t ∈ [α, β]

h(t) =

t∫
α

γ′(τ)

γ(τ)
dτ .

We have
d

dt

(
γ(t)e−h(t)

)
=
(
γ′(t)− γ(t)

γ′(t)

γ(t)

)
e−h(t) = 0 ,

so γ(t)/γ(α) = eh(t), and therefore 1 = γ(β)/γ(α) = eh(β). This implies that∫
γ

dz

z
=

β∫
α

γ′(τ)

γ(τ)
dτ = h(β) ∈ 2πiZ .

¤

8.2. Remark. The winding number nγ(a) is locally constant on C \ γ.

Proof. nγ(a) = 1/2πi
∫

γ
dz/(z − a) is a continuous function from C \ γ into the

discrete set Z. ¤

For our general Cauchy Integral Theorem, we have to generalize the notion of
paths a little bit.

8.3. Definition. A cycle (or 1-cycle) in U ⊂ C is a (formal) integral linear com-
bination of closed paths in U . If γ = n1γ1 + · · ·+nkγk is a cycle in U (with closed
paths γj and integers nj) and f : U → C is continuous, we set∫

γ

f(z) dz = n1

∫
γ1

f(z) dz + · · ·+ nk

∫
γk

f(z) dz .

In particular, when a ∈ C \ (γ1 ∪ · · · ∪ γk), we have
nγ(a) = n1nγ1(a) + · · ·+ nknγk

(a) .

By definition, cycles are elements of an abelian group, the free abelian group
generated by all closed paths in U . In particular, we can add and subtract cycles.

8.4. Definition. Let U ⊂ C.

(1) A cycle γ in U is homologous to zero (w.r.t. U) if for all a ∈ C\U , we have
nγ(a) = 0.

(2) Two cycles γ, γ′ in U are homologous (w.r.t. U) if γ − γ′ is homologous to
zero.

(3) U is simply connected if all cycles in U are homologous to zero.

8.5. Examples. C is simply connected, since the condition is vacuous (there are
no points outside U).

The punctured plane C \ {0} is not simply connected, since nγ0(0) = 1, where
γ0 = ∂B1(0). On the other hand, every cycle in C \ {0} is homologous to a
multiple of γ0: γ − nγ(0)γ0 is homologous to zero.
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8.6. Remark. From the definition, it is clear that the cylces in U that are ho-
mologous to zero form a subgroup of the group of all cycles. We can therefore
consider the quotient group H1(U). This group is called the first homology group
of U . (“First”, since we consider one-dimensional objects; there is a more general
theory also considering higher-dimensional submanifolds.) U is simply connected
iff H1(U) = 0, and the example above shows that H1(C \ {0}) ∼= Z; the isomor-
phism being given by the winding number γ 7→ nγ(0).

Our goal will be to prove that
∫

γ
f(z) dz = 0 for all holomorphic functions f on U

if and only if γ is homologous to zero. However, we need another ingredient first.

8.7. Definition. Let γ0, γ1 : [α, β] → U be two paths in U ⊂ C. Then γ0 and γ1

are homotopic in U if there is a continuous map (a homotopy between γ0 and γ1)
γ : [0, 1]× [α, β] → U such that

(i) for all u ∈ [α, β], γ(0, u) = γ0(u) and γ(1, u) = γ1(u);
(ii) for all t ∈ [0, 1], γt : u 7→ γ(t, u) is picewise C1;
(iii) for all t ∈ [0, 1], γt(α) = γ0(α) = γ1(α) and γt(β) = γ0(β) = γ1(β).

The intuition behind this notion is that we “continuously deform” γ0 into γ1 while
staying in U and keeping the end-points fixed.

8.8. Theorem (Homotopy Invariance of the Integral).
Let f : U → C be holomorphic, γ0 and γ1 two homotopic paths in U . Then∫

γ0

f(z) dz =

∫
γ1

f(z) dz .

Proof. Let γ : [0, 1] × [α, β] → U be a homotopy between γ0 and γ1. We want to
show that

[0, 1] 3 t 7−→
∫
γt

f(z) dz

is locally constant. Then it follows (since [0, 1] is connected) that the map is
constant, and we get the desired equality.

So let t ∈ [0, 1]. We can cover (the image of) γt by finitely many open disks
D0, D1, . . . , Dm ⊂ U , centered at γ(a0), . . . , γ(am), where α ≤ a0 < a1 < · · · <
am ≤ β (this is possible since the image of γt is compact). If δ ∈ R is suffi-
ciently small (in absolute value), im(γt+δ) ⊂ D0 ∪ · · · ∪ Dm. We choose points
α1, . . . , αm, β1, . . . , βm ∈ [α, β] such that γt(αk), γt+δ(βk) ∈ Dk−1 ∩Dk, and we set
α0 = β0 = α, αm+1 = βm+1 = β. Let (in obvious notation)

Γk = γt|[αk,αk+1] +
[
γt(αk+1), γt+δ(βk+1)

]
− γt+δ|[βk,βk+1] −

[
γt(αk), γt+δ(βk)

]
,

then Γk is a closed path in the star-shaped domain Dk, hence (by Thm. 5.11)∫
Γk

f(z) dz = 0. On the other hand, we have∫
γt

f(z) dz −
∫

γt+δ

f(z) dz =
m∑

k=0

∫
Γk

f(z) dz = 0 .

This proves that t 7→
∫

γt
f(z) dz is locally constant. ¤
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8.9. Remark. This result allows us to define
∫

γ
f(z) dz for holomorphic f when

γ is just continuous, and not necessarily piece-wise continuously differentiable —
we set ∫

γ

f(z) dz =

∫
γ1

f(z) dz

where γ1 is any piece-wise C1 path sufficiently close to γ. The theorem tells us
that this does not depend on the choice of γ1 (since all sufficiently close paths will
be homotopic).
We can then extend the notion of homotopy to just continuous paths (simply drop
the condition that γt is piece-wise C1). Then the theorem also holds for continuous
paths.

8.10. Remark. If we consider free homotopies of closed paths — we require each
γt to be closed, but we do not require the end-points to be fixed during the
homotopy — then the same result holds, with essentially the same proof. This
implies for example the result mentioned at the beginning of this section:
if r < r1 < r2 < R, and f is holomorphic on the annulus Ar,R(a), then∫

∂Br1 (a)

f(z) dz =

∫
∂Br2 (a)

f(z) dz ,

since there is the free (“radial”) homotopy

[0, 1]× [0, 1] 3 (t, u) 7−→
(
(1− t)r1 + tr2

)
e2πiu .

8.11. Lemma. Let γ be a closed path, and let a ∈ C \ γ be in the unbounded
component of C \ γ. Then nγ(a) = 0.

Proof. Exercise. ¤

We can now proceed to prove the general Cauchy Integral Theorem. But first, we
need a slight variant of the Cauchy Integral Formula.

8.12. Lemma (Cauchy Integral Formula for Squares). Let f be holomorphic
on the domain U ⊂ C, and let Q ⊂ U a closed square. Then for all z ∈ Q◦ (the
interior of Q), we have

f(z) =
1

2πi

∫
∂Q

f(ζ)

ζ − z
dζ

(where ∂Q denotes, as usual, the boundary of the square with counter-clockwise
orientation).

Proof. First observe that f(ζ)/(ζ−z) = f(z)/(ζ−z)+g(ζ), where g is holomorphic
on U . Since Q is contained in a star-shaped domain contained in U (e.g., take a
slightly larger open square), we get

1

2πi

∫
∂Q

f(ζ)

ζ − z
dζ =

f(z)

2πi

∫
∂Q

dζ

ζ − z
+

1

2πi

∫
∂Q

g(ζ) dζ = f(z)nγ(z) .

To compute the winding number, we take one of the vertices of Q as the starting
and ending point of γ; then there is a radial homotopy to the circle that passes
through the vertices. The winding number with respect to points in Q◦ does not
change, by Thm. 8.8, and by the Cauchy Integral Formula for disks 5.12, the
winding number is 1. ¤
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8.13. Theorem (General Cauchy Integral Theorem). Let U ⊂ C be a do-
main, f : U → C holomorphic, and let γ be a cycle in U that is homologous to
zero (w.r.t. U). Then ∫

γ

f(z) dz = 0 .

Proof. Let R > 0 be so big that γ ⊂ BR(0). Then γ is also homologous to zero in
U ′ = BR(0) ∩ U , and U ′ is bounded. We will construct an auxiliary cycle Γ in U ′

with the properties

(i) nγ(ζ) = 0 for all ζ ∈ Γ;

(ii) for all z ∈ γ, f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ.

Given such a cycle Γ, the claim follows:∫
γ

f(z) dz =
1

2πi

∫
γ

∫
Γ

f(ζ)

ζ − z
dζ dz =

1

2πi

∫
Γ

f(ζ)
(∫

γ

dz

ζ − z

)
dζ = 0 ,

since the inner integral is −nγ(ζ) = 0.

In order to construct Γ, we put a square grid on C of mesh size δ < 1√
2
dist(γ, ∂U ′).

Let G be the set of closed grid squares that are contained in U ′, and set

Γ =
∑
Q∈G

∂Q ,

where we cancel oppositely oriented edges when they both occur. We now have
to check the properties (i) and (ii). (Note that G is finite, since U ′ is bounded.)

(i) Let ζ ∈ Γ. Then ζ is on an edge of a square Q in G such that the square Q′

on the other side of the edge is not in G. So there is a point in Q′ that is
outside U ′. Therefore

dist(ζ, ∂U ′) ≤ diam(Q′) =
√

2δ < dist(γ, ∂U ′) .

This means that we can connect ζ to a point w ∈ C \U ′ by a straight line
segment that does not intersect γ. So nγ(ζ) = nγ(w) = 0, the latter since
γ is homologous to zero with respect to U ′.

(ii) Let z ∈ γ. Then z ∈
⋃

Q∈G Q (by the same inequality of distances as
above). If z is not on an edge of one of the squares, then it is contained in
Q◦

0 for exactly one Q0 ∈ G. We obtain

1

2πi

∫
Γ

f(ζ)

ζ − z
dζ =

∑
Q∈G\Q0

1

2πi

∫
∂Q

f(ζ)

ζ − z
dζ +

1

2πi

∫
∂Q0

f(ζ)

ζ − z
dζ = 0 + f(z) = f(z)

by the Cauchy Integral Theorem for star-shaped domains 5.11 and by
Lemma 8.12.
By continuity, this extends to z ∈

(⋃
Q∈G Q

)◦
and hence to z ∈ γ.

¤

There is also a general version of the Cauchy Integral Formula.
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8.14. Theorem (General Cauchy Integral Formula). Let U ⊂ C be a do-
main, f : U → C holomorphic, and let γ be a cycle in U that is homologous to
zero (w.r.t. U). Then for all z ∈ U \ γ, we have

1

2πi

∫
γ

f(ζ)

ζ − z
dζ = nγ(z)f(z) .

Proof. The function ζ 7→ f(ζ)/(ζ − z) is holomorphic on U \ {z}. Let ε > 0 be so
small that Bε(z) ⊂ U , and let β = ∂Bε(z). Then γ − nγ(z) · β is homologous to
zero in U \ {z}. By the General Cauchy Integral Theorem 8.13 and the original
version of the Cauchy Integral Formula 5.12, we get

0 =

∫
γ−nγ(z)·β

f(ζ)

ζ − z
dζ =

∫
γ

f(ζ)

ζ − z
dζ − nγ(z)

∫
β

f(ζ)

ζ − z
dζ

=

∫
γ

f(ζ)

ζ − z
dζ − nγ(z) 2πif(z) .

¤

Our next goal is the Residue Theorem, which can be understood as a far-reaching
generalization of the Cauchy Integral Formula which we have just proved. But
first, we need a definition.

8.15. Definition. Let a ∈ C be an isolated singularity of f ; then f has a Laurent
series expansion near a:

f(z) = · · ·+ a−2

(z − a)2
+

a−1

z − a
+ a0 + a1(z − a) + a2(z − a)2 + . . . .

The coefficient a−1 ∈ C is called the residue of f at a; we write

a−1 = resa f = resz=a f(z) .

8.16. Remark. The relevance of the residue is explained by the following. Near a,
we can write

f(z) =
a−1

z − a
+ g′(z) ,

where

g(z) = · · · − a−3

2(z − a)2
− a−2

z − a
+ a0(z − a) +

a1

2
(z − a)2 + . . . .

If Bε(a) is a sufficiently small disk around a, then∫
∂Bε(a)

f(z) dz = resa f

∫
∂Bε(a)

dz

z − a
+

∫
∂Bε(a)

g′(z) dz = resa f · 2πi .

This is the reason why the residue appears in the following theorem.
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8.17. Theorem (Residue Theorem). Let U ⊂ C be a domain, let S ⊂ U be
closed and discrete (in U ; i.e., S does not have an acculumation point in U), and
let f : U \S → C be holomorphic (so that the points in S are isolated singularities
of f). Let γ be a cycle in U that is homologous to zero (w.r.t. U), such that
γ ∩ S = ∅. Then ∫

γ

f(z) dz = 2πi
∑
a∈S

nγ(a) resa f ,

and the sum has only finitely many non-zero terms.

Proof. The idea of the proof is the same as for the Cauchy Integral Formula 8.14.
But first, we show the second claim. Let

I = {a ∈ U \ γ : nγ(a) 6= 0} = {a ∈ C \ γ : nγ(a) 6= 0} ∪ γ ⊂ U ,

then I is compact. Since S ⊂ U is discrete and closed, the intersection I ∩ S is
finite. This proves the second claim, since non-zero terms in the sum can only
occur when nγ(a) 6= 0.

Now, for each of the finitely many a ∈ I ∩ S, let βa = ∂Bε(a), where ε is so small
that the corresponding closed disks are contained in U and such that Bε(a)∩S =
{a}. Then Γ = γ −

∑
a∈I∩S nγ(a) · βa is homologous to zero in U \ S. We obtain

0 =

∫
Γ

f(z) dz =

∫
γ

f(z) dz −
∑

a∈I∩S

nγ(a)

∫
βa

f(z) dz

=

∫
γ

f(z) dz −
∑

a∈I∩S

nγ(a) · 2πi resa f .

¤

9. Applications of the Residue Theorem

The Residue Theorem 8.17 is a very powerful tool that helps us evaluate many
(real) definite integrals and also infinite series. We will give a number of sample
applications.

9.1. First Application. Let f be a rational function without poles in R and such
that z2f(z) is bounded when |z| is large. Then we have

∞∫
−∞

f(x) dx = 2πi
∑

Im(a)>0

resa f .

Note that the decay condition on f is necessary for the integral to converge. Note
also that we can restrict the sum to a in the upper half-plane such that a is a pole
of f .

The first example that comes to mind is
∞∫

−∞

dx

1 + x2
= 2πi resz=i

1

1 + z2
= 2πi

1

2i
= π .

Here the only pole of f(z) = 1/(1+z2) in the upper half-plane is i. Note also that
if a is a simple pole of f , then

resa f = lim
z→a

(z − a)f(z) .
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Maybe the second example one thinks of is
∞∫

−∞

dx

1 + x4
= 2πi

(
resz=eπi/4

1

1 + z4
+ resz=e3πi/4

1

1 + z4

)
= 2πi

( 1

4e3πi/4
+

1

4e9πi/4

)
=

πi

2

(−1− i√
2

+
1− i√

2

)
=

π√
2

.

Can you generalize these to
∫∞
−∞ dx/(1 + x2n)?

Proof. To prove the claim, we consider the closed path γR that bounds the half-
disk BR(0) ∩ {z ∈ C : Im(z) > 0}. If R > 0 is so large that |z2f(z)| ≤ C for
|z| ≥ R (in particular, all poles of f have absolute value < R), then by the Residue
Theorem,

2πi
∑

Im(a)>0

resa f =

∫
γR

f(z) dz =

R∫
−R

f(x) dx +

∫
βR

f(z) dz ,

where βR is the upper semicircle of radius R centered at 0. Note that all poles a
of f in the upper half-plane are contained in the half-disk and have nγR

(a) = 1,
whereas the poles in the lower half-plane have winding number zero. We now have
to estimate the part of the integral we don’t want, for which we use the bound
on |f |: ∣∣∣∫

βR

f(z) dz
∣∣∣ ≤ πR

C

R2
=

πC

R
→ 0 as R →∞.

The claim now follows by letting R tend to infinity in the relation above. ¤

9.2. Second Application. We can extend the idea to include definite integrals
of f(x) cos x or f(x) sin x for suitable rational functions f (with real coefficients).
We need to package both versions into one.

Let f be a rational function without poles in R and such that zf(z) is bounded
for |z| large. Then

∞∫
−∞

eixf(x) dx = 2πi
∑

Im(a)>0

resz=a eizf(z) .

Note that here, the decay condition is weaker than before. If f only tends to zero
like 1/z as |z| → ∞, then the integral does not converge absolutely, but it exists
as an improper integral.

As an example, consider
∞∫

−∞

cos x

1 + x2
dx =

∞∫
−∞

eix

1 + x2
dx = 2πi resz=i

eiz

1 + z2
= 2πi

e−1

2i
=

π

e
.

Note that the imaginary part of eix/(1 + x2) is an odd function, hence its integral
vanishes. Would you have suspected e to show up in the answer?

Proof. We use a similar idea as in the first application. This time, we use the path
γR,S that bounds the rectangle with vertices at R, R + (R + S)i, −S + (R + S)i
and −S. Call the edge paths γR,S,1, . . . , γR,S,4 in the indicated ordering (i.e., γR,S,1

is the oriented line segment from R to R + (R + S)i, etc.). If R and S are large
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enough so that we have |zf(z)| ≤ C for |z| ≥ min{R, S}, then all the poles of f in
the upper half-plane are inside the rectangle, and by the Residue Theorem again,

2πi
∑

Im(a)>0

resz=a eizf(z) =

∫
γR,S

eizf(z) dz

=

∫
γR,S,1

eizf(z) dz +

∫
γR,S,2

eizf(z) dz +

∫
γR,S,3

eizf(z) dz

+

R∫
−S

eixf(x) dx .

Again, we have to show that the unwanted integrals vanish as R, S → ∞ (inde-
pendently!). For γR,S,1, we find

∣∣∣ ∫
γR,S,1

eizf(z) dz
∣∣∣ =

∣∣∣ R+S∫
0

e−teiRf(R + it) i dt
∣∣∣ ≤ C

R

R+S∫
0

e−t dt ≤ C

R
,

and similarly |
∫

γR,S,3
eizf(z) dz| ≤ C/S. For γR,S,2, we obtain

∣∣∣ ∫
γR,S,2

eizf(z) dz
∣∣∣ =

∣∣∣ R∫
−S

e−(R+S)eitf(t + i(R + S)) dt
∣∣∣

≤ (R + S)e−(R+S) C

R + S
= Ce−(R+S) .

(Note that |z| ≥ R + S on this path.) Hence all three integrals tend to zero as R
and S tend to infinity, and the claim follows (at the same time, this shows that
the integral exists). ¤

Note that in this proof, we exploit the fact that eiz tends to zero very quickly
when Im(z) tends to +∞. This allows us to use the weaker decay condition on f .

9.3. Extension of Second Application. We can use a modification of the ap-
proach just discussed to include the case when f has simple poles in R. Of course,
the integral does not exist any more in this case, but we can compute its so-called
principal value. Rather than to discuss the general case, let us look at one specific
example. We compute

P.V.
∞∫

−∞

eix

x
dx := lim

ε↓0

( −ε∫
−∞

eix

x
dx +

∞∫
ε

eix

x
dx
)

.

We modify the path γR,S we used previously by replacing the part [−ε, ε] of γR,S,4

with the upper semicircle of radius ε centered at zero and oriented negatively (i.e.,
clockwise). We can estimate the integral over the three other edges as before, and
letting R, S →∞, we obtain (since there are no poles in the upper half-plane)

0 =

−ε∫
−∞

eix

x
dx−

∫
βε

eiz

z
dz +

∞∫
ε

eix

x
dx ,
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where βε is the positively oriented semicircle. We can write eiz/z = 1/z + g(z),
where g is holomorphic, hence∫

βε

eiz

z
dz = πi + O(ε)

(where the O(ε) is ≤ πεC, with C a bound for |g| near 0). So as ε tends to zero,
we find

P.V.
∞∫

−∞

eix

x
dx = πi .

Taking imaginary parts, this implies
∞∫

−∞

sin x

x
dx = π .

Note that this integral does exist in the usual sense. (Why can’t we use (sin z)/z
to evaluate the integral?)

9.4. Third Application. There are several other kinds of definite integrals that
one can compute with the help of the Resiude Theorem, see the homework prob-
lems. Here, we want to discuss a different kind of application, which uses the
theorem ‘in the opposite direction’ — rather than expressing integrals in terms of
residues, we want to express a sum in terms of residues, with an integral as an
intermediary (which goes away at the end of the process).

Let f be an even (i.e., f(−z) = f(z)) rational function without poles at positive
integers and such that z2f(z) is bounded for |z| large. Then

∞∑
n=1

f(n) = −π

2

(
resz=0 f(z) cot πz +

∑
a/∈Z

resz=a f(z) cot πz
)

.

As an example, consider the famous sum
∞∑

n=1

1

n2
= −1

2
resz=0

π cot πz

z2
.

To find the residue, we expand π cot πz as a Laurent series at 0:

π cot πz =
π cos πz

sin πz
=

1− π2

2
z2 + . . .

z − π2

6
z3 + . . .

=
1

z

(
1− π2

2
z2 + . . .

)(
1 +

π2

6
z2 + . . .

)
=

1

z
− π2

3
z + . . . .

So
π cot πz

z2
=

1

z3
− π2

3

1

z
+ . . . ,

and the residue is −π2/3. This finally gives
∞∑

n=1

1

n2
=

π2

6
.
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Proof. We note first that π cot πz has simple poles at all n ∈ Z with residue 1 and
no other singularities (Exercise). Since f has no poles at nonzero integers and is
even, we then have

resz=±n f(z) π cot πz = f(n)

for n ≥ 1. If N is a positive integer that is so large that |z2f(z)| ≤ C for |z| ≥ N ,
and we let γN = ∂BN+ 1

2
(0), then∫

γN

f(z) π cot πz dz = 2πi
(
2

N∑
n=1

f(n)+resz=0 f(z) π cot πz+
∑
a/∈Z

resz=a f(z) π cot πz
)
.

The last sum here is over the poles of f .

Now I claim that cot πz is bounded if we stay away from the integers (where there
are the poles). To see this, write, for z = x + iy,

cot πz = i
eπiz + e−πiz

eπiz − e−πiz
= i

e−2πye2πix + 1

e−2πye2πix − 1
.

If y → +∞, this tends to −i, and if y → −∞, this tends to i. Also, the function is
periodic with period 1, so these limits are uniform in x. So the function is bounded
away from a horizontal strip around the real axis. On the other hand, it is also
bounded on any closed rectangle whose vertical edges pass through −1/2 and 1/2,
with the disk Bδ(0) removed (0 < δ < 1/2). (It is a continuous function, and the
set in question is compact.) By periodicity again, we see that cot πz is bounded
on C \

⋃
n∈Z Bδ(n). In particular, the function is bounded uniformly on γN , for all

N ≥ 2; let C ′ be a bound. Then we find∣∣∣∫
γN

f(z) π cot πz dz
∣∣∣ ≤ 2π(N + 1

2
) · C

(N + 1
2
)2
· πC ′ =

2π2CC ′

N + 1
2

→ 0 as N →∞.

If we use this in the expression for the integral obtained above, the claim follows.
¤

9.5. Example. We can extend our evaluation of
∑

1/n2. Let k ≥ 1. Then
∞∑

n=1

1

n2k
= −1

2
resz=0

π cot πz

z2k
= −1

2
(coefficient of z2k−1 in π cot πz) .

So we have to look at the Laurent series expansion of π cot πz at zero. We have

π cot πz = πi
eπiz + e−πiz

eπiz − e−πiz
= πi

e2πiz + 1

e2πiz − 1
= πi +

1

z

2πiz

e2πiz − 1
.

So the coefficient we need is (2πi)2k = (−1)k(2π)2k times the coefficient of z2k in
z/(ez − 1). We define numbers Bn by setting (near z = 0)

z

ez − 1
=

∞∑
n=0

Bn

n!
zn .

These numbers are called Bernoulli Numbers; the first few are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, B7 = 0, . . . .

Putting everything together, we have
∞∑

n=1

1

n2k
= −1

2

(−1)k(2π)2kB2k

(2k)!
=

(−1)k−122k−1π2kB2k

(2k)!
.
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For example,
∞∑

n=1

1

n2
=

2π2B2

2
=

π2

6
,

∞∑
n=1

1

n4
=
−8π4B4

24
=

π4

90
,

∞∑
n=1

1

n6
=

32π6B6

720
=

π6

945
.

9.6. Remark. Bernoulli Numbers also show up when summing positive powers
of n: We have
N−1∑
n=0

nk =
1

k + 1

k∑
l=0

(
k + 1

l

)
BlN

k+1−l =
1

k + 1
Nk+1− 1

2
Nk +

k

12
Nk−1+ · · ·+BkN .

For the proof, let Sk(N) =
∑N−1

n=0 nk; then

∞∑
k=0

Sk(N)
zk

k!
=

N−1∑
n=0

enz =
eNz − 1

ez − 1
=

eNz − 1

z

z

ez − 1
=

∞∑
m=0

Nm+1

m + 1

zm

m!

∞∑
l=0

Bl
zl

l!
;

the result then follows by expanding the product.

9.7. Remark. There are no similar explicit formulas for ζ(k) =
∑

1/nk when k
is odd. In fact, not much is known about these numbers. In 1977, Apéry proved
that ζ(3) is irrational, and it is known that at least one of ζ(5), ζ(7), ζ(9) and
ζ(11) must be irrational, and that ζ(k) is irrational for infinitely many positive
odd integers k.

For many applications, the following observation is important. Let f : U → C be
meromorphic (and not the zero function); then f ′/f is also meromorphic on U .
This function can only have poles where f either has a pole or a zero. So let
a ∈ U , and write f(z) = (z − a)mg(z) with m 6= 0 and g holomorphic near a and
g(a) 6= 0. Then

f ′(z)

f(z)
=

m(z − a)m−1g(z) + (z − a)mg′(z)

(z − a)mg(z)
=

m

z − a
+

g′(z)

g(z)
.

The second term is holomorphic near a, and so we see that f ′/f has a simple pole
at a with residue m = orda f . The statement about the residue remains true if
m = 0, even though there is no pole in this case.

9.8. Proposition (Integral Counting Zeros and Poles). Let U ⊂ C be a
domain, and let f : U → C be meromorphic. Let γ be a cycle in U that is
homologous to zero (w.r.t. U), such that γ does not meet any of the zeros or poles
of f . Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈U

nγ(a) orda f ,

and the sum has only finitely many non-zero terms.

Proof. This follows from the Residue Theorem 8.17 and the observation just made.
¤

So we can use integrals in order to count the number of zeros minus the number
of poles in some compact set.
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9.9. Remark. Note that

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

b∫
a

f ′(γ(t))

f(γ(t))
γ′(t) dt

=
1

2πi

b∫
a

1

(f ◦ γ)(t)
(f ◦ γ)′(t) dt =

1

2πi

∫
f◦γ

dz

z
= nf◦γ(0) .

So the number in question is the number of times the image path f◦γ winds around
the origin. In this interpretation, the result above is known as the Argument
Principle: the number of zeros minus the number of poles is 1/(2π) times the
total change of argument of f(z) as we follow γ.

We can use this to prove the Fundamental Theorem of Algebra another time.

9.10. Corollary (Fundamental Theorem of Algebra). Let f ∈ C[z] be monic
of degree n. Then f has exactly n zeros in C (counting multiplicity).

Proof. We write

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 = zn

(
1 +

an−1

z
+ · · ·+ a1

zn−1
+

a0

zn

)
.

Then
f ′(z)

f(z)
=

n

z
− an−1 + · · ·+ (n− 1)a1z

−n+2 + na0z
−n+1

1 + an−1z−1 + · · ·+ a1z−n+1 + a0z−n

1

z2
=

n

z
+ h(z) ,

and for |z| large, the first factor of the second term is bounded, so |h(z)| ≤ C/|z|2.
Let N be the number of zeros of f , and let R be so large that the bound above
holds. Then

N =
1

2πi

∫
∂BR(0)

f ′(z)

f(z)
dz =

1

2πi

∫
∂BR(0)

n

z
dz +

1

2πi

∫
∂BR(0)

h(z) dz = n + δ(R)

with

|δ(R)| ≤ 1

2π
2πR

C

R2
=

C

R
.

If we let R tend to infinity, we find N = n. (In fact, it suffices to take R > 2C,
since δ(R) must be an integer.) ¤

A consequence of the Argument Principle is that functions that are sufficiently
close on γ must have the same number of zeros minus poles.

9.11. Theorem (Rouché’s Theorem). Let f and g be meromorphic on the do-
main U ⊂ C, and let γ be a cycle in U that is homologous to zero in U and does
not pass through any (zeros or) poles of f or g. Assume that |f(z)−g(z)| < |f(z)|
for all z ∈ γ. Then ∑

a∈U

nγ(a) orda f =
∑
a∈U

nγ(a) orda g ,

i.e., f and g have the same number of ‘zeros minus poles’ in the area enclosed
by γ (with appropriate multiplicities).
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Proof. Consider the meromorphic function h = g/f on U . It is well-defined and
without zeros on γ, and for z ∈ γ, we have∣∣∣ g(z)

f(z)
− 1
∣∣∣ < 1 ,

so h ◦ γ is contained in B1(1). Hence 0 is contained in the unbounded component
of all paths that make up γ, which implies by Lemma 8.11 that nh◦γ(0) = 0. Now
we use Prop. 9.8 and Remark 9.9:

0 = nh◦γ(0) =
∑
a∈U

nγ(a) orda(g/f)

=
∑
a∈U

nγ(a)(orda g − orda f) =
∑
a∈U

nγ(a) orda g −
∑
a∈U

nγ(a) orda f .

¤

9.12. Remark. We can easily strengthen this result: it suffices that g(z) is never
a nonpositive real multiple of f(z) on γ. Then h ◦ γ is contained in the slit plane
C \ R≤0, and the origin is still in the unbounded component of the complement.

10. Sequences of Holomorphic Functions

We now want to consider sequences of holomorphic functions. We need a suit-
able notion of convergence that guarantees that the limit function will again be
holomorphic. For continuous functions, this is the case when the convergence is
uniform; in fact, it suffices to have uniform convergence locally, since continuity
is a local property. It turns out that this is already sufficient for our purposes as
well.

10.1. Definition. Let U ⊂ C be a domain, and let (fn) be a sequence of holomor-
phic functions on U . We say that (fn) is locally uniformly or compactly convergent
on U if the following two equivalent conditions are satisfied.

(1) For every a ∈ U there is ε > 0 such that Bε(a) ⊂ U and such that (fn|Bε(a))
converges uniformly.

(2) For every compact subset K ⊂ U , (fn|K) converges uniformly.

(1) implies (2), since K is covered by finitely many disks as in (1). (2) implies (1),
since we can find a small open disk around a that is contained in a compact subset
of U .

10.2. Theorem (Compact Convergence of Holomorphic Functions). Let
U ⊂ C be a domain, (fn) a compactly converging sequence of holomorphic func-
tions on U . Then the limit function f = limn→∞ fn is again holomorphic on U ,
and (f ′n) converges compactly to f ′ on U .

Note that in order to have a similar result for real differentiable functions, we
already need to assume that the derivatives converge (locally) uniformly!

Proof. Let ∆ ⊂ U be a closed triangle. By the Cauchy Integral Theorem, we
have

∫
∂∆

fn(z) dz = 0 for all n. Since (fn) converges uniformly on ∆, this implies∫
∂∆

f(z) dz = 0. Since this holds for all triangles in U , f is holomorphic by
Morera’s Theorem.
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For the second claim, we use the Cauchy Integral Formula. Let a ∈ U , and let
ε > 0 such that Bε(a) ⊂ U and (fn) converges uniformly on Bε(a). Then for
z ∈ Bε/2(a), we have

f ′n(z) =
1

2πi

∫
∂Bε(a)

fn(ζ)

(z − ζ)2
dζ .

Since 1/(z − ζ) is uniformly bounded (by 2/ε) on ∂Bε(a) and (fn) converges uni-
formly there, the right hand side converges uniformly (on Bε/2(a)) to the analogous
integral for f , i.e., to f ′(z). ¤

For infinite series of holomorphic functions, there is a sufficient (but not necessary)
criterion analogous to the “Weierstrass M-test”.

10.3. Definition. Let U ⊂ C be a domain. A series
∑∞

n=0 fn of holomorphic
functions on U is normally or compactly absolutely convergent if for every comapct
subset K ⊂ U , we have

∑∞
n=0 |fn|K < ∞, where |f |K = max{|f(z)| : z ∈ K}.

10.4. Remarks.

(1) A normally convergent series of holomorphic functions is compactly conver-
gent (i.e., its sequence of partial sums is). In particular, the limit function
is holomorphic, and we can compute derivatives of any order term by term.
The series of derivatives converges again normally (Exercise — compare
the proof of Thm. 10.2).

(2) The terms in a normally convergent series can be arbitrarily re-ordered
without affecting normal convergence and without changing the limit func-
tion.

10.5. Example. As a special case, we find again that a power series defines a
holomorphic function in its disk of convergence.

10.6. Example. For z ∈ C \ {0, 1}, consider

f(z) =
∑

w∈C:ew=z

1

w2
.

Let z0 ∈ C \ {0, 1}. Let ε > 0 so that 0, 1 /∈ B2ε(z0). If we pick w0 ∈ C such that
ew0 = z0, then there is a unique holomorphic logarithm function ` on B2ε(z0) (i.e.,
z = e`(z)) such that `(z0) = w0, and we can write our series there as

f(z) =
∑
k∈Z

1

(`(z) + 2πik)2
.

On Bε(z0), ` is bounded, hence there is a constant C > 0 such that∣∣∣ 1

(`(z) + 2πik)2

∣∣∣ ≤ C

k2

for |k| À 0 and all z ∈ Bε(z0). Therefore the series is a normally convergent series
of holomorphic functions, and f is holomorphic on C \ {0, 1}.
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10.7. Theorem (Number of Zeros of the Limit Function). Let U ⊂ C be a
domain, and let (fn) be a compactly convergent sequence of holomorphic functions
on U , with limit function f . If K ⊂ U is compact such that f has no zero on ∂K,
then f has exactly as many zeros in the interior K◦ as fn for n À 0.

Of course, the analogous result holds for the number of points where f takes some
other fixed value a ∈ C (just consider (fn − a)).

Proof. Since f does not vanish on ∂K, it is not the zero function, hence its zeros in
K◦ are isolated and finite in number. Let ε > 0 such that the ε-disks around the
zeros a1, . . . , ak of f are pairwise disjoint and contained in K. Then f is bounded
away from zero on the compact set K \ (Bε(a1)∪ · · · ∪Bε(ak)), so the same is true
for fn if n is large, so all the zeros of the fn (for n À 0) lie in the union of the
disks. This implies∑

a∈K◦

orda f =
k∑

j=1

1

2πi

∫
∂Bε(aj)

f ′(z)

f(z)
dz

=
k∑

j=1

lim
n→∞

1

2πi

∫
∂Bε(aj)

f ′n(z)

fn(z)
dz = lim

n→∞

∑
a∈K◦

orda fn .

¤

Note that the zeros of f do not accumulate in U unless f is the zero function. So
unless f = 0, there will be many choices for K. So what this result says is that
either the limit function is zero, or else the number of zeros is preserved in the
limit.

10.8. Corollary (Preservation of Injectivity). Let U ⊂ C be a domain, and
let (fn) be a compactly convergent sequence of injective holomorphic functions
on U . Then the limit function is either constant or also injective.

Proof. Let f = limn→∞ fn be the limit function. Assume that f is not constant,
and let a ∈ C. If f takes the value a at two distinct points in U , then we can
find a compact subset K of U containing these two points and such that f does
not take the value a on ∂K (for example, take the union of two sufficiently small
disks centered at the two points in question). But this would imply, by Thm. 10.7
(applied to f − a), that fn must also take the value a at least twice when n À 0,
contradicting the assumptions. ¤

We will come back to general results on sequences or families of holomorphic
functions soon. However, we want to look at some more specific case first.

11. The Mittag-Leffler Theorem

If f is holomorphic on C with the exception of isolated singularities, then at each
singularity a, f has a principal part

∑∞
n=1 cn(z−a)−n. The question we will study

in this section is, to what extent can this be inverted: given principal parts, can
we find a suitable function f , and how much freedom do we have for such an f?

The last question is easy to answer.
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11.1. Proposition. Let A ⊂ C be discrete and closed, and let f, g : C \A → C be
holomorphic. Then f and g have the same principal parts at every a ∈ A if and
only if f − g is entire (i.e., all the singularities are removable).

Proof. This is clear, since an isolated singularity is removable if and only if the
prinicpal part there is zero. ¤

So the interesting part is the existence question.

11.2. Theorem (Mittag-Leffler). Let A ⊂ C be discrete and closed, and for
each a ∈ A, let pa(z) =

∑∞
n=1 ca,n(z − a)−n be a Laurent series converging on

C \ {a}. Then there is a holomorphic function f : C \ A → C such that for all
a ∈ A, the principal part of f at a is pa.

Proof. We can assume that A is infinite; otherwise we can just take f =
∑

a∈A pa.
Since A is discrete, it is countable, and we can write A = {a1, a2, . . . }; then
|an| → ∞ as n → ∞. We can assume that 0 /∈ A (otherwise we just add p0 to
our result). Then for each n, there is a Taylor polynomial Pan of pan such that
|pan − Pan|B|an|/2(0) ≤ 2−n. (Note that the Taylor series converges uniformly on
closed disks contained in B|an|(0).) We claim that the series

∑∞
n=1(pan − Pan)

converges normally on C \ A. To see this, let K ⊂ C \ A be compact. Then K is
bounded, and since |an| → ∞, there is some N such that |an| > 2|z| for all z ∈ K
and all n ≥ N . By construction, |pan − Pan|K ≤ 2−n for all such n, hence

∞∑
n=1

|pan − Pan|K ≤
N−1∑
n=1

|pan − Pan|K +
∞∑

n=N

2−n < ∞ .

So f =
∑∞

n=1(pan − Pan) is holomorphic on C \A. It remains to check that f has
the correct principal parts. To this end, consider ak ∈ A, and let

fk =
∑
n 6=k

(pan − Pan) = f − (pak
− Pak

) .

Then f = (fk − Pak
) + pak

, where the first term is holomorphic near ak, which
implies that pak

is the principal part of f at ak. ¤

11.3. Remark. The Mittag-Leffler Theorem holds more generally for any domain
U ⊂ C: if A ⊂ U is discrete and closed in U , and for each a ∈ A, pa is a principal
part at a as above, then there is f : U \ A → C holomorphic such that f has the
prescribed principal parts.

For the proof, one uses a similar idea. We can assume that A is bounded (otherwise
we map everything by z 7→ 1

z−b
where b ∈ U \ A; of course, we also have to map

the principal parts accordingly. Since A is discrete and closed in U , b is not
an accumulation point of A, hence the image of A is bounded). Writing again
A = {a1, a2, . . . }, there is a sequence (bn) of points in ∂U such that |bn − an| → 0
as n → ∞. (Otherwise A would be contained in a compact set contained in U ,
hence A would be finite.) The role of the polynomials in the proof above is
now taken by finite Laurent series centered at the bn: By Thm. 7.11, there is a
Laurent series centered at bn that represents pan on C \B|bn−an|(bn) and converges
uniformly on Bn = C \ B2|bn−an|(bn). Let Pan be a partial sum of this series such
that |Pan − pan|Bn ≤ 2−n. Then

f(z) =
∞∑

n=1

(pan − Pan)
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converges normally on U \A (note that every compact subset K ⊂ U is contained
in all Bn for n À 0, since K has positive distance from ∂U) and has the desired
principal parts.

11.4. Remark. In the proof, we used a bound |pan − Pan|Kn ≤ 2−n. However, all
that matters is that for all compact subsets K,

∞∑
n=1

|pan − Pan|K < ∞ .

For example, this is the case when |pan − Pan|K = O(n−2).

11.5. Example. In the homework, you prove that

f(z) =
1

z
+

∑
n∈Z\{0}

(
1

z − n
+

1

n

)
converges normally on C \ Z. This is an example of the construction used in the
proof (with a bound O(n−2)); it gives a meromorphic function on C with simple
poles of residue 1 at the integers. Since π cot πz has the same poles and residues
(as we have seen earlier, compare 9.4), we know that f(z) − π cot πz is an entire
function. To show that actually f(z) = π cot πz, we observe that the difference
is bounded (see homework), hence constant by Liouville’s Theorem 5.19. Finally,
the constant is zero since both functions are odd.

This gives the following (the second series is obtained by grouping the terms for
n and −n).

Theorem.

π cot πz =
1

z
+

∑
n∈Z\{0}

(
1

z − n
+

1

n

)
=

1

z
+

∞∑
n=1

2z

z2 − n2
,

and the series converge normally on C \ Z.
Expanding the terms in the sum as Taylor series at the origin, we can deduce
again the formulas for

∑∞
n=1 n−2k.

We can differentiate the series term by term and obtain:

Corollary.
π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2
.

In fact, it is easier to show this relation first (the series obviously converges nor-
mally on C \ Z, both sides have the same principal parts, are 1-periodic and tend
to zero as | Im(z)| → ∞) and derive the expression for the cotangent from it:
the difference between f(z) and π cot πz must be a constant, hence zero (again
because the functions are odd).

12. Infinite Products of Functions

In this section, we will develop a theory of infinte products similar to that of infinite
series. There is a small catch, however, related to the special role of zero. Since
we don’t want convergence of a product to depend on finitely many factors, we
have to disregard finitely many zero factors. This leads to the following definition.
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12.1. Definition. An infinite product
∏∞

n=1 an of complex numbers converges if
there is some N ≥ 1 such that the limit of partial products

a = lim
n→∞

n∏
k=N

ak

exists and is non-zero. In this case, the value of the product is

∞∏
n=1

an =

(
N−1∏
n=1

an

)
· a .

It is zero if and only if some of the factors vanish.

12.2. Remarks.

(1) If
∏∞

n=1 an converges, then limn→∞ an = 1.
(2) Assume that |an − 1| < 1 for n ≥ N . Then

∞∏
n=1

an converges ⇐⇒
∞∑

n=N

log an converges ,

where log denotes the principal branch of the logarithm defined on B1(1)
by the usual power series

log(1 + z) = z − z2

2
+

z3

3
− . . . .

Working with a series is particularly simple when the series converges absolutely.
we can use the second part of the preceding remark to carry over this notion to
infinite products.

12.3. Definition. The infinite product
∏∞

n=1 an converges absolutely if it con-
verges and

∑∞
n=N | log an| < ∞, where N is such that |an − 1| < 1 for n ≥ N .

There is a fairly simple criterion for absolute convergence.

12.4. Lemma. The product
∏∞

n=1(1 + an) converges absolutely if and only if the
series

∑∞
n=1 an converges absolutely.

Proof. Convergence on either side implies an → 0, so without loss of generality we
can assume that |an| is so small that 1

2
|an| < | log(1 + an)| < 3

2
|an|. (Note that

(log(1 + z))/z → 1 as z → 0.) This shows that
∞∑

n=1

|an| < ∞ ⇐⇒
∞∑

n=1

| log(1 + an)| < ∞ ,

and the latter means that the product converges absolutely. ¤

Now we consider infinte products of holomorphic functions.
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12.5. Definition. Let U ⊂ C be a domain, and let (fn) be a sequence of holo-
morphic functions on U .

(1) The product
∏∞

n=1(1 + fn(z)) is compactly convergent if for every compact
subset K ⊂ U , there is N ≥ 1 (depending on K) such that the sequence of
partial products

∏n
k=N(1 + fk(z)) converges uniformly on K to a function

without zeros in K.
(2) The product

∏∞
n=1(1 + fn(z)) is normally convergent if

∑∞
n=1 fn(z) con-

verges normally.

12.6. Remark. In a normally convergent product of holomorphic functions the
terms can be arbitrarily re-ordered without affecting normal convergence or chang-
ing the limit function. Also, all products formed with a subset of the factors are
again normally convergent.

12.7. Lemma. Let fn be holomorphic functions on the domain U ⊂ C and assume
that f(z) =

∏∞
n=1(1 + fn(z)) converges compactly/normally, such that f does not

vanish on U . Then
f ′(z)

f(z)
=

∞∑
n=1

f ′n(z)

1 + fn(z)
,

and the series converges compactly/normally.

Proof. Write f(z) =
∏N−1

n=1 (1 + fn(z)) · FN(z); then FN(z) converges compactly
to 1 as N →∞. We have

f ′(z)

f(z)
=

N−1∑
n=1

f ′n(z)

1 + fn(z)
+

F ′
N(z)

FN(z)
,

and F ′
N/FN converges compactly to zero. This proves the “compact convergence”

version of the statement. For the “normal convergence” version, we note that 1+fn

is uniformly close to 1 for n À 0 and that
∑

n f ′n converges normally, compare
Remark 10.4. ¤

12.8. Example. The product

f(z) = πz
∞∏

n=1

(
1− z2

n2

)
converges normally on C (for |z| ≤ R bounded,

∑
|z2/n2| ≤ π2R2/6). We compute

the logarithmic derivative:

f ′(z)

f(z)
=

1

z
+

∞∑
n=1

−2z/n2

1− z2/n2
=

1

z
+

∞∑
n=1

2z

z2 − n2
= π cot πz

(see Example 11.5). The latter is the logarithmic derivative of sin πz, hence f(z) =
λ sin πz with some constant λ ∈ C×. Comparison of f ′(0) = π with the derivative
of sin πz at zero gives λ = 1:

sin πz = πz

∞∏
n=1

(
1− z2

n2

)
.

The product in the preceding example was constructed in such a way as to have
simple zeros at the integers. This can be generalized: given any set of prescribed
zeros (without accumulation points) and mutliplicities, there is a holomorphic
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function that vanishes precisely at the given points with the given multiplicities.
These functions are constructed as Weierstrass Products.

12.9. Theorem (Weierstrass). Let A ⊂ C be closed and discrete (i.e., without
accumulation point), and let n : A → Z>0 be some function. Then there exists
an entire function with zeros exactly at all a ∈ A of multiplicity n(a). Every such
function has the form

f(z) = eg(z)zn0

∏
a∈A\{0}

((
1− z

a

)
e

z
a
+ 1

2(
z
a)

2
+···+ 1

m(a)(
z
a)

m(a)
)n(a)

,

where g is an entire function, n0 = 0 if 0 /∈ A and n0 = n(0) if 0 ∈ A, and
m : A → Z≥0 is a suitable function such that the product converges normally.

Proof. For existence, we show that we can define a function m as above such that
the product converges normally; it is then clear that f has the required zeros.

We can assume that A is infinite (otrherwise the claim is trivial, with m = 0), then
A is countable: A = {a1, a2, . . . }, and we have |an| → ∞. We can also assume
that 0 /∈ A. Let a ∈ A, then for |z| ≤ |a|/2,

fa,m(z) =
(
1− z

a

)
exp

(
z

a
+

1

2

(z

a

)2

+ · · ·+ 1

m

(z

a

)m
)

converges uniformly to 1 as m →∞. We can therefore take m(an) such that
∞∑

n=1

∣∣∣fn(a)
an,m(an) − 1

∣∣∣
B0(|an|/2)

< ∞ .

With such a choice of m : A → Z≥0, the product converges normally.

For the second statement, let f be a function with the required properties, and let
d̃ be f divided by the product as constructed above. Then f̃ extends to an entire
function without zeros, hence f̃(z) = eg(z) for some entire function g (compare
homework). ¤

12.10. Remarks.

(1) An alternative proof is possible using the Mittag-Leffler Theorem. There is
a meromorphic function with simple poles at all a ∈ A of residue n(a). This
function has a logarithmic antiderivative (since the residues are integers),
which is an entire function (since the residues are nonnegative) satisfy-
ing the requirements. This proof extends to arbitrary simply connected
domains.

(2) In fact, Weierstrass’ Theorem holds for arbitrary domains in C.

12.11. Corollary. Every meromorphic function on C (or on a domain U , given
the general version of the theorem) is a quotient of two holomorphic functions.

Proof. Let f be meromorphic. By the theorem, we can construct a holomorphic
function g with zeros at the poles of f of order the pole order of f . Then fg
extends to a holomorphic function h, so f = h/g is a quotient of holomorphic
functions. ¤

In algebraic terms, this says the field of meromorphic funtions on C (or U) is the
field of fractions of the ring of holomorphic functions on C (U).



42

12.12. Corollary. Given a closed and discrete set A ⊂ C and a map v : A → C,
there is an entire function f such that f(a) = v(a) for all a ∈ A.

Proof. By Thm. 12.9, there is an entire function h having simple zeros in A. By
Thm. 11.2, there is a meromorphic function g on C with simple poles at all a ∈ A
and residues resa g = v(a)/h′(a). Then f = gh satisfies the requirements. ¤

This “Interpolation Theorem” can be extended in an obvious way to obtain a
function whose Taylor series at a ∈ A matches given polynomials up to given
(finite) order.

13. Montel’s Theorem

We come back to the study of sequences or families of functions.

The following definition and result are valid in a more general context.

13.1. Definition. Let X ⊂ Rr, Y ⊂ Rs be open, and let F be a family of functions
X → Y .

(1) F is equicontinuous (on X) if

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ X ∀f ∈ F : |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε .

(2) F is locally equicontinuous (on X) if every x ∈ X has a neighborhood U
in X such that F is equicontinuous on U .

(3) F is normal if every sequence in F has a compactly convergent subse-
quence.

(4) F is locally bounded (on X) if for every x ∈ X there is a neighborhood U
of x in X and B ≥ 0 such that |f |U ≤ B for all f ∈ F . Equivalently,

∀K ⊂ X compact ∃B ≥ 0 ∀f ∈ F : |f |K ≤ B .

(5) F is point-wise bounded if

∀x ∈ X ∃B ≥ 0 ∀f ∈ F : |f(x)| ≤ B .

13.2. Theorem (Arzelà-Ascoli). If F is a locally equicontinuous and point-wise
bounded family of functions Rr ⊃ X → Y ⊂ Rs, then F is normal.

Proof. Let (fn) be a sequence in F . We have to show that it has a subsequence that
converges compactly. In a first step, we obtain a subsequence that converges point-
wise on a dense subset of X. We choose a subset A ⊂ X that is countable and dense
(for example, all points in X with rational coordinates); let A = {a1, a2, . . . }. Now
we recursively construct subsequences (fj,n) of (fn) such that f0,n = fn, (fj+1,n) is
a subsequence of (fj,n), and fj,n(ak) converges (as n → ∞) for all k ≤ j. This is
possible since the sequence (fj,n(aj+1)) is bounded by assumption, hence we can
select a convergent subsequence. The “diagonal sequence” (gn) = (fn,n) then will
be a subsequence of (fn) that converges point-wise on A.

Now we show that (gn) converges compactly. Let K ⊂ X be compact and ε > 0.
We need to show that there is N such that |gn − gm|K < ε for m, n ≥ N . We can
assume that K = Br(x) for some x ∈ X, r > 0. Since F is locally equicontinuous,
there is δ > 0 such that

∀x1, x2 ∈ K ∀n : |x1 − x2| < δ =⇒ |gn(x1)− gn(x2)| <
ε

3
.
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By our choice of K, A∩K is dense in K (for this, we need that K is the topological
closure of its interior), so we can cover K by balls Bδ(a) with a ∈ S ⊂ A∩K and
#S < ∞. Since (gn) converges point-wise on S and S is finite, there is N such
that

∀a ∈ S ∀m, n ≥ N : |gn(a)− gm(a)| < ε

3
.

Now let x ∈ K, m, n ≥ N . There is a ∈ S such that |x− a| < δ. Then

|gn(x)−gm(x)| ≤ |gn(x)−gn(a)|+|gn(a)−gm(a)|+|gm(a)−gm(x)| < ε

3
+

ε

3
+

ε

3
= ε ,

and therefore |gn − gm|K < ε as well. ¤

Now we apply this to holomorphic functions. As usual, we can get by with far
weaker assumptions.

13.3. Theorem (Montel). Let U ⊂ C be a domain. If F is a locally bounded
family of holomorphic functions on U , then F is normal.

Proof. We want to apply the Arzelà-Ascoli Theorem, so we have to show that
F is locally equicontinuous (point-wise boundedness is clear, since F is locally
bounded). For this, we use again the Cauchy Integral Formula in a by now familiar
way. Let a ∈ U and pick r > 0 such that B2r(a) ⊂ U . For f ∈ F and w, z ∈ Br(a),
we have

f(z)−f(w) =
1

2πi

∫
∂B2r(a)

f(ζ)

(
1

ζ − z
− 1

ζ − w

)
dζ =

z − w

2πi

∫
∂B2r(a)

f(ζ)

(ζ − z)(ζ − w)
dζ .

Since |ζ − z|, |ζ − w| > r for z, w, ζ as above, we find that

|f(z)− f(w)| ≤ |z − w|
2π

4πr
B

r2
=

2B

r
|z − w| ,

where B is a bound for |f |B2r(a) for f ∈ F (here we use the assumption that
F is locally bounded). We get equicontinuity on Br(a) if we take δ = εr/(2B).
The Arzelà-Ascoli Theorem 13.2, applied to F (where X = U ⊂ C ∼= R2 and
Y = C ∼= R2), then proves the claim. ¤

If (an) is a bounded sequence in Rr and every convergent subsequence of (an) has
the same limit a, then (an) itself converges to a. We have a similar statement for
functions.

13.4. Corollary. Let (fn) be a locally bounded sequence of holomorphic functions
on a domain U ⊂ C. If every compactly convergent subsequence of (fn) has the
same limit function f , then (fn) itself converges compactly to f .

Proof. Assume that (fn) does not converge compactly to f . Then there is a com-
pact subset K ⊂ U and ε > 0 such that for a subsequence (fnj

) of (fn), we have
|fnj

− f |K > ε for all j. By Montel’s Theorem 13.3, (fnj
) has a subsequence that

converges compactly, and by assumption, the limit function must be f . This con-
tradicts the conclusion we drew from the assumption that (fn) does not converge
compactly to f , hence this assumption must be false. ¤

Combining this with the uniqueness theorem 6.9, we obtain the following result.
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13.5. Theorem (Vitali). Let (fn) be a locally bounded sequence of holomorphic
functions on a domain U ⊂ C. Assume that the set

A = {z ∈ U : lim
n→∞

fn(z) exists}

has an accumulation point in U . Then (fn) converges compactly on U . The same
conclusion holds when there is a point a ∈ U such that f

(k)
n (a) converges (as

n →∞) for all k ≥ 0.

Proof. Let (gn) and (hn) be two subsequences of (fn) that converge compactly,
with limit functions g and h, respectively. By assumption, g and h agree on A.
Theorem 6.9 then implies that g = h on U . So all compactly convergent subse-
quences of (fn) have the same limit function, hence by the preceding result, (fn)
converges compactly.

For the second statement, the proof is similar, using part (ii) of Theorem 6.9. ¤

13.6. Example. We show how to use Vitali’s Theorem in order to show conver-
gence of a sequence of functions from very limited knowledge. Let

fn(z) =
(
1 +

z

n

)n

.

We know that

lim
n→∞

(
1 +

1

n

)n

= lim
n→∞

exp

(
n log

(
1 +

1

n

))
= exp

(
lim

n→∞
n log

(
1 +

1

n

))
= e .

This implies that

lim
n→∞

fn

(
1

k

)
= e1/k

converges for all k ≥ 1. We also know that

|fn(z)| ≤
(

1 +
|z|
n

)n

= exp

(
n log

(
1 +

|z|
n

))
≤ exp

(
n
|z|
n

)
= e|z| ,

so (fn) is locally bounded on C. Theorem 13.5 now implies (since {1/k : k ≥ 1}
accumulates in zero) that (fn) converges compactly on C, and the limit function
must be ez, since it agrees with it on {1/k : k ≥ 1}.

You may remember from an early homework problem that if U ⊂ C is a domain,
γ : [a, b] → C is a continuously differentiable path, and f : im(γ) × U → C is
continuous, and f(γ(t), z) is holomorphic in U for every fixed t ∈ [a, b], then

F (z) =

∫
γ

f(ζ, z) dζ

is holomorphic in U . This can be proved using Morera’s Theorem, see Remark 5.6.
We will now prove this again, and more, as an application of Vitali’s Theorem.

13.7. Theorem. Let U ⊂ C be a domain, and let γ : [0, 1] → C be a continuously
differentiable path. Assume that f : im(γ) × U → C is locally bounded (e.g.,
continuous), that for every t ∈ [0, 1], z 7→ f(γ(t), z) is holomorphic in U , and that
for every z ∈ U , the Riemann integral

∫
γ
f(ζ, z) dζ exists. Then the function

F (z) =

∫
γ

f(ζ, z) dζ
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is holomorphic in U . If in addition the Riemann integrals
∫

γ
∂f
∂z

(ζ, z) dζ exist for
every z ∈ U , then

F ′(z) =

∫
γ

∂f

∂z
(ζ, z) dζ .

Proof. The desired conclusion is local on U , so we can assume that f is bounded,
say by B. Let g(t, z) = f(γ(t), z)γ′(t), then

∫
γ
f(ζ, z) dζ =

∫ 1

0
g(t, z) dt. By

assumption, for every z ∈ U , the sequence of Riemann sums

Sn(z) =
1

n

n∑
k=1

g
(k

n
, z
)

converges to F (z). Each function Sn is holomorphic, and |Sn|U ≤ B |γ′|[0,1]. By
Vitali’s Theorem 13.5, (Sn) converges compactly to F , hence F is holomorphic.

Under the additional hypothesis, the sequence

S ′n(z) =
1

n

n∑
k=1

∂g

∂z

(k

n
, z
)

converges point-wise to
∫

γ
∂f
∂z

(ζ, z) dζ, but also compactly to F ′(z). ¤

13.8. Example. Recall that for t > 0, we can define an entire function tz = ez log t.
Then by Theorem 13.7, we see immediately that for 0 < a < b, the function

fa,b(z) =

b∫
a

tz−1e−t dt

is holomorphic on C. It is not hard to see that for 0 < x real, the integral
∞∫

0

tx−1e−t dt

converges. This implies that the family {fa,b : 0 < a < b} is locally bounded on
the right half-plane R = {z ∈ C : Re(z) > 0}: if 0 < c ≤ Re(z) ≤ d, then

|fa,b(z)| ≤
1∫

0

tc−1e−t dt +

∞∫
1

td−1e−t dt .

Vitali’s Theorem 13.5 now implies that (letting a → 0 and b →∞)

Γ(z) =

∞∫
0

tz−1e−t dt

exists on R and is holomorphic there. In addition, integration by parts gives

zΓ(z) =

∞∫
0

ztz−1e−t dt =

∞∫
0

tze−t dt = Γ(z + 1) .

This functional equation allows us to extend Γ to a function that is holomorphic
on C \ Z≤0.
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14. The Riemann Mapping Theorem

In this section, we prove one of the very famous theorems in complex analysis.

14.1. Theorem (Riemann Mapping Theorem). Let U ( C be a simply con-
nected domain. Then there is a biholomorphic map f : U → B1(0).

Note that Liouville’s Theorem 5.19 implies that the conclusion cannot hold for
U = C.

This is an extremely strong result: we have learnt in this course that holomorphic
functions are very ‘rigid’ — they are determined by a small amount of information.
Yet they can be used to transform any simply connected domain to a simple open
disk. Note that simply connected domains can be extremely complicated, like for
example the following (really, the limiting case of the indicated recursive process):

It is hard to imagine that there can be a conformal (i.e., angle-preserving) mapping
from this to the unit disk.

14.2. Corollary. Every simply connected domain is homeomorphic to the open
unit disk.

Proof. Let U ⊂ C be a domain. When U 6= C, then this follows from the Riemann
Mapping Theorem 14.1, since a biholomorphic map is a homeomorphism. When
U = C, this can be checked directly, e.g., using the map z 7→ tanh(|z|) z/|z|. ¤

We will prove the theorem in several steps. First note that an injective holomorphic
map automatically is biholomorphic onto its image: we have seen in Cor. 6.7 that
an injective holomorphic function has non-vanishing derivative, hence the inverse
function is again holomorphic. So it suffices to show that there is an injective
holomorphic map from U onto B1(0). In a first step, we show that there are
injective holomorphic maps from U into B1(0).
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14.3. Lemma. Let U ( C be a simply connected domain. Then there is an injec-
tive holomorphic function f : U → B1(0).

Proof. First, we want to map U biholomorphically to a domain whose complement
contains an open ball. This need not be the case for U itself; an example for this
is the slit plane C \ R≤0.
Let a ∈ C \ U . The function z − a does not vanish on U . Since U is simply
connected, there is a “square root” s of this fuction on U , i.e., a holomorphic
function s : U → C such that s(z)2 = z − a. This function s is injective: s(z) =
s(w) implies z − a = s(z)2 = s(w)2 = w − a and hence z = w. Let U1 = s(U) be
the image of U under s. Since non-constant holomorphic maps are open, there is
b ∈ U1 and r > 0 such that Br(b) ⊂ U1. I claim that Br(−b) ⊂ C \ U1. Assume
that there is w ∈ U1∩Br(−b). Then w = s(z) for some z ∈ U ; also −w = s(z′) for
some z′ ∈ U (since −w ∈ Br(b) ⊂ U1). But this implies z = s(z)2 + a = w2 + a =
s(z′)2 + a = z′, so w = s(z) = s(z′) = −w, which is a contradiction, since 0 /∈ U1.
Now we let

f(z) =
r

s(z) + b
;

then f is injective and holomorphic on U , and f(U) ⊂ B1(0). ¤

We refine the previous statement a little bit.

14.4. Lemma. Let U ( C be a simply connected domain, and let a ∈ U . Then
there is an injective holomorphic function f : U → B1(0) such that f(a) = 0.

Proof. By the previous lemma, there is f0 : U → B1(0) holomorphic and injective.
Then

f(z) =
1

2

(
f0(z)− f0(a)

)
does what we want. ¤

Let now
F = {f : U → B1(0) : f holomorphic and injective, f(a) = 0} .

We have seen that F is non-empty. The biholomorphic map U → B1(0) we want
to find will be an element of F . We detect it by some extremal property.
We pick some point b ∈ U \ {a}. Let

ρ = sup{|f(b)| : f ∈ F} .

The idea is that we want the image of U to fill out the unit disk, so we want to
move any given point as far away from the center as possible. Note that ρ > 0,
since F is non-empty, and f(b) 6= 0 for every f ∈ F .

14.5. Claim. There is some f ∈ F such that |f(b)| = ρ.

Proof. By definition of ρ, there is a sequence (fn) in F such that |fn(b)| → ρ as
n → ∞. Also, F is bounded, so by Montel’s Theorem 13.3, there is a compactly
convergent subsequence, and without loss of generality, we can assume that (fn)
itself converges compactly. Let f = limn→∞ fn be the limit function. Then clearly
|f(b)| = ρ. It remains to show that f ∈ F .
It is clear that f is not constant (f(a) = 0, |f(b)| = ρ > 0). Hence by Cor. 10.8, f
is injective as the limit of a sequence of injective holomorphic functions. Finally,
f(U) is open and contained in B1(0), so f(U) ⊂ B1(0). ¤
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Now we show that we have found the function we want.

14.6. Lemma. Let w ∈ B1(0), and define

φw(z) =
w − z

1− w̄z
.

Then φw is an involutory automorphism of B1(0) that interchanges 0 and w.

Proof. For z ∈ B1(0), we have (1−|w|2)(1−|z|2) > 0, so |w|2 + |z|2 < 1+ |w|2|z|2.
Therefore

|w − z|2 = |w|2 − w̄z − wz̄ + |z|2 < 1− w̄z − wz̄ + |w|2|z|2 = |1− w̄z|2 ,

hence |φw(z)| < 1. It is an easy calculation to show that φw(φw(z)) = z; this
also implies that φw is an automorphism. Finally, it is clear that φw(0) = w and
φw(w) = 0. ¤

14.7. Claim. The function f above satisfies f(U) = B1(0).

Proof. Assume the claim is false. Then there is w ∈ B1(0) \ f(U). We construct
another function g ∈ F such that |g(b)| > |f(b)|, which contradicts the choice
of f .

First note that φw ◦ f is an injective holomorphic function U → B1(0) whose
image does not contain zero. Since U ′ = (φw ◦ f)(U) is simply connected, there is
then a holomorphic square root function s on U ′, which is injective. So s ◦ φw ◦ f
is an injective holomorphic function that maps U into B1(0) again. We have
(s◦φw ◦f)(a) = s(w), hence if we define g = φs(w) ◦s◦φw ◦f , then g is an injective
holomorphic function that maps U into B1(0) and such that g(a) = 0, so g ∈ F .

We still have to show that |g(b)| > ρ = |f(b)|. For this, define

h(z) = φw

(
φs(w)(z)2

)
;

then h is a holomorphic map B1(0) → B1(0), which is not an automorphism
(because of the squaring in the middle). Hence by the Schwarz Lemma Cor. 6.14,
|h(z)| < |z| for all z ∈ B1(0) \ {0}. In particular,

|g(b)| >
∣∣h(g(b)

)∣∣ = |f(b)|

(since h ◦ g = f). This is the desired contradiction. ¤

14.8. Examples. A “Riemann map” for the upper half plane {z ∈ C : Im(z) > 0}
is given by

f(z) =
z − i

z + i
.

For the slit plane U = C \R≤0, we use the idea of the first lemma above: there is
a square root function s on U ; we can pick the one with s(1) = 1. Then s(U) is
the right half plane, so after a rotation, we are back to the upper half plane. So a
suitable function is

f(z) =
is(z)− i

is(z) + i
=

s(z)− 1

s(z) + 1
.
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15. The Riemann Sphere

It is often useful to consider the extended complex plane that is obtained by adding
a “point at infinity” to the standard complex plane. This extended complex plane
Ĉ = C∪{∞} can then serve both as the domain and as the target of holomorphic
maps.

The idea is to consider the extended complex plane near infinity to look like the
normal complex plane near zero, under the identification z 7→ 1/z. For example,
neighborhoods of the origin in C contain an open disk Bε(0), so neighborhoods
of ∞ in Ĉ should contain ∞ together with the exterior of a closed disk BR(0).
This defines the topology of Ĉ (together with the obviously desirable requirement
that open subsets of C continue to be open in Ĉ).

In order to define when maps from or to Ĉ are holomorphic, we again use 1/z to
transform the question back to the origin.

15.1. Definition. Let U ⊂ C be open and f : U → Ĉ a continuous map. Let
I = f−1(∞) and Z = f−1(0). f is holomorphic, if f |U\I is holomorphic, and the
map z 7→ 1/f(z) for z ∈ U \ (I ∪ Z) extends to a holomorphic map g on U \ Z
such that g(z) = 0 for z ∈ I.

If U ⊂ Ĉ is open, then f : U → Ĉ is holomorphic if f |U\{∞} is holomorphic, and
z 7→ f(1/z) extends to a holomorphic map on {z ∈ C× : 1/z ∈ U} ∪ {0}.

A nice feature of this is that we can now consider meromorphic functions as holo-
morphic functions into Ĉ.

15.2. Proposition. Let U ⊂ C be a domain. Then there is a natural bijection
between meromorphic functions on U and holomorphic functions U → Ĉ with the
exception of the constant map z 7→ ∞.

Proof. Given f : U → C meromorphic, we define f̂ : U → Ĉ by f̂(z) = f(z) if
z is not a pole of f and f̂(z) = ∞ if z is a pole of f . We have to show that f̂
is holomorphic. This is clear in a neighborhood of any point a ∈ U that is not a
pole of f . If a ∈ U is a pole of f , f does not vanish on some neighborhood of a,
so z 7→ 1/f(z) is defined and holomorphic on some punctured disk Bε(a). Since
a is a pole of f , this function now has a removable singularity at a (which can be
filled with the value 0), so 1/f extends to a holomorphic function on Bε(a).

Conversely, assume that h : U → Ĉ is holomorphic and not constant ∞. Then
h−1(∞) is discrete and closed in U . Let f = h|U\h−1(∞) : U → C. Then f is clearly
holomorphic. If a ∈ U such that h(a) = ∞, we have that |f(z)| → ∞ as z → a

(since h(z) → ∞ in the topology of Ĉ), so a must be a pole of f . We see that f
has only isolated singularities in U that are poles, so f is meromorphic on U .

Finally, it is clear that these two constructions are inverses of each other. ¤

15.3. Proposition. Let h : Ĉ → Ĉ be holomorphic. Then h = ∞ (constant
function), or else h = f̂ with a rational function f .

Proof. To see this, note that by the preceding proposition, h = f̂ for a mero-
morphic function f on C. But we can also consider f(1/z), which will extend to
a meromorphic function on C in the same way. This shows that the poles of f
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cannot accumulate at infinity, so f has only finitely many poles. Hence we can
write f as the sum of a rational function that tends to zero as z tends to infinity
(sum of principal parts) and an entire function g. Since f(1/z) has at worst a
pole at zero, we see that f(z) and therefore also g(z) is bounded by a polynomial
in z as z tends to ∞. This implies that g is a polynomial, hence f is a rational
function. ¤

15.4. Corollary. The automorphisms of Ĉ (i.e., the biholomorphic maps Ĉ → Ĉ)
are exactly the fractional linear transformations

z 7−→ az + b

cz + d
with ad 6= bc.

These maps are also called Möbius transformations.

Proof. Let h : Ĉ → Ĉ be holomorphic and bijective. By Prop. 15.3, we have
that h = f̂ for some rational function f . Write f(z) = p(z)/q(z) with coprime
polynomials p and q. We want to show that p and q have degree at most 1, so
assume that max{deg p, deg q} ≥ 2. Given w ∈ C, we have that h(z) = w if
wq(z) − p(z) = 0. For all but at most one choice of w, this is a polynomial in z
of degree at least 2, so it will have at least two roots, counting multiplicities.
In any case, there will be a punctured neighborhood of w such that every w′ in
that punctured neighborhood will have at least two preimages under h. (This
follows from our study of the local behavior of holomorphic functions, see for
example Cor. 6.6.) But then h is not injective, a contradiction. So h must have
the given form; the condition ad 6= bc is then equivalent to saying that h is not
constant. Conversely, it is easy to see that a fractional linear transformation is
biholomorphic; indeed, the inverse of

z 7−→ az + b

cz + d
is z 7−→ dz − b

−cz + a
.

¤

15.5. Remark. One can think of Möbius transformations as being given by ma-
trices: (

a b
c d

)
7−→

(
z 7→ az + b

cz + d

)
.

This induces a group homomorphism(!) GL2(C) → Aut(Ĉ), which is surjective by
the corollary above. Its kernel consists of the scalar matrices λI2, so we find that

Aut(Ĉ) ∼= PGL2(C) =
GL2(C)

C× · I2

.

15.6. Corollary. The automorphisms of C are exactly the maps z 7→ az + b with
a 6= 0.

Proof. We first claim that any automorphism of C extends to an automorphism
of Ĉ, which then must fix ∞. The statement then follows from the preceding
corollary.

To prove the claim, let f : C → C be an automorphism. Consider g : z 7→ f(1/z)
for z ∈ B1(0) \ {0}. The image f(B1(0)) is open (since f is not constant), so it
contains a disk Bε(a). Then z 7→ 1/(g(z)− a) is bounded, hence has a removable
singularity at 0. This implies that g extends to a holomorphic map B1(0) → Ĉ;
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therefore f extends to a holomorphic map Ĉ → Ĉ, which must be a bijection,
hence an automorphism. ¤

15.7. Corollary. The automorphisms of the punctured plane C× = C \ {0} are
exactly the maps z 7→ az±1 with a 6= 0.

Proof. In the same way as in the preceding proof, we see that automorphisms
of C× extend to automorphisms of Ĉ, which fix the set {0,∞}. If the set is fixed
point-wise by such an automorphism h, then the map must be of the form z 7→ az
(it is z 7→ az + b and fixes zero); otherwise z 7→ h(1/z) fixes the set point-wise,
and h(z) = a/z. ¤

15.8. Corollary. The set U = Ĉ \ {z1, . . . , zm}, where z1, . . . , zm are distinct and
m ≥ 3, has only finitely many automorphisms.

Proof. It is not hard to see that, given z1, z2, z3 ∈ Ĉ, there is a Möbius transforma-
tion that sends z1 to ∞, z2 to 0, and z3 to 1. Hence we can assume that z1 = ∞,
z2 = 0, z3 = 1. As in the previous proofs, any automorphism of U must be a
Möbius transformation that fixes the set T = {∞, 0, 1, z4, . . . , zm}. Let G be the
automorphism group of U ; then we get a group homomorphism G → Sm, where
Sm is the symmetric group acting on the set T of m elements. The kernel of this
homomorphism consists of the Möbius transformations fixing T point-wise. Now
the only such transformations fixing 0 and ∞ are of the form z 7→ az, and this
fixes 1 only when a = 1. Hence the homomorphism has trivial kernel and so is
injective. It follows that #G ≤ m!. ¤

The extended complex plane Ĉ is also called the Riemann Sphere. The reason
for this is that there is a natural identification of Ĉ and the points on a two-
dimensional sphere, which is given by the stereographic projection.

For this, we identify C with the xy-plane in R3, and we let S2 be the unit sphere
in R3. Denote by N the “north pole” (0, 0, 1) of S2. Then every line through N
that is not parallel to the xy-plane will intersect C in exactly one point, and
will intersect S2 in exactly one other point besides N . In this way, we obtain a
homeomorphism σ between C and S2 \ {N}. The following picture shows this in
a cross-section.

N

S2

C
P

σ(P)

Q

σ(Q)
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Now I claim that this extends to a homeomorphism (still called σ) between Ĉ
and S2 (that sends ∞ to N). To see this, note that standard neighborhoods of ∞
in Ĉ correspond exactly to standard neighborhoods of N in S2 under σ.

In formulas, we have

σ(z) =

(
2 Re z

1 + |z|2
,

2 Im z

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
and σ−1(x1, x2, x3) =

x1 + ix2

1− x3

.

If we denote by d(z, z′), for z, z′ ∈ Ĉ, the distance between σ(z) and σ(z′) on S2,
we have

d(z, z′) =
2|z − z′|√

(1 + |z|2)(1 + |z′|2)
and d(z,∞) =

2√
1 + |z|2

for z, z′ ∈ C (Exercise). This “spherical metric” on Ĉ is sometimes convenient,
since it treats ∞ like any other point.

The spherical metric allows us, for example, to talk about compact convergence
of holomorphic maps U → Ĉ, which gives a notion of convergence of sequences of
meromorphic functions that is more general than what we have been using so far.
For example, 1/(z − 1/n) converges compactly to 1/z as n → ∞ in this sense as
meromorphic functions on C, whereas this statement would not even have made
much sense before. In this setting, Montel’s Theorem is still valid if the assumption
“locally bounded” is replaced by “locally not dense”:

15.9. Montel’s Theorem for the Riemann Sphere. Let U ⊂ Ĉ be non-empty,
open and connected, and let F be a family of holomorphic maps U → Ĉ. If for
every compact subset K ⊂ U , the image

⋃
f∈F f(K) is not dense in Ĉ, then F

is normal: every sequence in F has a subsequence that converges compactly in Ĉ
with respect to the spherical metric.

Proof. We have to verify that F is locally equicontinuous (as before in the original
proof). So let K ⊂ U be compact. Since

⋃
f∈F f(K) is not dense in Ĉ, there is

some a ∈ Ĉ such that the images f(K) do not meet a neighborhood of a. But
then F ′ = {1/(f − a) : f ∈ F} is bounded on K, so equicontinuous in the usual
sense. Since d(z, z′) ≤ 2|z − z′|, we have equicontinuity also with respect to the
spherical metric. Finally, the map z 7→ a + 1/z is a homeomorphism Ĉ → Ĉ, and
Ĉ is compact. Since with g = 1/(f − a), we have f = a + 1/g, this implies that F
is equicontinuous on K with respect to the spherical metric. ¤

15.10. Example. Consider the map f : Ĉ → Ĉ, z 7→ z2, and let

F = {id, f, f ◦ f, f ◦ f ◦ f, . . . }
be the iterates of f . Then F is normal in B1(0) (the “lower hemisphere”) and also
in Ĉ \ B1(0) (the “upper hemisphere”), but not in any open set meeting the unit
circle S1 (the “equator”). The first statement follows from Montel’s Theorem, since
all iterates of f map the lower (upper) hemisphere into itself, hence the image is
not dense. For the second statement, let U ⊂ Ĉ be open and a ∈ U ∩ S1. Then
some neighborhood V of a is contained in U , and some iterate of f will map V
to an open set containing S1 (V contains some arc of S1, whose length is doubled
when applying f). Iterating f further, the images will exhaust C×, and so no
subsequence can converge uniformly on a set containing V .
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In general, if f is any holomorphic map Ĉ → Ĉ, the set of points of Ĉ, where we
have this “interesting” behavior is called the Julia set of f . More precisely, z ∈ Ĉ
is in the Julia set, if there is no neighborhood of z on which the family of iterates
of f is normal. In the simple example above, where f(z) = z2, the Julia set is the
circle S1. In most other cases, the Julia set is very complicated, however.

16. Picard’s Theorem

Liouville’s Theorem 5.19 tells us that a bounded entire function is constant. From
this, one can fairly easily conclude that the image of a non-constant entire function
must be dense in C (compare the proof of the Casorati-Weierstrass Theorem 7.7).
In this section, we want to show a much stronger result: a non-constant entire
function can leave out at most one value. The exponential function is an example
showing that it is indeed possible that one value is missing.

We begin with a result on the existence of not too small disks in the image of a
holomorphic function.

16.1. Definition. Let U ⊂ C be a domain. We say that a function f : Ū → C
is holomorphic, if f is the restriction of a holomorphic function on an open set
containing Ū .

16.2. Theorem (Bloch). Let f : B1(0) → C be holomorphic. Assume that the
function z 7→ |f ′(z)|(1− |z|2) attains its maximum M > 0 at the point q ∈ B1(0).
Then f(B1(0)) contains the open disk of radius

(
3
2

√
2− 2

)
M with center f(q). In

particular, if f ′(0) = 1, then f(B1(0)) contains an open disk of radius 3
2

√
2−2 > 0.

For the proof, we will use the following lemma.

16.3. Lemma. Let f be a non-constant holomorphic function on Br(0) such that
|f ′|Br(0) ≤ 2|f ′(0)|. Then f(Br(0)) contains the open disk around f(0) of radius
R = (3− 2

√
2)r|f ′(0)|.

Proof. Without loss of generality, f(0) = 0. Let g(z) = f(z) − f ′(0)z. Then we
can write

g(z) =

z∫
0

(
f ′(ζ)− f ′(0)

)
dζ hence |g(z)| ≤

1∫
0

|f ′(tz)− f ′(0)| |z| dt .

For the difference of derivatives, we obtain by the Cauchy Integral Formula

f ′(z)− f ′(0) =
1

2πi

∫
∂Br(0)

f ′(ζ)

(
1

ζ − z
− 1

ζ

)
dζ =

z

2πi

∫
∂Br(0)

f ′(ζ)

ζ(ζ − z)
dζ .

The standard estimate then gives

|f ′(z)− f ′(0)| ≤ |z|
r − |z|

|f ′|Br(0) .
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We apply this to |g(z)|:

|g(z)| ≤
1∫

0

|f ′(tz)− f ′(0)| |z| dt ≤
1∫

0

t|z||f ′|Br(0)

r − t|z|
|z| dt

≤ 1

2

|z|2

r − |z|
|f ′|Br(0) ≤

|z|2

r − |z|
|f ′(0)| .

Let |z| = ρ < r. Then

|f(z)| ≥ |f ′(0)|ρ− |f(z)− f ′(0)z| = |f ′(0)|ρ− |g(z)| ≥
(

ρ− ρ2

r − ρ

)
|f ′(0)| .

The function ρ 7→
(
ρ − ρ2/(r − ρ)

)
|f ′(0)| is maximal at ρ = ρ∗ := (1 −

√
2/2)r,

with value R = (3− 2
√

2)r|f ′(0)|. So all the points on the circle of radius ρ∗ are
mapped outside the open disk of radius R centered at 0 = f(0). This implies that
the image of f must contain BR(0), as we now show.

Let U = f(Bρ∗(0)), and observe that ∂U is compact (it is a closed subset of
the compact set f(Bρ∗(0))). So the distance d = dist(∂U, 0) is realized by some
w ∈ ∂U . We show that d ≥ R. There is a sequence (zn) in Bρ∗(0) such that
f(zn) → w and such that (zn) converges to some z ∈ Bρ∗(0). Since f is continuous,
we have f(z) = w. Since f is open, z cannot be in Bρ∗(0), therefore we must have
|z| = ρ∗. But from the argument above, we know that d = |w| = |f(z)| ≥ R in
this case. ¤

We now proceed with the proof of Bloch’s Theorem.

Proof. The idea is that we expect a large disk around f(0) in the image if |f ′(0)|
is large. We therefore try to modify f without changing its image in such a way
that the derivative at the origin becomes large. A good way to modify f is to
precompose it with an automorphism of the unit disk. Recall that

G := Aut
(
B1(0)

)
=

{
z 7→ ζz − w

w̄ζz − 1
: |ζ| = 1, |w| < 1

}
(this can be proved using the Schwarz Lemma 6.14). All these maps extend to
holomorphic functions on B1/|w|(0), so they are holomorphic on B1(0). We consider

F = {f ◦ j : j ∈ G} .

For j(z) = (ζz − w)/(w̄ζz − 1), we have |j′(0)| = 1− |w|2, so
|(f ◦ j)′(0)| = |f ′(w)|(1− |w|2) .

By assumption, there is a point q ∈ B1(0) where |f ′(z)|(1− |z|2) attains its max-
imum M > 0. Then

F : z 7−→ f

(
z − q

q̄z − 1

)
is in F and satisfies |F ′(0)| = M . I now claim that

|F ′(z)| ≤ M

1− |z|2
for all z ∈ B1(0).

To see this, observe first that F = {F ◦ j : j ∈ G}, since G is a group. Hence, for
w ∈ B1(0), we have

M = max
h∈F

|h′(0)| ≥
∣∣∣∣ d

dz
F

(
z − w

w̄z − 1

) ∣∣∣
z=0

∣∣∣∣ = |F ′(w)|(1− |w|2) .
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In particular, we have |F ′|B√2/2(0) ≤ 2M = 2|F ′(0)|. Lemma 16.3 then implies the
theorem (take r =

√
2/2). ¤

16.4. Remark. The constant 3
2

√
2 − 2 occurring in Bloch’s Theorem 16.2 can

be improved, see for example [R], Chapter 10 in Volume 2. According to this
reference, the optimal value is strictly between 0.5 and 0.544.

By a suitable rescaling, we obtain the following consequence.

16.5. Corollary. Let U ⊂ C be a domain, f : U → C holomorphic. If w ∈ U
such that f ′(w) 6= 0, then f(U) contains open disks of every radius

0 < r <

(
3

2

√
2− 2

)
|f ′(w)| dist(w, ∂U) .

In particular, if f is a non-constant entire function, then f(C) contains arbitrarily
large disks.

Proof. Without loss of generality, w = 0. Let 0 < s < dist(0, ∂U), and consider
z 7→ f(sz) on B1(0). By Bloch’s Theorem 16.2, f(Bs(0)) contains an open disk of
radius (3

2

√
2−2)s|f ′(0)|. (Note that sf ′(0) is the derivative of z 7→ f(sz) at 0.) ¤

We will use the last statement in the corollary to prove Picard’s Little Theorem.
But first, we need a fairly elementary statement on entire functions.

16.6. Lemma. Let U ⊂ C be a simply connected domain, and let f : U → C be
holomorphic such that f(U) does not contain 0 nor 1. Then there is a holomorphic
function g : U → C such that f = − exp

(
πi cosh(2g)

)
.

Proof. Since f has no zero in U and U is simply connected, there is a holomorphic
function h : U → C such that f = exp(2πih). Since f does not take the value 1,
neither h nor h − 1 can have zeros in U . Again since U is simply connected,
there are holomorphic functions u and v on U such that h = u2 and h − 1 = v2.
Then 1 = u2 − v2 = (u − v)(u + v), so u − v never vanishes on U , hence there
is a holomorphic function g on U such that u − v = eg. Then u + v = e−g, so
u = cosh g, and cosh(2g) = 2 cosh2 g − 1 = 2h− 1. It follows that

f = exp(2πih) = exp
(
πi(1 + cosh(2g)

)
= − exp

(
πi cosh(2g)

)
.

¤

16.7. Corollary. Keep the notations of the previous lemma, and let

A =
{
± log

(√
m +

√
m− 1

)
+ 1

2
nπi : m ∈ Z>0, n ∈ Z

}
.

Then g(U) ∩ A = ∅. In particular, g(U) does not contain open disks of radius 1.

Proof. Assume that there is z ∈ U such that g(z) ∈ A. Then there are m, n ∈ Z,
m > 0, such that

eg(z) = in
(√

m±
√

m− 1
)
.

This would imply
e−g(z) = i−n

(√
m∓

√
m− 1

)
,

hence

2 cosh(2g(z)) = (−1)n
((√

m±
√

m− 1
)2

+
(√

m∓
√

m− 1
)2)

= 2(−1)n(2m−1) .
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But then

f(z) = − exp
(
πi cosh(2g)

)
= − exp

(
πi(−1)n(2m− 1)

)
= 1 ,

a contradiction.

To prove the last statement, note that the points in A form the vertices of a mesh
of rectangles in C. The height of the rectangles is π/2 <

√
3, the width is

log
(√

m + 1 +
√

m
)
− log

(√
m +

√
m− 1

)
= log

1 +
√

1 + 1
m

1 +
√

1− 1
m

≤ log(1 +
√

2) < 1

(by the monotonicity of the logarithm). So the largest distance of a point in C
from A is less than

√
(1/2)2 + (

√
3/2)2 = 1, which means that every open disk of

radius 1 in C must meet A. ¤

16.8. Theorem (Picard’s Little Theorem). Let f be an entire function such
that f(C) leaves out two distinct complex numbers a and b. Then f is constant.

Proof. Without loss of generality, a = 0 and b = 1. (Consider z 7→ f(z)−a
b−a

.) Then
by Lemma 16.6, there is an entire function g such that f = − exp

(
πi cosh(2g)

)
. By

the corollary above, g(C) does not contain an open disk of radius 1. By Cor. 16.5,
this implies that g′ = 0 everywhere, so g is constant, hence f is constant as
well. ¤

Before we move on to Picard’s (Great) Theorem, we want to prove a result that
tells us that functions that are holomorphic on B1(0) and leave out the values 0
and 1 can be bounded in a uniform way.

First, we need another consequence of Lemma 16.6

16.9. Corollary. Let U and f be as in Lemma 16.6, with 0 ∈ U , and let r ≥ 1.
Then there is M(r) > 0 such that if r−1 ≤ |f(0)| ≤ r, then we can choose g in
such a way that |g(0)| ≤ M(r).

Proof. Assume that r−1 ≤ |f(0)| ≤ r. In the proof of Lemma 16.6, we can choose
h so that |Re h(0)| ≤ 1

2
(note that h is only determined up to addition of an

integer). We have |f(z)| = e−2π Im h(z), so
∣∣log |f(0)|

∣∣ = 2π| Im h(0)|, and

|h(0)| ≤ |Re h(0)|+ | Im h(0)| ≤ 1
2

+
log r

2π
.

Recall u2 = h, v2 = h− 1. We then have

|u(0)− v(0)| ≤
√
|h(0)|+

√
|h(0)− 1| ≤ P (r)

and

|u(0)− v(0)| = |u(0) + v(0)|−1 ≥
(√

|h(0)|+
√
|h(0)− 1|

)−1

≥ P (r)−1

for a function P (r) > 1. Now recall that eg = u − v, and choose g such that
| Im g(0)| ≤ π. Since |u(z)− v(z)| = eRe g(z), we have

|g(0)| ≤ |Re g(0)|+ | Im g(0)| ≤
∣∣log |u(0)− v(0)|

∣∣+ π ≤ log P (r) + π =: M(r) .

¤
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16.10. Theorem (Schottky). Let 0 < θ < 1 and r > 0. Then there is a number
L(θ, r) > 0 such that for every holomorphic f : B1(0) → C \ {0, 1}, we have

|f(z)| ≤ L(θ, r) if |z| ≤ θ and |f(0)| ≤ r.

Proof. Let f satisfy the assumptions. Then by Lemma 16.6 and its corollaries,
there is a function g, holomorphic on B1(0), such that f = − exp

(
πi cosh(2g)

)
,

and g
(
B1(0)

)
contains no open disks of radius 1.

Let β = 3
2

√
2 − 2 > 0 be the constant from Bloch’s Theorem 16.2. Then by

Cor. 16.5, we must have |g′(w)| < (β(1− |w|))−1. Now let z ∈ Bθ(0). Then

|g(z)| − |g(0)| ≤ |g(z)− g(0)| ≤
1∫

0

|g′(tz)z| dt ≤ θ

β(1− θ)
,

so |g(z)| ≤ |g(0)|+ θ/
(
β(1− θ)

)
.

We can assume that r ≥ 2. If |f(0)| ≥ r−1, then we can assume that |g(0)| ≤ M(r),
where M(r) is as in Cor. 16.9. Then

|f(z)| ≤ exp
(
π cosh |2g(z)|

)
≤ exp

(
π cosh

(
2M(r) + 2

θ

β(1− θ)

))
=: L1(θ, r) .

If |f(0)| ≤ r−1 ≤ 1
2
, then 1

2
≤ |1 − f(0)| ≤ 2, and we can apply the previous

reasoning to 1− f , which gives

|f(z)| ≤ 1 + |1− f(z)| ≤ 1 + L1(θ, 2) .

If we set
L(θ, r) = max{L1(θ, max{2, r}), 1 + L1(θ, 2)} ,

we have a function with the required property. ¤

This result is stronger than Picard’s Little Theorem 16.8: it gives an ‘effective’
version of it.

16.11. Theorem (Landau). There is a function R : C \ {0, 1} → R+ such that
there is no holomorphic function f on BR(a)(0) with f(0) = a, f ′(0) = 1, and such
that f leaves out the values 0 and 1.

Proof. Define R(a) = 3L(1
2
, |a|), where L is as in Schottky’s Theorem 16.10. If

f(z) = a + z + . . . leaves out the values 0 and 1, then the same is true for
g(z) = f(Rz), where R = R(a). By Schottky’s Theorem, we would have

max
{
|g(z)| : |z| = 1

2

}
≤ 1

3
R .

On the other hand, Cuachy’s inequalities for the Taylor coefficients of g (see
Cor. 5.18) imply that R ≤ 2 max

{
|g(z)| : |z| = 1

2

}
, a contradiction. ¤

Schottky’s Theorem leads to considerable improvements in Montel’s and Vitali’s
Theorems.
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16.12. Corollary. Let U ⊂ C be a domain, w ∈ U , r > 0, and F a family of
holomorphic functions U → C \ {0, 1} such that |f(w)| ≤ r for all f ∈ F . Then
there is a neighborhood V ⊂ U of w such that F is bounded on V .

Proof. Let t > 0 such that B2t(w) ⊂ U . By Schottky’s Theorem 16.10, applied
to z 7→ f(w + 2tz), |z| ≤ 1, f ∈ F , we have |f(z)| ≤ L(1

2
, r) for all f ∈ F and

z ∈ V = Bt(w). ¤

16.13. Theorem (Strong Montel). Let U ⊂ C be a domain, and let a, b, c ∈ Ĉ
be three distinct points. Let F be the family of all holomorphic maps from U into
Ĉ \ {a, b, c}. Then F is normal (with respect to the spherical metric).

Proof. We may assume that {a, b, c} = {0, 1,∞}, so F is the family of all holo-
morphic functions on U leaving out the values 0 and 1. Let w ∈ U , and let
F1 = {f ∈ F : |f(w)| ≤ 1}. I claim that F1 is locally bounded on U . To see this,
let

A = {z ∈ U : F1 is bounded on a neighborhood of z} ⊂ U ;

then A is clearly open. By Cor. 16.12, w ∈ A, so A is non-empty. Now let
z ∈ U \ A. By Cor. 16.12 again, the set {f(z) : f ∈ F1} is unbounded, so there
is a sequence (fn) in F1 such that fn(z) → ∞. Consider gn = 1/fn; we have
gn ∈ F and gn(z) → 0, so {gn : n ∈ N} is (again by Cor. 16.12) bounded on a
neighborhood of z. By Montel’s Theorem 13.3, there is a subsequence (gnk

)k that
converges uniformly in a disk V around z to a holomorphic function g. Since none
of the gn has a root, but g(z) = 0, we must have g = 0 by Thm. 10.7. But then
fnk

(ζ) → ∞ as k → ∞ for all points ζ ∈ V , so V ⊂ U \ A, and U \ A is open as
well. Since U is connected, it follows that A = U , and F1 is locally bounded.

Now let (fn) be a sequence in F . If this sequence has a subsequence that is in F1,
then there are locally bounded subsequences, and the claim follows from Montel’s
Theorem 13.3. Otherwise, there are only finitely many terms fn in F1, hence all
but finitely many fn satisfy 1/fn ∈ F1, so there is a subsequence fnk

such that
1/fnk

converges compactly in Ĉ as k →∞. But then fnk
converges compactly as

well, since z 7→ 1/z is an automorphism of Ĉ. ¤

16.14. Theorem (Carathéodory-Landau). Let U ⊂ C be a domain, let a, b, c ∈
Ĉ be distinct, and let fn : U → Ĉ\{a, b, c} be a sequence of holomorphic functions
such that lim fn(z) ∈ Ĉ exists for z ∈ A, where A ⊂ U has at least one accumula-
tion point in U . Then (fn) converges compactly on U (with respect to the spherical
metric).

Proof. This follows from Thm. 16.13 in the same way as Vitali’s Theorem 13.5
followed from Montel’s Theorem 13.3. ¤

Finally, we obtain Picard’s Theorem.

16.15. Theorem (Picard). Let a ∈ C be an essential isolated singularity of f .
Then with at most one exception, f assumes every value in C infinitely often in
any punctured neighborhood of a, on which f is defined.
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Proof. Assume that there are at least two exceptions; as usual, we can assume
that they are 0 and 1. It suffices to show that if f leaves out these two values on
some punctured neighborhood of a, either f or 1/f must be bounded near a. For
this, we can in turn assume that a = 0 and f is defined on B1(0) \ {0}.
The family {fn = z 7→ f(z/n) : n ≥ 1} of holomorphic functions on the punctured
unit disk leaves out the values 0 and 1, so by the proof of the ‘Strong Montel’
Theorem 16.13, there is a subsequence (fnk

) such that either the fnk
or the 1/fnk

are bounded on the circle |z| = 1
2
. We can assume that n1 = 1. In the first case,

let M be a bound for |f( z
nk

)| = |fnk
(z)|, for all |z| = 1

2
, and all k ≥ 1. Then

|f | ≤ M on every circle |z| = 1
2nk

, hence by the Maximum Principle 6.13, |f | ≤ M

on every annulus 1
2nk

≤ |z| ≤ 1
2
, so that f is bounded on a neighborhood of a = 0.

In the other case, we see in the same way that 1/f is bounded on a neighborhood
of a = 0. ¤
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