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1. Monoids and Groups

1.1. Definition. A monoid is a set M , together with a binary operation

· : M ×M −→M

and an element e ∈ M (called the neutral or identity element) satisfiying the
following axioms.

(M1) ∀a, b, c ∈M : (a · b) · c = a · (b · c) (associativity);
(M2) ∀a ∈M : a · e = e · a = a.

M is called commutative if in addition, we have

(M3) ∀a, b ∈M : a · b = b · a.

Usually, the dot is dropped, and we simply write ab for a · b. In the commutative
case, the operation is often denoted by + (and the identity element e by 0).

Note that the identity element e is uniquely determined: if e and e′ both are
identities, then

e = ee′ = e′ .

Therefore, e is usually suppressed in the notation: instead of (M, ·, e), we just
write (M, ·) or even M , when the operation is clear from the context.

1.2. Definition. Let M be a monoid. a ∈M is called left invertible if there exists
b ∈M such that ba = e. a is called right invertible if there exists c ∈M such that
ac = e. a is called invertible if a is both left and right invertible.

Note that if a is invertible, then left and right inverse coincide: if ba = e and
ac = e, then

b = be = b(ac) = (ba)c = ec = c .

We write a−1 for the inverse of a. The above also shows that the inverse is uniquely
determined (every left inverse equals every right inverse if at least one of each kind
exists).

1.3. Definition. A monoid such that each of its elements is invertible is called a
group.

If G is a group with operation written multiplicatively, we usually denote the
identity element by 1. If G is an abelian group, i.e., a group that is a commutative
monoid, the operation is usually written +, and the identity element denoted 0.

1.4. Examples.

(1) The trivial monoid or trivial group is {e} with the unique choice of binary
operation on it.

(2) (Z,+) is an abelian group, (N,+) is a commutative monoid that is not a
group (note: we use N = {0, 1, 2, . . . }!). (N \ {0},+) is not even a monoid
(it is a semigroup; it only satisfies (M1)).

(3) (Z, ·), (Z \ {0}, ·), N, ·), (N \ {0}, ·) all are monoids, but not groups.
(4) Let Zn = {0, 1, . . . , n − 1} with operations + and · “mod n” (i.e., add or

multiply as usual, then replace by the remainder of division by n).
(Zn,+) is an abelian group, (Zn, ·) is a commutative monoid. (Z5\{0}, ·)

is a monoid, even a group, but (Z4 \{0}, ·) does not even make sense, since
· is not a binary operation on Z4 \ {0}.
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(5) Let F be a field. Then (by definition) (F,+) and (F \ {0}, ·) are abelian
groups. Let Mat(n, F ) be the set of all n × n matrices over F , with the
ususal addition and multiplication of matrices. Then (Mat(n, F ),+) is an
abelian group and (Mat(n, F ), ·) is a monoid that is not commutative when
n ≥ 2.

(6) Let X be any set, and let M be the set of all maps X → X. Then
(M, ◦) is a monoid (where ◦ denotes composition of maps), which is not
commutative when X has at least two elements.

2. Submonoids and Subgroups

As usual in mathematics (and in algebra in particular), with any structure (like
groups, monoids, rings, fields, vector spaces, topological spaces, . . . ), we are in-
terested in its substructures.

2.1. Definition. Let M be a monoid and M ′ ⊂ M a subset. We call M ′ a
submonoid of M if the binary operation on M restricts to a binary operation
on M ′ and M ′ contains the identity element of M . We call M ′ a subgroup of M if
it is a submonoid that is a group.

When H is a subgroup of a group G, we write H ≤ G.

Every group G has two trivial subgroups (which may coincide), namely G itself
and the trivial group {e}. A subgroup of G, which is not G itself, is called a proper
subgroup.

2.2. Examples.

(1) (N,+) is a submonoid of (Z,+).
(2) S1 = {z ∈ C : |z| = 1} is a subgroup of C× = (C \ {0}, ·) (the “unit

circle”).
(3) ({±1}, ·) is a subgroup of (Z, ·) (in fact, it is the largest subgroup).

This last example raises the question whether there is a largest subgroup in every
monoid. The answer is yes.

2.3. Proposition. Let M be a monoid, and let

U(M) = {a ∈M : a is invertible} .

Then U(M) is the largest subgroup of M .

Proof. If G ⊂ M is a subgroup, then all its elements are invertible, hence G ⊂
U(M). So we only have to show that U(M) is a subgroup of M . We first check
that U(M) is closed under ·. Let a and b be invertible. Let c = b−1a−1. Then

c(ab) = b−1(a−1a)b = b−1b = e and (ab)c = a(bb−1)a−1 = aa−1 = e ,

so ab is invertible, with inverse (ab)−1 = b−1a−1. Now if a is invertible, then so is
a−1 (its inverse is a), so all elements of U(M) are invertible within U(M). Finally,
e is always invertible, so e ∈ U(M). �
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2.4. Examples.

(1) U(Z, ·) = {±1}.
(2) U(F, ·) = F× = F \ {0}, where F is a field.
(3) U(Mat(n, F ), ·) = GL(n, F ), the general linear group of invertible n × n

matrices.
(4) U(Zn, ·) = Z×n is the set of invertible residue classes mod n. We will see

soon that
Z×n = {a ∈ Zn : gcd(a, n) = 1} .

(5) If (M, ◦) is the monoid of maps X → X for a set X, then U(M, ◦) = S(X)
is the group of permutations of X. We write

Sn = S({1, 2, . . . , n}) ;

this is called the symmetric group on n objects. Sn is a non-abelian group
as soon as n ≥ 3.

Before we formulate an alternative and sometimes useful criterion for when a
subset of a group is already a subgroup, let us prove a result that tells us that
under certain conditions a monoid is already a group.

The result as such is maybe not so important (though useful), but it is a prototype
of a class of results of the type “if a certain type of algebraic structure satisfies a
finiteness property, then it actually is a more special structure”. Examples of this
principle are:

• A finite integral domain is a field.
• A finite skew field (or division ring) is a field.
• A compact complex Lie group is abelian.

But we need a definition first. In a group, we certainly have the implication

ab = ac =⇒ b = c

(multiply from the left by the inverse of a).

2.5. Definition. A monoid M is (left) cancellative if for all a, b, c ∈M , we have

ab = ac =⇒ b = c .

It is certainly reasonable to ask a monoid to be cancellative, before we consider
the question whether it may already be a group.

2.6. Theorem. A finite cancellative monoid is already a group.

Proof. The idea of the proof is to show that every element of M is right invertible.
It follows that every element is invertible and so M is in fact a group: let a ∈M ,
then there is b ∈M with ab = e and there is c ∈M with bc = e, so b is invertible,
and we must have a = c (equality of right and left inverses), so ba = e, and b is
the inverse of a.

Here is another important idea. We use the binary operation on M to construct
maps M →M . Let a ∈M , then left multiplication by a gives a map

`a : M −→M , m 7−→ am .

Clearly, this map is injective if M is left cancellative (essentially by definition).
Now M is finite, therefore every injective map M → M is also surjective (this is
a possible definition of finiteness!). So `a is surjective, hence there is b ∈ M such
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that ab = `a(b) = e, meaning that a is right invertible. Since a was an arbitrary
element of M , all elements of M are right invertible, hence M is a group. �

2.7. Corollary. U(Zn, ·) = {a ∈ Zn : gcd(a, n) = 1}.

Proof. If a is invertible mod n, then there are integers b and k such that ab = 1+kn,
which implies gcd(a, n) = 1. To show the reverse inclusion, we note that the right
hand side is a cancellative monoid (exercise). By the preceding theorem, it is a
group and therefore contained in U(Zn, ·). �

2.8. Corollary. Zp is a field.

Often, the field Zp is denoted Fp.

Now for some criteria for when a subset of a group is a subgroup.

2.9. Proposition. Let G be a group, H ⊂ G a nonempty subset. Then H is a
subgroup of G if one of the following conditions is satisfied.

(1) For all h1, h2 ∈ H, we have h1h
−1
2 ∈ H.

(2) H is closed under the group operation and finite.

Proof. Assume the first condition holds. Since H is nonempty, there is some
h ∈ H. Therefore, we have e = hh−1 ∈ H and then also h−1 = eh−1 ∈ H. Finally,
with h1, h2 ∈ H, we have h−1

2 ∈ H and then h1h2 = h1(h
−1
2 )−1 ∈ H.

Now consider the second condition. Let h ∈ H. The set of all powers of h,
{hn : n ∈ Z}, is finite, so there are m > n such that hm = hn. It follows that
e = hm−n ∈ H. Now H is a finite monoid and cancellative (because it is a
submonoid of a group), hence by the theorem, it is already a group. �

2.10. Lemma. Let G be a group, (Hi)i∈I a collection of subgroups of G. Then
H =

⋂
i∈I Hi is again a subgroup of G.

Proof. Every Hi contains e, so e ∈ H as well. Now let h1, h2 ∈ H. Then h1h
−1
2 ∈

Hi for all i ∈ I, so h1h
−1
2 ∈ H. By the preceding proposition, H is a subgroup. �

This observation shows that it makes sense to talk of the smallest subgroup con-
taining a given subset of G: we just take the intersection of all subgroups contain-
ing the subset. (Note that there is always one such subgroup, namely G itself.)

2.11. Definition. Let G be a group and S ⊂ G a subset. The smallest subgroup
of G containing S is called the subgroup generated by S and denoted 〈S〉 (or
〈s1, s2, . . . 〉 if S = {s1, s2, . . . }).
If 〈S〉 = G, we say that S generates G or that S is a generating set. If G has a
finite generating set, we say that G is finitely generated.

A group that is generated by one element is called cyclic. If G = 〈g〉, then
G = {gn : n ∈ Z} consists of all powers of g.

2.12. Definition. If G is a group, then its cardinality #G is called the order of G.
The order o(g) of an element g ∈ G is the order of the group 〈g〉 it generates. This
is the smallest positive integer n such that gn = e, if such an n exists; otherwise,
g is of infinite order.
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2.13. Remark. There are essentially only the following cyclic groups (up to iso-
morphism; see later).

(1) For each n ≥ 1, the group (Zn,+) — the cyclic group of order n.
(2) The infinite cyclic group (Z,+).

3. Cosets and Lagrange’s Theorem

A subgroup H of a group G leads in a natural way to an equivalence relation on G.

3.1. Defintion. Let H be a subgroup of the group G. A right coset of H in G is
a set of the form

Hg = {hg : h ∈ H}
for some g ∈ G. A left coset of H in G is a set of the form

gH = {gh : h ∈ H}

for some g ∈ G.

Note that right (left) multiplication by g gives a bijection between H and Hg
(gH).

3.2. Lemma. If H is a subgroup of the group G and g, g′ ∈ G, then the following
statements are equivalent.

(1) Hg′ ⊂ Hg
(2) g′ ∈ Hg
(3) g′g−1 ∈ H
(4) Hg′ = Hg

Proof. The equivalence of the first three is easy. To see that they imply the last,
note that g′g−1 ∈ H implies g(g′)−1 ∈ H, which implies Hg ⊂ Hg′. �

3.3. Proposition. If H is a subgroup of a group G and g, g′ ∈ G, then either
Hg = Hg′, or Hg ∩ Hg′ = ∅. In other words, the right cosets form a partition
of G.

Proof. Assume that Hg ∩ Hg′ 6= ∅. We have to show that Hg = Hg′. So let
x ∈ Hg ∩ Hg′. Then x ∈ Hg and x ∈ Hg′, so by the preceding lemma, Hg =
Hx = Hg′. �

Another way of phrasing this is to say that

g ∼ g′ ⇐⇒ Hg = Hg′ ⇐⇒ g′g−1 ∈ H

defines an equivalence relation on G. The set of equivalence classes is denoted by
H\G. (If we consider left cosets gH, then we write G/H.)

3.4. Theorem (Lagrange). If G is finite, then #H divides #G.

Proof. G is partitioned into disjoint subsets Hg, each of the same size as H. �
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3.5. Definition. The cardinality ofG/H is called the index ofH inG and denoted
(G : H).

For example, the index of the subgroup 2Z of Z is 2, even though Z is an infinite
group.

Note that for this definition, it does not matter whether we consider left or right
cosets. In fact, Hg 7→ g−1H provides a bijection between the set of right cosets
H\G and the set of left cosets G/H. (Exercise!)

3.6. Corollary. If G is a finite group and g ∈ G, then o(g) divides #G. In
particular, g#G = e.

Proof. 〈g〉 ≤ G, and o(g) = #〈g〉. �

3.7. Corollary. If G is a group of prime order p, then G has no nontrivial sub-
groups. In particular, if g ∈ G \ {e}, then G = 〈g〉 (and so G is cyclic).

Proof. If H ≤ G, then #H must be 1 or p, so H = {e} or H = G. �

As an application, we can prove Fermat’s Little Theorem.

3.8. Theorem (Fermat). If p is a prime number and a an integer not divisible
by p, then ap−1 ≡ 1 mod p (i.e., p divides ap−1 − 1).

Proof. It suffices to consider 1 ≤ a < p. Then a ∈ Z×p = Zp \ {0}, a group of order

p− 1. So ap−1 = 1 in Z×p , which means that ap−1 ≡ 1 mod p. �

We have seen that the order of an element divides the order of the group. This
raises the question whether every divisor of the group order occurs as the order of
an element. This will certainly be false in general: if o(g) = #G, then G = 〈g〉 is
cyclic, which is not true for all groups. But there is an important special case.

3.9. Theorem (Cauchy). If G is finite and the prime number p divides #G,
then there is an element of G of order p.

Proof. The proof uses a nice counting argument that is perhaps not very obvious.
Let us consider the following set

T = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = e} .
Since for a tuple (g1, g2, . . . , gp) ∈ T , the last entry gp is uniquely determined by
the first p−1 entries, which are otherwise arbitrary, T must have #Gp−1 elements,
a number that is divisible by p (since #G is, and p− 1 ≥ 1).

On the other hand, if not all the gj are the same, then we get p distinct elements
of T by looking at

(g1, g2, . . . , gp) , (g2, g3, . . . , gp, g1) , . . . , (gp, g1, . . . , gp−1) .

Hence the number of elements (g1, g2, . . . , gp) ∈ T , for which not all the gj are
identical, is also divisible by p.

This implies that the number of elements (g, g, . . . , g) ∈ T must also be divisible
by p. Now (g, g, . . . , g) ∈ T is eqivalent with gp = e, and there is at least one such
element, namely e. Therefore there must be at least one other element g ∈ G,
g 6= e, such that gp = e. But this means that o(g) = p. �
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Products of Subgroups.
We have seen that the intersection of two subgroups is again a subgroup. The
union of two subgroups is rarely a subgroup. The next reasonable thing one can
try is to consider the product

HK = {hk : h ∈ H, k ∈ K}

of two subgroups H and K. It is easy to find examples where HK is not a
subgroup. However, there is the following result.

3.10. Proposition. Let H,K be subgroups of a group G such that HK = KH.
Then HK is again a subgroup of G.

Proof. We use Prop. 2.9. HK is certainly nonempty. Let h, h′ ∈ H and k, k′ ∈ K,
so hk, h′k′ ∈ HK. We need to show that (hk)(h′k′)−1 ∈ HK. Now,

(hk)(h′k′)−1 = hk(k′)−1(h′)−1 ∈ HKH = HHK = HK .

�

In particular, when G is abelian, then HK is always a subgroup of G.

3.11. Proposition. If H and K are finite subgroups of a group G, then

#(HK) =
#H #K

#(H ∩K)
.

Proof. Exercise. �

4. Homomorphisms and Normal Subgroups

As usual in mathematics, we do not just want to study structures like groups in
isolation, but we want to relate them to each other. So we need to introduce
suitable structure-preserving maps.

4.1. Definition. Let G and G′ be two groups. A group homomorphism from G
to G′ is a map φ : G→ G′ such that φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈ G. (Note
that on the left, we have the operation in G, whereas on the right, it is in G′.)

If φ is bijective, then φ is called a (group) isomorphism, and G and G′ are iso-
morphic. We then write G ∼= G′. An isomorphism φ : G → G is called an
automorphism of G; the set of all automotphisms of G forms a group Aut(G)
under composition of maps.

If φ : G→ G′ is a group homomorphism, then kerφ = {g ∈ G : φ(g) = e′} (where
e′ is the identity element of G′) is called the kernel of φ.

4.2. Remark. One would want to require that φ(e) = e′ and φ(g−1) = φ(g)−1.
Fortunately, these properties follow (Exercise). Also, if φ is bijective, then φ−1 is
again a group homomorphism (Exercise).

(For a monoid homomorphism, on the other hand, one has to require that φ(e) =
e′, and for a monoid isomorphism, one needs to require that the inverse is again a
homomorphism. Conclusion: groups are nicer than monoids!)
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4.3. Lemma. Let φ : G→ G′ be a group homomorphism.

(1) kerφ is a subgroup of G.
(2) If H ≤ G, then φ(H) ≤ G′.
(3) If H ′ ≤ G′, then kerφ ⊂ φ−1(H ′) ≤ G.
(4) If φ′ : G′ → G′′ is another group homomorphism, then φ′ ◦ φ : G → G′′ is

also a group homomorphism.
(5) φ is injective if and only if kerφ = {e}.

Proof. The first four statements are easy. For the last, note that if φ is injective,
then e′ can only have one preimage, which must be e. This proves one direction.
Conversely, suppose kerφ is trivial. Let g1, g2 ∈ G such that φ(g1) = φ(g2). Then

e′ = φ(g1)φ(g2)
−1 = φ(g1g

−1
2 ) ,

so g1g
−1
2 ∈ kerφ = {e}, whence g1 = g2. So φ is injective. �

In fact, more is true than just that kerφ is a subgroup.

4.4. Definition. A subgroup H ≤ G is called normal, if one (and hence all) of
the following equivalent conditions is satisfied.

(1) Left and right cosets of H coincide: gH = Hg for all g ∈ G.
(2) For all g ∈ G, we have gHg−1 = H.
(3) For all g ∈ G, we have gHg−1 ⊂ H.

We write H / G if H is a normal subgroup of G.

Normal subgroups are nice and important because they allow us to define a natural
group structure on the quotient G/H (which is the same as H\G for normal H).
“Natural” means that we want the canonical map

φ : G −→ G/H , g 7−→ gH

to be a group homomorphism. This implies that the only possible way to define
a natural group structure on G/H is to set

(gH) · (g′H) = gg′H .

In general, this will not even be well-defined.

4.5. Lemma. Assume H ≤ G. The definition (gH) · (g′H) = gg′H gives a well-
defined binary operation on G/H if and only if H is a normal subgroup. In this
case, this binary operation makes G/H into a group, and the canonical map φ :
G→ G/H is a surjective group homomorphism with kernel H.

Proof. In order for the binary operation to be well-defined, we need to have that
hgH = gH for all h ∈ H, g ∈ G (since (eH) · (gH) should be gH, whereas
(hH) · (gH) should be hgH, but eH = H = hH). This implies g−1hg ∈ H for all
g ∈ G, h ∈ H; whence H / G.

Conversely, if H / G, then gH g′H = g g′H H = gg′H, and the definition of ·
coincides with the product of cosets and so is well-defined. Finally, it is a general
fact that if φ : G→ X is a surjective map from a group G to a set X with binary
operation such that φ(gg′) = φ(g)φ(g′), then X is also a group (Exercise). It is
clear that the kernel of φ is H. �

The group G/H is called the quotient group (or factor group) of G by H. The
basic idea is that G/H is some sort of coarser image of G, the “information lost”
being what is contained in H.
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4.6. Remark. If H ≤ G and (G : H) = 2, then H / G. (Exercise!)

4.7. Remark. The intersection of any family of normal subgroups is again a nor-
mal subgroup.

The preceding lemma shows that every normal subgroup is the kernel of a group
homomorphism. The converse is also true.

4.8. Theorem. Let φ : G → G′ be a group homomorphism. Then kerφ is a
normal subgroup of G, and there is a unique isomorphism ψ : G/ kerφ → φ(G′)
making the diagram below commutative.

G
φ //

��

G′

G/ kerφ
∼=
ψ
// φ(G)

?�

OO

Proof. We first show that kerφ is a normal subgroup. Let h ∈ kerφ and g ∈ G.
We have to show that ghg−1 ∈ kerφ as well. Now

φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g)e′φ(g)−1 = e′

and so ghg−1 ∈ kerφ.

Let H = kerφ. Now in order to make the diagram above commutative, ψ must
satisfy ψ(gH) = φ(g). We need to check that this is a well-defined map. But this
follows from φ(gh) = φ(g)e′ = φ(g) for g ∈ G, h ∈ H. It is then clear that ψ is
a homomorphism, and it remains to show that ψ is injective and has image φ(G).
The latter is clear. For the former, we note that the kernel of ψ is just {H} (the
trivial one-element subgroup of G/H). �

4.9. Corollary. If φ : G→ G′ is a surjective group homomorphism, then we have
G′ ∼= G/ kerφ. In particular, #G′ = (G : kerφ).

4.10. Corollary. If φ : G → G′ is a surjective group homomorphism, then there
is a bijection between the subgroups of G containing kerφ and the subgroups of G′,
given by images/preimages under φ.

Proof. By Lemma 4.3, the preimage of a subgroup of G′ is a subgroup of G con-
taining kerφ, and the image of a subgroup of G is a subgroup of G′. Since φ is
surjective, we have φ(φ−1(H ′)) = H ′ for any subgroup H ′ ≤ G′. On the other
hand, it is easy to see that in general, φ−1(φ(H)) = H · kerφ. So if kerφ ⊂ H,
then φ−1(φ(H)) = H. �

4.11. Definition. A group G 6= {e} such that G has no nontrivial normal sub-
groups (i.e., the only normal subgroups are {e} and G itself) is called simple.

Simple groups play a role in group theory that is somewhat analogous to the role
played by prime numbers in number theory: in some sense, one can build up all
groups from simple groups, and the simple groups needed for any given group are
uniquely determined.

The classification of the finite simple groups has been completed (or so one be-
lieves) in the last century; the proof (which is distributed over many research



11

papers) has several thousand pages. The result is that there are 18 infinite fam-
ilies of finite simple groups (two of which we will get to know soon), plus 26
so-called “sporadic” simple groups, which are rather interesting (and sometimes
mysterious) objects.

4.12. Example. A group of prime order is simple. Indeed, such a group is not
the trivial group, and we have seen that it only has the two trivial subgroups. In
fact, these are exactly the abelian finite simple groups. To see why, let G be a
finite abelian group of non-prime order and let p be a prime divisor of #G. By
Cauchy’s Theorem 3.9, G has an element g of order p. Then 〈g〉 is a subgroup
of G of order p, so it is a nontrivial subgroup, and it is normal since G is abelian.

4.13. Example. The subgroups of Z are all of the form

nZ = {nk : k ∈ Z}
for some n ≥ 0. This is clear for the trivial subgroup {0} (take n = 0). For a
nontrivial subgroup H of Z, let n be the smallest positive element of H (H has
positive elements: it has a nonzero element k, and then it also contains −k, and
one of the two is positive). Then nZ = 〈n〉 ⊂ H. Now let k ∈ H be any element.
Then we can write k = nq + r with q, r ∈ Z and 0 ≤ r < n. So r ∈ H, but then r
must be zero, since n was the smallest positive element of H. Hence k = nq ∈ nZ,
and so H = nZ.

Now Z is abelian, and so all subgroups are already normal. Therefore, for every
n ≥ 1, there exists the quotient group Z/nZ. The above argument using division
with remainder shows that as a set,

Z/nZ = {0 + nZ, 1 + nZ, . . . , (n− 1) + nZ} ,
and addition in Z/nZ is addition “mod n” of representatives. We conclude that
Z/nZ ∼= Zn (as additive groups).

Another way of looking at this is to say that the map

φ : Z −→ Zn , k 7−→ k mod n

is a surjective group homomorphism (by definition of the addition in Zn) and has
kernel nZ. Therefore Zn

∼= Z/nZ.

4.14. Example. You remember the sign of a permutation from Linear Algebra:
Any element σ ∈ Sn can be written as a product of transpositions; we write
sign(σ) = 1 if one (and then every) such product has an even number of transpo-
sitions (and call σ an even permutation), and sign(σ) = −1 if the number is odd
(and call σ an odd permutation). Then

sign : Sn −→ {±1}
is a group homomorphism. Its kernel is denoted An and called the alternating
group (on n objects). It consists of all the even permutations.

As soon as n ≥ 2, there exist odd permutations (take a transposition), hence the
sign homomorphism is surjective. Therefore, An is a normal subgroup of index 2
in Sn when n ≥ 2.

Are there other normal subgroups of Sn? Well, here is one example. Consider the
case n = 4. Then

V = {(), (12)(34), (13)(24), (14)(23)} ⊂ S4
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is, as you can easily check, a normal subgroup. It is called the Klein four group
(“Vierergruppe” in German, whence the V ) and is (up to isomorphism) the only
noncyclic group of order 4.

On the other hand, you will be hard put to find other examples: For n ≥ 5, the
only nontrivial normal subgroup of Sn is An (and this is also true for n = 3; for
n ≤ 2, An is the trivial group). In fact, a somewhat stronger statement is true:

An is a simple group when n ≥ 5.

The proof is not hard (you can find it in every Algebra textbook), but would cost
us too much time.

In fact, the smallest nonabelian simple group is A5 of order 60.

4.15. Remark. The groups A4, S4 and A5 are important: they are the symmetry
groups of the platonic solids (i.e., the groups of rotations preserving the set of
vertices (say) of a platonic solid). The tetrahedron has symmetry group A4 (act-
ing on the vertices or faces), the cube and octahedron have symmetry group S4

(acting for example on the four long diagonals of the cube), and the dodecahedron
and icosahedron have symmetry group A5 (acting on the five tetrahedra that are
inscribed into a dodecahedron).

4.16. Example. We learned in Linear Algebra that the determinant is multiplica-
tive (and therefore does not vanish on invertible matrices). This means that we
have a group homomomorphism

det : GLn(F ) −→ F×

(for any field F ; F× denotes the multiplicative group (F \ {0}, ·)). Its kernel is
the normal subgroup

SLn(F ) = {A ∈ GLn(F ) : det(A) = 1} ,

the special linear group.

For n ≥ 1, the determinant homomorphism is surjective, hence we get that

GLn(F )/ SLn(F ) ∼= F× .

But now back to some theorems!

4.17. Theorem. Let H and K be normal subgroups of G such that K ⊂ H.
Then there is a natural surjective group homomorphism G/K → G/H. Its kernel
is H/K. In particular, we have the isomorphism

(G/K)
/

(H/K) ∼= G/H .

Proof. The homomorphism sends gK to gH. Since K ⊂ H, this is well-defined
(if k ∈ K and g ∈ G, then gk ∈ gH). It is obviously surjective, and the kernel
consists of the classes gK such that gH = H, i.e., such that g ∈ H. This is exactly
the subset H/K of G/K. The last statement follows from Thm. 4.8. �
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4.18. Proposition. If φ : G → G′ is a group homomorphism and H / G is a
normal subgroup contained in kerφ, then there is a unique group homomorphism
φ′ : G/H → φ making the following diagram commutative.

G
φ //

!!D
DD

DD
DD

D G′

G/H
φ′

<<zzzzzzzz

Proof. Uniqueness is clear: we need to have φ′(gH) = φ(g). To see existence, note
that we have maps as in the following diagram.

G
φ //

��

G′

G/H //

99s
s

s
s

s
G/ kerφ

OO

The dashed arrow does what we want. �

4.19. Theorem. Let H / G be a normal subgroup and K ≤ G a subgroup. Then
KH is a subgroup of G and has H as a normal subgroup, and the canonical
homomorphism K → KH/H, k 7→ kH, is surjective with kernel K ∩ H. In
particular, we have the isomorphism

KH/H ∼= K/(H ∩K) .

Proof. First note that kH = Hk for all k ∈ K (since H is normal), so KH = HK,
and by Prop. 3.10, KH ≤ G. Also, it is clear that H /KH.

We then have a canonical homomorphism as described; it is the composition K →
KH → KH/H. It is surjective, since the general element of KH has the form kh
with k ∈ K and h ∈ H, and so khH = kH is in the image. Finally, the kernel
consists of those k ∈ K that satisfy kH = H, which means k ∈ H. �
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5. Direct Products

There are several ways to construct new groups out of given ones. One of the most
important among these is the direct product.

5.1. Definition. Let G1 and G2 be two groups. Then G1 ×G2 with “componen-
twise” binary operation (g1, g2) · (g′1, g′2) = (g1g

′
1, g2g

′
2) is a group, called the direct

product of G1 and G2.

There are canonical injective group homomorphisms

i1 : G1 −→ G1 ×G2 , g1 7−→ (g1, e2) and

i2 : G2 −→ G1 ×G2 , g2 7−→ (e1, g2)

with commuting images G1 × {e2} and {e1} ×G2. There are canonical surjective
group homomorphisms

p1 : G1 ×G2 −→ G1 , (g1, g2) 7−→ g1 and

p2 : G1 ×G2 −→ G2 , (g1, g2) 7−→ g2 .

5.2. Lemma. The direct product has the following universal properties.

(1) If H is a group with homomorphisms φ1 : H → G1 and φ2 : H → G2, then
there is a unique homomorphism Φ : H → G1 × G2 such that p1 ◦ Φ = φ1

and p2 ◦ Φ = φ2.

G1

H

φ1

66nnnnnnnnnnnnnnnn

φ2
((PPPPPPPPPPPPPPPP

Φ //______ G1 ×G2

p1

OO

p2
��
G2

(2) If H is a group with homomorphisms ψ1 : G1 → H and ψ2 : G2 → H
such that their images commute, then there is a unique homomorphism
Ψ : G1 ×G2 → H such that Ψ ◦ i1 = ψ1 and Ψ ◦ i2 = ψ2.

G1

i1
��

ψ1

((PPPPPPPPPPPPPPPP

G1 ×G2
Ψ //______ H

G2

i2

OO

ψ2

66nnnnnnnnnnnnnnnn

Proof.

(1) As usual, uniqueness is clear — we have to define Φ(h) = (φ1(h), φ2(h)).
It is then easy to check that this is indeed a group homomorphism.

(2) Here we need to define Ψ(g1, g2) = ψ1(g1)ψ2(g2). This is a group homo-
morphism, since ψ1(G1) and ψ2(G2) commute in H:

Ψ
(
(g1, g2) · (g′1, g′2)

)
= Ψ(g1g

′
1, g2g

′
2) = ψ1(g1g

′
1)ψ2(g2g

′
2)

= ψ1(g1)ψ1(g
′
1)ψ2(g2)ψ2(g

′
2) = ψ1(g1)ψ2(g2)ψ1(g

′
1)ψ2(g

′
2)

= Ψ(g1, g2)Ψ(g′1, g
′
2)

�
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5.3. Remark. This definition and the properties extend naturally to an arbitrary
finite number of factors G1, . . . , Gn. It is easy to see that this direct product is
commutative and associative up to natural isomorphism:

G1 ×G2
∼= G2 ×G1 and (G1 ×G2)×G3

∼= G1 ×G2 ×G3
∼= G1 × (G2 ×G3) .

5.4. Remark. The direct product can still be defined for an arbitrary (possibly
infinite) family of groups. In general, only the first of the universal properties in
Lemma 5.2 will hold. (We would need infinite products in H to define a suitable
map for the second property.)

In order to get a construction that satisfies the second universal property, one has
to use the restricted direct product. Let (Gi)i∈I be a family of groups Gi with
identity elements ei. Then we set∏′

i∈I

Gi = {(gi)i∈I : gi ∈ Gi for all i ∈ I and gi = ei for almost all i ∈ I}

(where “almost all” means “all but finitely many”). This is again a group under
componentwise operation, and it satisfies the second universal property above (but
in general not the first).

In the context of abelian groups, this is called the direct sum
⊕

i∈I Gi.

5.5. Lemma. Let G1 and G2 be groups, g1 ∈ G1, g2 ∈ G2 elements of finite
order. Then the order of (g1, g2) ∈ G1 ×G2 is the least common multiple of o(g1)
and o(g2).

Proof. We have

{n ∈ Z : gn1 = e1} = o(g1) Z ,
{n ∈ Z : gn2 = e2} = o(g2) Z , and therefore

{n ∈ Z : (g1, g2)
n = (e1, e2)} = o(g1) Z ∩ o(g2) Z = lcm(o(g1), o(g2)) Z .

�

5.6. Corollary. Let m and n be coprime positive integers. Then Zm×Zn
∼= Zmn.

Proof. Consider (1, 1) ∈ Zm × Zn. By the preceding lemma, we have o(1, 1) =
lcm(m,n) = mn = #(Zm × Zn), so Zm × Zn is cyclic, generated by (1, 1). �

5.7. Example. On the other hand, Z2 × Z2 is not isomorphic to Z4: in the first
group, all elements are of order 1 or 2, whereas the second group has elements of
order 4. (We have Z2 × Z2

∼= V , the Klein four group.)

5.8. Definition. Let G be a group and H1, H2 subgroups of G. We say that G
is the internal direct product of H1 and H2, if the map

H1 ×H2 −→ G , (h1, h2) 7−→ h1h2

is a group isomorphism.

Concretely, we need the following properties.

(1) H1 and H2 commute (i.e., h1h2 = h2h1 for all h1 ∈ H1, h2 ∈ H2). This is
equivalent to the statement that the map is a homomorphism.

(2) H1 and H2 generate G (i.e., H1H2 = G, assuming (1)). This means that
the homomorphism is surjective.

(3) H1 ∩H2 = {e}. This means that the homomorphism is injective.
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If G is finite, property (2) can be replaced by #G = #H1 ·#H2.

5.9. Examples. If m and n are coprime positive integers, then Zmn is the internal
direct product of its subgroups nZmn and mZmn. Indeed, the group is abelian,
so the first property is automatic. Also, an integer that is a multiple of both m
and n must be a multiple of mn; this implies property (3). Finally, Zmn is finite
and #Zmn = mn = #(nZmn)#(mZmn).

The Klein four group

V = {(), (12)(34), (13)(24), (14)(23)} ⊂ S4

is the internal direct product of any two of its subgroups of order 2. Indeed,
properties (1) and (3) are clear, and #V = 4 = 2 · 2.

6. Group Actions on Sets

Groups are not only important in their own right, but also because they occur
as symmetry groups, automorphism groups and the like, in particular as groups
acting on something. In the simplest case, this something is just a set, but in
many contexts, the set has some additional structure, which is preserved by the
group action. Here, we want to study the basic concept of a group action on a set
(and then apply it to a situation where the group acts on itself!).

6.1. Definition. Let G be a group and X a set. A left action of G on X is given
by a map G ×X → X, usually written (g, x) 7→ g · x (or even just gx), that has
the following properties.

(1) ∀x ∈ X : e · x = x;
(2) ∀g, g′ ∈ G, x ∈ X : (gg′) · x = g · (g′ · x).

Equivalently, a left action of G on X is given by a group homomorphism φ : G→
S(X) (recall that S(X) is the group of permutations of X). To see this, observe
that the map G × X → X induces a homomorphism φ : G → S(X) by setting
φ(g) : x 7→ g · x. Note that φ(g) is really a bijection X → X, since it has the
inverse φ(g−1) (by the properties (1) and (2) above). Property (2) then shows that
φ is a group homomorphism. Conversely, from a homomorphism φ : G → S(X),
we obtain a map G×X → X by setting g · x = φ(g)(x).

Right actions are defined analogously; here the map is of the type X × G → X
and written (x, g) 7→ x · g.

6.2. Definition. Assume G acts on X from the left. Let x ∈ X. The stabilizer
of x is

Gx = {g ∈ G : g · x = x} ⊂ G .

Gx is a subgroup of G.

The orbit of x is

Gx = G · x = {g · x : g ∈ G} ⊂ X .

The set of all orbits is G\X = {Gx : x ∈ X}.

If g · x = x, then x is called a fixed point of g.
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6.3. Remark. If we consider the homomorphism φ : G → S(X) corresponding
to the left action, then its kernel is the intersection of all stabilizers:

kerφ =
⋂
x∈X

Gx .

6.4. Lemma. The orbits form a partition of X: two orbits are either disjoint or
equal.

Proof. The proof is virtually identical to that of Prop. 3.3. �

6.5. Lemma. Let G act on X from the left. Then for every x ∈ X, we have a
canonical bijection

G/Gx −→ G · x , gGx 7−→ g · x .
In particular, we have #(G · x) = (G : Gx).

Proof. The map is well-defined: if g′ ∈ Gx, then gg′ · x = g · (g′ · x) = g · x. The
map is surjective by definition of the orbit of x. Finally, assume that g · x = g′ · x.
Then we have g−1g′ ·x = x, so g−1g′ ∈ Gx, and therefore gGx = g′Gx. So the map
is also injective. �

6.6. Example. Let G be a group. Then G acts on the set G from the left by left
multiplication: g · h = gh. All stabilizers are trivial, and there is just one orbit.
We therefore get an embdedding (injetctive homomorphism) of G into S(G). In
particular, every finite group of order n can be embedded into Sn.

6.7. Example. There is another (left) action of G on the set G. It is given by
conjugation. We set g ·h = ghg−1. In this context, the stabilizer of g ∈ G is called
the centralizer of g, CG(g). It is the largest subgroup of G in which g is central,
i.e., commutes with all elements. The intersection of all centralizers is the center
of the group: ⋂

g∈G

CG(g) = Z(G) = {h ∈ G : gh = hg for all g ∈ G}

More generally, the centralizer of a subset H ⊂ G is

CG(H) = {g ∈ G : gh = hg for all h ∈ H} =
⋂
h∈H

CG(h) .

In this sense, we have Z(G) = CG(G).

This action is not just by permutations, but by automorphisms of G: we get a
homomorphism G → Aut(G) with kernel Z(G). The elements of its image are
called inner automorphisms; they are of the form h 7→ ghg−1. One can check
that the image is a normal subgroup of Aut(G), the inner automorphism group
Inn(G) ∼= G/Z(G). The quotient group Out(G) = Aut(G)/ Inn(G) is the outer
automorphism group; every element of Aut(G)\ Inn(G) is an outer automorphism.

It is a fact that Sn has no outer automorphisms, except when n = 6, when
# Out(S6) = 2. (Bonus Homework Problem)

On the other hand, all nontrivial automorphisms of an abelian group are outer
automorphims.

The orbits under this action by conjugation are called conjugacy classes; two
elements in the same orbit are said to be conjugate.
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The size of the conjugacy class of g ∈ G is (G : CG(g)) = #G/#CG(g) (if G is
finite). The class has only one element if and only if g ∈ Z(G); otherwise its size
is a divisor of #G larger than 1. We get the following identity.

6.8. Class Formula.

#G = #Z(G) +
∑
g∈R

(G : CG(g)) ,

where R ⊂ G\Z(G) is a system of representatives of the conjugacy classes outside
the center of G.

This seemingly innocent relation has a nice application.

6.9. Definition. Let p be a prime number. A finite group G is called a p-group
if its order is a power of p : #G = pf with f ≥ 1.

6.10. Proposition. A p-group G has nontrivial center Z(G).

Proof. In the equation above, we have that p divides #G. Also, for any g ∈ R,
the index (G : CG(g)) is larger than 1 and a divisor of pf = #G, hence p divides
(G : CG(g)). Therefore, p must divide #Z(G), and so Z(G) cannot be trivial. �

6.11. Example. G also acts by conjugation on its subgroups: if H ≤ G, then
gHg−1 ≤ G. In this context, the stabilizer is called the normalizer of a subgroup:

NG(H) = {g ∈ G : gH = Hg} ;

it is the largest subgroup K of G such that H / K. A subgroup H is normal if
and only if NG(H) = G, which is the case if and only if its orbit contains just one
element. The orbits are again called conjugacy classes (of subgroups), subgroups
in the same orbit are conjugate.

For the size of the orbit of H, we find

#{gHg−1 : g ∈ G} = (G : NG(H)) =
(G : H)

(NG(H) : H)
,

a divisor of (G : H).

In many cases, one is really interested in the set X “modulo” the action of G,
which means that one wants to know about the quotient set G\X. For example,
one would like to know its size.

6.12. Lemma (Burnside). If G and X are finite, then #(G\X) is the “average
number of fixed points”:

#(G\X) =
1

#G

∑
g∈G

#{x ∈ X : gx = x}

Proof. This is a classical proof by “double counting”: we count the same set in
two ways. The set is S = {(g, x) ∈ G × X : gx = x}. We count its elements on
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the one side by first counting elements with fixed g and on the other side by first
counting elements with fixed x.∑

g∈G

#{x ∈ X : gx = x} = #S

=
∑
x∈X

#{g ∈ G : gx = x} =
∑
x∈X

#Gx

=
∑
x∈X

#G

#Gx
=

∑
O∈G\X

∑
x∈O

#G

#O

= #G
∑

O∈G\X

= #G#(G\X)

�

7. The Sylow Theorems

We will now use the action of G on itself by conjugation to prove a number of
nontrivial statements on subgroups of finite groups, known as the Sylow Theorems.

7.1. Theorem. Let G be a finite group, and let pf be a prime power dividing #G.
Then G has a subgroup of order pf .

Proof. The proof is by induction on #G. The case f = 0 is of course trivial. If G
has a proper subgroup H such that pf | #H, then we know by induction that H
has a subgroup K ≤ H of order pf , but then K ≤ G as well.

So let us assume that G has no such subgroup H. This implies that for every
proper subgroup H < G, p divides the index (G : H). Looking at the Class
Formula 6.8, we deduce that p divides #Z(G). By Cauchy’s Theorem 3.9, Z(G)
has a subgroup K of order p, which then is a normal subgroup of G (since it is
contained in the center). Now #(G/K) = #G/p is less than #G and divisible
by pf−1, so by induction, G/K has a subgroup H ′ of order pf−1. But then H ′ =
H/K with H ≤ G a subgroup of G containing K, and #H = p#H ′ = pf . �

This shows in particular that G has a subgroup of order pt, where pt is the maximal
power of p dividing #G.

7.2. Definition. Let G be a finite group, and let p be a prime number divid-
ing #G. A subgroup H ≤ G is called a p-Sylow subgroup if H is a p-group and p
does not divide the index (G : H).

In other words, H is a maximal (in size) p-subgroup of G. By the previous result,
p-Sylow subgroups always exist.

7.3. Lemma. Let H be a p-Sylow subgroup of G and let K ≤ G be a p-subgroup
such that K ⊂ NG(H). Then K ⊂ H.

Proof. We have H / NG(H) and K ≤ NG(H), so HK is a subgroup of NG(H).
Its order divides #H #K, which is a power of p. On the other hand, HK ≤ G
and so #HK | #G. So #HK divides the largest power of p dividing #G, which
is #H. Since we also have H ⊂ HK, this implies H = HK, whence K ⊂ H. �
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7.4. Theorem. Let G be a finite group with p-Sylow subgroup H. Let K be any
p-subgroup of G. Then K is contained in a conjugate of H. In particular, all
p-Sylow subgroups are conjugate.

Proof. Let S = {gHg−1 : g ∈ G} be the set of conjugates of H. We have #S =
(G : NG(H)), which divides (G : H) and therefore is not divisible by p.

The subgroup K acts on S by conjugation. Now every K-orbit in S has size a
power of p (because it equals the index of a subgroup of the p-group K). On the
other hand, #S is not divisible by p, so there has to be at least one singleton orbit
{gHg−1}. Let H ′ = gHg−1. Since conjugation by elements of K fixes H ′, we have
K ⊂ NG(H ′), hence by the preceding lemma, K ⊂ H ′. (Note that H ′ is a p-Sylow
subgroup).

The last statement follows by taking K to be any p-Sylow subgroup. �

7.5. Theorem. Let G be a finite group, and let p be a prime divisor of #G. Write
#G = pt r with r not divisible by p. Then the number mp of p-Sylow subgroups
of G divides r, and mp ≡ 1 mod p.

Proof. Let H be a p-Sylow subgroup of G. By the preceding theorem, the p-Sylow
subgroups form one orbit under conjugation by elements from G. The size mp of
the orbit equals the index (G : NG(H)), which divides (G : H) = r. This proves
the first assertion.

For the second assertion, we consider the conjugation action of H on the set of
p-Sylow subgroups. We have seen (in the proof of the preceding theorem) that
H fixes an element H ′ of this set if and only if H ⊂ H ′, which means here that
H = H ′. This means that there is exactly one orbit of size 1 (namely {H}), and
all the other orbit sizes are multiples of p. The claim follows, since mp is the sum
of all the orbit sizes. �

7.6. Remark. A p-Sylow subgroup H of G is normal if and only if mp = 1.

The strength of these theorems lies in the fact that they can provide us with
nontrivial normal subgroups (or, failing that, with some fairly strong information
on the structure of G). For example, one can use them to prove the following
result.

7.7. Proposition. If G is a group of order 1 < #G < 60, then G is of prime
order, or else G has a nontrivial normal subgroup.

Proof. We only discuss one exemplary case here. For a complete treatment, see
for example Rowen’s book.

Let us consider the case #G = 56 = 23 · 7. We know that m7 is ≡ 1 mod 7 and
divides 8, therefore m7 = 1 or m7 = 8. In the first case, G has a normal subgroup
of order 7 (the 7-Sylow subgroup). In the second case, we have 8 subgroups of
order 7, any two of which only meet in the identity element (this is because they
are of prime order and so any nontrivial element generates the subgroup). So me
must have 8 · (7−1) = 48 elements of order 7 in G. This leaves exactly 8 elements
of order a power of 2, which is just sufficient to make up one 2-Sylow subgroup.
Hence m2 = 1, and there is a normal subgroup of order 8. �

7.8. Corollary. A5 is the smallest nonabelian simple group.
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8. Rings — Basic Definitions

We will now discuss structures with two binary operations, commonly called ad-
dition and multiplication.

8.1. Definition. A ring is a set R with two binary operations + and · and ele-
ments 0, 1 ∈ R such that (R,+, 0) is an abelian group and (R, ·, 1) is a monoid,
and such that the distributive laws hold:

∀a, b, c ∈ R : a(b+ c) = ab+ ac and (a+ b)c = ac+ bc .

The ring R is called commutative if (R, ·) is commutative.

As you will recall, a ring is called a skew field or division ring if every nonzero
element has a multiplicative inverse (i.e., if (R \ {0}, ·) is a group). If the division
ring is also commutative, it is called a field.

Here are a few elementary properties.

8.2. Lemma. Let R be a ring. Then

(1) ∀a ∈ R : a · 0 = 0 · a = 0.
(2) ∀a ∈ R : a · (−1) = (−1) · a = −a.

Proof. We have a · 0 = a(0 + 0) = a · 0 + a · 0, hence (subtracting a · 0 from
both sides) 0 = a · 0 and similarly 0 = 0 · a. For the second statement, note that
0 = a · 0 = a(1 + (−1)) = a · 1 + a · (−1). Subtracting a from both sides gives
−a = a · (−1). Similarly for (−1) · a. �

Note that this implies rules like (−a)b = −(ab), (−a)(−b) = ab and so on.

8.3. Remark. In the definition above, it is not required that 0 and 1 are distinct.
However, if 0 = 1, then for all a ∈ R, we have a = 1 · a = 0 · a = 0, so R = {0} is
the trivial ring. In all other cases, 0 and 1 are two distinct elements of R.

8.4. Examples. The prototypical example of a commutative ring is the ring of
integers Z. But also the sets Zn with addition and multiplication “mod n” are
commutative rings (and we will soon recognize them as quotient rings Z/nZ).

Any field (like Q,R,C) is a commutative ring.

Another important example of a commutative ring is the polynomial ring R[x],
where R is a commutative ring (for example, a field). We will discuss this in some
detail later.

To see an example of a non-commutative ring, consider the n×nmatrices Mat(n,R)
over some ring R (for example, a field). This forms a ring with the usual addition
and multiplication of matrices; it is not commutative when n ≥ 2. It is also not a
division ring (again when n ≥ 2).

To see a “real” skew field, recall the quaternions H = R + Ri + Rj + Rk with
(associative) multiplication satisfying i2 = j2 = k2 = ijk = −1. It can be
shown that this is a division ring, but it is not commutative, since for example
ij = k 6= −k = ji.

It is especially nice when we can multiplicatively cancel nonzero elements. This is
equivalent to the absence of zero divisors.
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8.5. Lemma. Let R be a ring. Then the following statements are equivalent.

(1) ∀a, b, c ∈ R : a 6= 0 and ab = ac =⇒ b = c.
(2) ∀a, b ∈ R : ab = 0 =⇒ a = 0 or b = 0.

Proof. To see that (1) implies (2), set c = 0 in (1). To see that (2) implies (1),
note that ab = ac implies a(b− c) = 0, so b− c = 0 by (2). �

A nonzero element a ∈ R such that there is a nonzero b ∈ R with ab = 0 is called
a zero divisor. We can state the lemma in the form “A ring R does not have zero
divisors if and only if (R \ {0}, ·) is a cancellative monoid.”

8.6. Definition. A nontrivial ring R having the properties given in Lemma 8.5
is called a domain. If R is also commutative, it is called an integral domain.

8.7. Examples. Obviously, Z is an integral domain (and that is where the name
comes from).

Any division ring is a domain, any field is an integral domain.

A matrix ring Mat(n,R) for n ≥ 2 is never a domain.

A finite ring Zn is an integral domain if and only if n is a prime number: m ∈ Zn

is a zero divisor if and only if gcd(m,n) > 1 (and n does not divide m), hence
zero divisors exist if and only if n has a nontrivial divisor (excluding n = 1 from
the discussion when Zn is the trivial rnig). In fact, more is true, as the following
result shows.

8.8. Proposition. If R is a finite integral domain, then R is a field.

Proof. By assumption, (R \ {0}, ·) is a cancellative monoid. Theorem 2.6 then
tells us that (R \ {0}, ·) is already a group, so R is a field. �

In particular, Zp is a field for p a prime number. This field is usually denoted Fp.

8.9. Remark. In the same way, one proves that a finite domain is a skew field.
Now there is another (deep) result that says that a finite skew field is already a
field (i.e., commutative). Hence any finite domain is already a field.

However, not every finite ring is commutative; counterexamples are given by the
matrix rings Mat(n,Fp) over finite fields (n ≥ 2).

As usual, we can define substructures.

8.10. Definition. Let R be a ring, S ⊂ R a subset. We call S a subring of R, if S
is an additive subgroup of R and a multiplicative submonoid of R (in particular,
1 ∈ S).

It can be checked that S with the binary operations coming from R is then a ring
(Exercise).

Any intersection of subrings is again a subring. Hence it is possible to talk of the
subring generated by a subset, in the same way as we did for subgroups.
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8.11. Examples. The only subring of Z is Z itself.

Any subring of an (integral) domain is again an (integral domain). In particular,
any subring of a field is an integral domain. As a concrete example, consider the
ring of dyadic fractions, consisting of all rational numbers whose denominator is
a power of 2.

8.12. Definition. Let R be a ring. The unit group R× is the group of invertible
elements of the monoid (R, ·).

8.13. Examples. We have Z× = {±1} and Z×n = {a ∈ Zn : gcd(a, n) = 1}.
If F is a skew field, then F× = F \ {0}.

9. Left, Right and Two-Sided Ideals and Homomorphisms

Contrary to the case of groups, there is another type of subobject that is relevant
when studying rings. Later (when talking about modules) we will see that it
corresponds to submodules of R as a module over itself.

9.1. Definition. Let R be a ring. A subset I ⊂ R is a left ideal of R if I is an
additive subgroup of R such that ∀r ∈ R, a ∈ I : ra ∈ I. Similarly, an additive
subgroup I ⊂ R is a right ideal if ∀r ∈ R, a ∈ I : ar ∈ I. Finally, I is a two-sided
ideal (or just ideal) of R if I is both a left and right ideal.

Note that for a commutative ring R, there is no difference between left, right and
two-sided ideals, and so one just talks about ideals.

Here are some basic properties.

9.2. Lemma. Let R be a ring.

(1) Any intersection of left/right/two-sided ideals of R is again a left/right/two-
sided ideal of R.

(2) The sum I + J = {a + b : a ∈ I, b ∈ J} of two left/right/two-sided ideals
I and J of R is again a left/right/two-sided ideal of R. It is the smallest
left/right/two-sided ideal of R containing both I and J .

(3) If I1 ⊂ I2 ⊂ I3 ⊂ . . . is an increasing sequence of left/right/two-sided
ideals of R, then their union I =

⋃
n In is again a left/right/two-sided

ideal of R.

Proof.

(1) This is easy (Exercise).
(2) I+J is certainly an additive subgroup and the smallest additive subgroup

containing I and J . One only has to check the additional property of
ideals. For example, if a ∈ I, b ∈ J , r ∈ R and I, J are left ideals, then
r(a+ b) = ra+ rb ∈ I + J .

(3) This is true because all properties that one has to check only involve finitely
many elements and therefore can be verified in one of the In.

�

Thus it makes again sense to talk about the left/right/two-sided ideal generated
by a subset of R.
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9.3. Examples. If R is a ring and a ∈ R, then Ra = {ra : r ∈ R} is a left ideal.
In fact, it is the smallest left ideal containing a. We call it the principal left ideal
generated by a. Similarly, aR is the smallest right ideal containing a. The smallest
two-sided ideal containing a is more difficult to describe (Exercise).

The ideals of Z are all of the form Zn (since Z is commutative, left, right and
two-sided ideals all coincide).

Any ring R has the trivial ideals 0 := {0} and R. R is a division ring if and only if
these are the only left (or right) ideals, and R 6= 0. (In fact, if a ∈ R is invertible,
then Ra = R, and vice versa. So if R is a division ring and I is a nonzero left ideal,
then there is some 0 6= a ∈ I. But a is invertible, so R = Ra ⊂ I. Conversely,
assume there are no nontrivial ideals and pick 0 6= a ∈ R. Then 0 6= Ra, so
Ra = R and a is invertible.)

It can be shown that the matrix ring Mat(n, F ) over a (skew) field F has no
nontrivial two-sided ideals, even though it is not a division ring (for n ≥ 2).
However, it has many nontrivial left ideals, for example the matrices whose only
nonzero entries are in the first column.

As always, we want to consider structure-preserving maps between rings.

9.4. Definition. A ring homomorphism between two rings R and R′ is a map
φ : R→ R′ such that φ is a homomorphism of the additive groups (R,+) and (R′,+)
and a monoid homomorphism of (R, ·) and (R′, ·). Concretely, we require that

φ(a+ b) = φ(a) + φ(b) , φ(1) = 1 , φ(ab) = φ(a)φ(b)

for all a, b ∈ R.

φ is called an endomorphism of R if R = R′.

φ is an isomorphism if it is bijective; in this case, φ−1 is again a ring homomorphism
(Exercise), and R and R′ are called isomorphic, R ∼= R′. An endomorphism of R
that is an isomorphism is called an automorphism of R.

9.5. Definition. Let φ : R → R′ be a ring homomorphism. The kernel of φ is
the kernel of φ as a homomorphism of additive groups:

kerφ = {r ∈ R : φ(r) = 0} .

9.6. Lemma. Let φ : R→ R′ be a ring homomorphism. Then kerφ is a two-sided
ideal of R.

Proof. Let I = kerφ. Since I is the kernel of a homomorphism of additive groups
(R,+) → (R′,+), it is certainly an additive subgroup of R. Now let a ∈ I and
r ∈ R. Then

φ(ar) = φ(a)φ(r) = 0 · φ(r) = 0

and similarly φ(ra) = 0, so ar, ra ∈ I. �

This raises, of course, the question if any given two-sided ideal can be the kernel
of a homomorphism.
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9.7. Proposition. Let R be a ring and I ⊂ R a two-sided ideal. On the quotient
R/I of additive groups there is a unique multiplication turning R/I into a ring
such that the natural map

φ : R −→ R/I , r 7−→ r + I

is a ring homomorphism. We then have kerφ = I.

The ring R/I constructed in this way is called the quotient ring of R modulo I.

Proof. If φ is to be a ring homomorphism, then we must define

(r + I)(r′ + I) = φ(r)φ(r′) = φ(rr′) = rr′ + I .

We need to check that this makes sense. So pick a, a′ ∈ I, then r + a, r′ + a′ are
alternative representatives of r + I and r′ + I, respectively. We must verify that
(r + a)(r′ + a′) ∈ rr′ + I. But we have

(r + a)(r′ + a′) = rr′ + ra′ + a(r′ + a′) ∈ rr′ +RI + IR = rr′ + I .

It is then clear that this multiplication turns R/I into a ring with unit element
1 + I, and that φ is a ring homomorphism.

Finally, kerφ = {r ∈ R : r + I = I} = I. �

We have the usual kind of basic properties of ring homomorphisms.

9.8. Lemma. Let φ : R→ R′ be a ring homomorphism.

(1) If I ⊂ R is a left/right/two-sided ideal and φ is surjective, then φ(I) ⊂ R′

is a left/right/two-sided ideal.
(2) If I ′ ⊂ R′ is a left/right/two-sided ideal, then φ−1(I ′) ⊂ R is a left/right/two-

sided ideal.
(3) If S ⊂ R is a subring, then φ(S) ⊂ R′ is a subring. In particular, the

image of φ is a subring of R′.
(4) If S ′ ⊂ R′ is a subring, then φ−1(S ′) ⊂ R is a subring.
(5) If φ′ : R′ → R′′ is another ring homomorphism, then φ′ ◦ φ : R → R′′ is

also a ring homomorphism.
(6) φ is injective if and only if kerφ = 0.

Proof. Easy. �

We now have isomorphism theorems analogous to the case of groups.

9.9. Theorem. Let φ : R → R′ be a ring homomorphism. Let I = kerφ be its
kernel. Then the natural map

ψ : R/I −→ R′ , r + I 7−→ φ(r)

is an injective ring isomorphism, which is an isomorphism if φ is surjective. In
particular, we have R/I ∼= φ(R).

Proof. The map is well-defined: if r − r′ ∈ I, then φ(r) − φ(r′) = 0. It is clear
(by definition of the ring structure on R/I) that ψ is a ring homomorphism. It is
injective, since its kernel is {I}, which is the zero ideal in R/I. Since ψ(R/I) =
φ(R), ψ is surjective if φ is surjective, and then it is an isomorphism. �

In addition, we get a bijection between the set of left/right/two-sided ideals of R/I
and the set of left/right/two-sided ideals of R containing I by taking images and
preimages under φ.
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9.10. Theorem. Let I ⊂ J ⊂ R be two two-sided ideals of R. Then there is a
natural surjective ring homomorphism R/I → R/J , with kernel J/I. In particular,
we have the isomorphism

(R/I)
/

(J/I) ∼= R/J .

Proof. Same as for groups, compare Thm. 4.17. �

9.11. Proposition. Let φ : R → R′ be a ring homomorphism, and let I ⊂ R be
a two-sided ideal contained in kerφ. Then there is a unique ring homomorphism
φ′ : R/I → R′ making the following diagram commutative.

R
φ //

!!B
BB

BB
BB

B R′

R/I
φ′

=={{{{{{{{

Proof. Same as for groups, compare Prop. 4.18. �

9.12. Example. There is a unique ring homomorphism Z → Zn (sending a to
a mod n). Its kernel is nZ, and it is clearly surjecive. So we get that Zn

∼= Z/nZ
also as rings.

Now consider Zn and Zmn. Then there is a unique ring homomorphism Zmn → Zn

(which has to send 1 to 1). To see this, consider the ideals mnZ ⊂ nZ ⊂ Z and
apply Prop. 9.11 above.

9.13. Definition. Let R be a commutative ring. An ideal I ⊂ R is called maximal
if I is a proper ideal, and there is no ideal strictly between I and R.

9.14. Proposition. Let φ : R → R′ be a surjective homomorphism of commuta-
tive rings. Then R′ is a field if and only if kerφ is a maximal ideal of R.

Proof. R′ is a field if and only if the only ideals of R′ are 0 and R′. We know that
the ideals of R′ are in inclusion-preserving 1-to-1 correspondence with the ideals
of R containing kerφ. So R′ is a field if and only if there are no ideals strictly
between kerφ and R, which means exactly that kerφ is a maximal ideal. �

9.15. Example. We know that all ideals of Z are of the form nZ. Also, we have
that nZ ⊂ mZ if and only if m divides n. Therefore nZ is maximal if and only
if n 6= 1 and n does not have nontrivial divisors, which means that n is a prime
number. So we see again that Z/nZ is a field if and only if n is a prime number.

9.16. Example. Consider the ring R = {f : R → R | f continuous} (under
point-wise addition and multiplication). Let a ∈ R, then

ea : R −→ R , f 7−→ f(a)

is a surjective ring homomorphism onto a field. Hence

ker ea = {f ∈ R : f(a) = 0}
is a maximal ideal of R.
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9.17. Remark. Using Zorn’s Lemma (a statement equivalent to the axiom of
choice), one can prove quite generally that if I ⊂ R is a proper ideal in a commu-
tative ring R, then there is a maximal ideal M of R containing I.

9.18. Digression. Zorn’s Lemma is the following statement.

Let (X,≤) be a non-empty partially odered set such that every non-empty chain
(i.e., totally ordered subset) in X has an upper bound in X. Then X has maximal
elements.

It can be shown that this statement is equivalent (modulo the more “harmless”
axioms of set theory) to the Axiom of Choice:

Let (Xi)i∈I be a family of non-empty sets. Then there exists a map f : I →
⋃
iXi

such that f(i) ∈ Xi for all i ∈ I. Equivalently, the product
∏

iXi is non-empty.

In the present case, we take X to be the set of all proper ideals of R containing I,
ordered by inclusion. Then I ∈ X, so X is non-empty. If {Ij : j ∈ J} is a non-
empty chain in X, then U =

⋃
j∈J Ij is an ideal containing I, and U is proper,

since 1 /∈ U (otherwise, 1 ∈ Ij for some j, contradiction). So U is an upper bound
for the chain, and Zorn’s Lemma applies. We conclude that there is a maximal
ideal containing I.

Similarly, one can prove that every vector space V has a basis, by taking X to be
the set of all linearly independent subsets of V , again ordered by inclusion. X is
nonempty, since ∅ ∈ X, and the union of a chain of linearly independent sets is
again linearly independent. If a maximal linearly independent set is not a basis,
then it can be enlarged by including an element outside its span, which gives a
contradiction.

10. Products of Rings and Chinese Remainder Theorem

In the same way as for groups, we can construct direct products of rings.

10.1. Lemma and Definition. Let Ri, for i ∈ I, be rings. Then we can turn
the product

∏
i∈I Ri of additive groups into a ring by defining multiplication

component-wise:
(ri)i∈I · (si)i∈I = (risi)i∈I .

The ring R =
∏

i∈I Ri is called the (direct) product of the rings Ri. Its zero element
is (0Ri

), its unit element is (1Ri
).

R comes with natural projection homomorphisms πi : R → Ri, given by sending
(ri)i∈I to its ith component ri.

There is again a “universal property” regarding homomorphisms into a product
of rings.

10.2. Proposition. Let (Ri)i∈I be a family of rings, R =
∏

iRi their product. Let
S be another ring, and let φi : S → Ri be ring homomorphisms. Then there is a
unique ring homomorphism Φ : S → R such that πi ◦ Φ = φi for all i ∈ I. The
kernel of Φ is ker Φ =

⋂
i kerφi.

Proof. If πi ◦ Φ = φi for all i ∈ I, then we have to set

Φ(s) = (φi(s))i∈I ∈ R .
It is then easy to check that this is indeed a ring homomorphism. The statement
on the kernel is then clear. �
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10.3. Remark. If the rings Ri are all nontrivial and I has at least two elements,
then R has zero divisors (for example, (ri) with ri0 = 1, ri = 0 for all i ∈ I \ {i0})
and so never is a domain.

Let I = {1, 2, . . . , n} be finite. Then the elements

ej = (0, . . . , 0, 1, 0, . . . , 0)

(where the 1 is in the jth position) are idempotents of R = R1 × · · · × Rn: they
satisfy e2j = ej. They even form a system of orthogonal idempotents — we have
eiej = 0 for i 6= j and e1 + · · ·+ en = 1R.

Conversely, given a commutative ring R with a system of orthogonal idempotents
e1, . . . , en, the subgroups Ri = Rei are rings with the induced multiplication and
unit ei (they are not in general subrings, however, since they do not contain the
unit of R). There are ring homomorphisms φi : R → Ri, r 7→ rei, hence by the
preceding proposition, there is a unique ring homomorphism Φ : R→ R1×· · ·×Rn,
r 7→ (re1, . . . , ren). On the other hand, the homomorphism of additive groups
Ψ : R1× · · ·×Rn → R, (r1, . . . , rn) 7→ r1 + · · ·+ rn, is a ring homomorphism (this
follows from the fact that the ei are orthogonal idempotents), which is inverse
to Φ. Hence R ∼= R1 × · · · ×Rn.

10.4. Definition. Two ideals I and J of a ring R are called comaximal or coprime
if I + J = R.

10.5. Theorem. Let I1, . . . , In be two-sided ideals of a ring R that are comaxi-
mal in pairs. Let I = I1 ∩ · · · ∩ In be their intersection. Then the natural ring
homomorphism

φ : R/I → R/I1 × · · · ×R/In
is an isomorphism.

Proof. We have the natural homomorphisms φj : R → R/Ij. Hence there is a
homomorphism φ′ : R → R/I1 × · · · × R/In; its kernel is I1 ∩ · · · ∩ In = I. By
Thm. 9.9, this induces an injective ring homomorphism

φ : R/I → R/I1 × · · · ×R/In .

We only need to show that φ is surjective. This is where we need that Ii + Ij = R
for i 6= j. Let ej ∈ R/I1 × · · · × R/In be the element that is zero everywhere
except at the jth position, where it is 1. It suffices to show that all ej are in the
image (if ej = φ(sj + I), then (r1 + I1, . . . , rn + In) = φ(r1s1 + · · · + rnsn + I)).
Without loss of generality, take j = 1. Since I1 + Ij = R for all j = 2, . . . , n, there
are aj ∈ I1 and bj ∈ Ij such that aj + bj = 1. Let s = b2 · · · bn. Then

s+ I1 = (1− a2) . . . (1− an) + I1 = 1 + I1

and s ∈ Ij for all j = 2, . . . , n, so φ(s+ I) = φ′(s) = e1. �

10.6. Example. In Z, two ideals nZ and mZ are comaximal if and only if n
and m are coprime (since nZ + mZ = dZ is the smallest ideal containing both
nZ and mZ, d is the largest divisor of both n and m). Applying the preceding
theorem to Z, we therefore get the standard Chinese Remainder Theorem:

Let m1, . . . ,mn be positive integers, coprime in pairs. Let a1, . . . , an ∈ Z. Then
there is an integer a ∈ Z such that a ≡ aj mod mj for all j = 1, . . . , n, and a is
uniquely determined modulo m = m1 · · ·mn.

Note that m1Z ∩ · · · ∩ mnZ = m1 · · ·mnZ, since m1 · · ·mn is the least common
multiple of m1, . . . ,mn when these numbers are coprime in pairs.
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11. The Field of Fractions

In the same way as the integral domain Z can be embedded into the field Q, any
integral domain can be embedded into a field. (Recall that an integral domain is
a commutative ring without zero divisors.)

11.1. Theorem. Let R be an integral domain, and let S = R \ {0} be its multi-
plicative monoid of nonzero elements. Then there is a field F = RS = R[S−1] and
an injective ring homomorphism φ : R → RS such that for every ring homomor-
phism ψ : R → R′ such that ψ(s) is invertible for every s ∈ S, there is a unique
ring homomorphism ψ′ : RS → R′ such that ψ = ψ′ ◦ φ.

RS

ψ′

��

R

φ
>>}}}}}}}}

ψ   B
BB

BB
BB

B

R′

F as above is called the field of fractions of R and denoted Frac(R). For example,
Frac(Z) = Q.

Proof. The construction is virtually identical to the construction of Q from Z. We
first define a relation on R× S via

(r, s) ∼ (r′, s′) ⇐⇒ rs′ = r′s

(think of fractions r
s

= r′

s′
). There is a number of things to check.

• ∼ is an equivalence relation.
It is clear that ∼ is reflexive and symmetric. To see that ∼ is transitive,
assume that (r, s) ∼ (r′, s′) and (r′, s′) ∼ (r′′, s′′). Then rs′ = r′s and
r′s′′ = r′′s′. Multiplying the first equality by s′′ and the second by s, we
obtain rs′s′′ = r′ss′′ = r′′s′s. Since s′ 6= 0 and R is an integral domain, we
can cancel s′ from both sides to obtain rs′′ = r′′s.

• Let RS = R× S/ ∼ be the set of equivalence classes, and write (as usual)
r
s

for the equivalence class of the pair (r, s).

• Define addition and multiplication on RS by

r

s
+
r′

s′
=
rs′ + r′s

ss′
,

r

s
· r

′

s′
=
rr′

ss′

and check that these are well-defined (do not depend on the representatives
chosen) and make RS into a ring (with zero 0 = 0

1
and unit 1 = 1

1
). This

is not hard, if a bit tedious.

• Define φ : R→ RS, r 7→ r
1

and check that φ is an injective ring homomor-
phism (easy).

• Check that RS is a field: For r
s
6= 0, we have r 6= 0, so s

r
makes sense, and

r

s
· s
r

=
rs

sr
= 1 .

• Check the universal property. Given a ring homomorphism ψ : R → R′

such that ψ(s) ∈ (R′)× for all s ∈ S, we need to define

ψ′
(r
s

)
= ψ′(φ(r)φ(s)−1) = ψ′(φ(r)) · ψ′(φ(s))−1 = ψ(r)ψ(s)−1 .
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It is then easy to check that this is indeed a well-defined ring homomor-
phism.

�

Now, most arguments in the proof of this theorem also go through under somewhat
weaker assumptions, if we just want to embed R into a ring in which all elements
from a suitable multiplicative submonoid become invertible.

We state the result, without repeating the proof (which is identical to the previous
one).

11.2. Proposition. Let R be a commutative ring, and let S ⊂ R be a multi-
plicative submonoid such that for all r ∈ R, s ∈ S, rs = 0 =⇒ r = 0.
Then there exists a ring RS and an injective ring homomorphism φ : R → RS

such that φ(s) ∈ R×S for all s ∈ S, and such that for every ring homomorphism
ψ : R → R′ with ψ(s) ∈ (R′)× for all s ∈ S, there is a unique ring homomomor-
phism ψ′ : RS → R′ such that ψ = ψ′ ◦ φ.

The ring RS (or R[S−1]) is called the localization of R at S. (This strange name
comes from algebraic geometry, where rings are used to describe geometric objects,
and this operation corresponds to looking at some sort of “neighborhood” of a
subobject related to S.)

11.3. Example. As an example, look at Z. For every subset P of the set of prime
numbers {2, 3, 5, 7, . . . }, there is a multiplicative submonoid SP of Z consisting of
the integers whose prime divisors are all from the set P . Then we get a subring
ZSP

⊂ Q of the field of rational numbers. Conversely, if R ⊂ Q is a subring, then
let P be the set of prime numbers dividing the denominator of some element of R
(when written in lowest terms); we then have R = ZSP

. Therefore the subrings
of Q are in 1-to-1 correspondence with the subsets of the set of prime numbers.
In particular, there are uncountably many such subrings.

11.4. Remark. It is possible to remove the cancellation property rs = 0 ⇒ r = 0
from the conditions in the proposition above. One then has to modify the definition
of the equivalence relation ∼ as follows.

(r, s) ∼ (r′, s′) ⇐⇒ ∃s′′ ∈ S : rs′s′′ = r′ss′′

The price one has to pay for this is that the homomorphism φ is no longer injective
in general. For example, when 0 ∈ S, then RS = 0 is the trivial ring.

12. Polynomials

In this section, we want to introduce the ring of polynomials over a given ring R.
This generalizes the concept of polynomial functions, known from analysis. In
algebra, however, we do not want to consider polynomials as functions, whose
purpose it is to be evaluated, but as objects in their own right, that we want to
add and multiply.
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12.1. Definition. Let R be a ring. The polynomial ring R[x] over R in one
variable x is defined as the set of (finite) formal sums

R[x] =
{ ∞∑
n=0

anx
n : an ∈ R, an = 0 for n� 0

}
with addition and multiplication given by

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)x
n ,

( ∞∑
n=0

anx
n
)
·
( ∞∑
n=0

bnx
n
)

=
∞∑
n=0

( n∑
k=0

akbn−k

)
xn .

(These are forced by the ring axioms and the wish to have xm · xn = xm+n.)

One has, of course, to check that these operations really turn the set R[x] into
a ring. This is, as usual, not hard, but tedious. There is another “higher-level”
approach, which exhibits (or even defines) R[x] as a subring of some already known
ring. In this case, one can consider the abelian group RN of sequences of elements
of R (under component-wise addition; this is just the direct product of countably
many copies of the additive group of R) and its endomorphism ring E = End(RN).

12.2. Example. In general, if (A,+) is an abelian group, then the set End(A) of
endomorphisms of A (i.e., group homomorphisms A → A) can be turned into a
(in general noncommutative) ring by defining

f + g : a 7→ f(a) + g(a) , f · g = f ◦ g : a 7→ f(g(a)) .

It is not hard to verify the ring axioms; for one of the distributive laws, one needs
to use that the elements are homomorphisms. (Exercise)

Coming back to R[x], we have a natural embedding R→ E that sends r ∈ R to the
endomorphism (r0, r1, . . . ) 7→ (rr0, rr1, . . . ). Also, there is an element x ∈ E that
sends (r0, r1, . . . ) to (0, r0, r1, . . . ). We let R[x] be the subring of E generated by R
and x. It is then clear that every element of R[x] will be a finite linear combination
of powers of x with coefficients from R (note that rx = xr in E for r ∈ R), that
all such linear combinations are elements of R[x] and that formally distinct linear
combinations give distinct elements (consider the action on (1, 0, 0, . . . )). In this
approach, we get the ring structure for free.

Here are a few basic definitions related to polynomials.

12.3. Definition. Let f =
∑

n anx
n ∈ R[x] be a polynomial. If f 6= 0, we define

the degree of f , deg f , to be the largest n such that an 6= 0; then adeg f is called the
leading coefficient of f . A polynomial with leading coefficient 1 is called monic.
We set deg 0 = −∞; the zero polynomial does not have a leading coefficient (and
is therefore not monic). f is constant if deg f ≤ 0, so f = a0, with all other terms
being zero.

12.4. Lemma. There is a natural injective ring homomorphism R→ R[x], map-
ping r ∈ R to the constant polynomial r · x0.

Proof. Easy. �
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12.5. Lemma. The degree has the following properties. Let f, g ∈ R[x].

(1) deg(f + g) ≤ max{deg f, deg g}, with equality if deg f 6= deg g.
(2) deg(fg) ≤ deg f + deg g, with equality if f and g are nonzero and the

product of the leading coefficients does not vanish.
(3) If R is an (integral) domain, then so is R[x].

Proof. Let f =
∑

n anx
n, g =

∑
n bnx

n.

(1) Let N = max{deg f, deg g}; then an = bn = 0 for n > N , implying
an + bn = 0 for n > N . This means that deg(f + g) ≤ N .

If deg f < deg g = N (say), then aN = 0, bN 6= 0, so aN + bN = bN 6= 0,
and deg(f + g) = N .

(2) Let N = deg f , M = deg g. Then an = 0 for n > N and bn = 0 for
n > M . Therefore, if n > N ∗M , then anb0 + · · ·+a0bn = 0, since in every
summand, at least one of the factors is zero. Hence deg fg ≤M +N .

If aNbM 6= 0, then this is the leading coefficient of fg, and deg fg =
N +M .

(3) This follows from (2), since the product of the leading coefficients never
vanishes when R is a domain.

�

As for all other algebraic constructions, there is a universal property of polyno-
mial rings. It essentially says that we can evaluate polynomials (by substituting
something for the variable) in a fairly general sense.

12.6. Theorem. Let R be a ring, R[x] the polynomial ring in one variable x
over R. For every ring homomorphism φ : R → R′ and every element c ∈ R′

such that c commutes with the image of φ, there is a unique ring homomorphism
Φ : R[x] → R′ such that Φ|R = φ (identifying R with its image in R[x] under
the canonical embedding given in Lemma 12.4) and such that Φ(x) = c. In other
words, Φ makes the following diagram commutative, where ψ is the map that sends
x to c.

R[x]

Φ

��

R

>>}}}}}}}}

φ !!C
CC

CC
CC

C {x}

bbDDDDDDDD

ψ||yyyyyyyy

R′

Proof. By the condition on Φ, we must have

Φ
( ∞∑
n=0

anx
n
)

=
∞∑
n=0

Φ(an)Φ(x)n =
∞∑
n=0

φ(an)c
n .

It remains to check that this Φ is a ring homomorphism. This is easy; the only
point here is that we need c to commute with φ(r) for r ∈ R in order to have
Φ(rx) = Φ(x · r). �
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12.7. Example. Let F be a field, V an F -vector space, and f : V → V a linear
map. The set End(V ) of all endomorphisms of V forms a ring (under pointwise
addition and composition of maps), and there is a natural ring homomorphism
φ : F → End(V ), sending λ ∈ F to v 7→ λv.

Applying the theorem, we obtain a ring homomorphism Φ : F [x] → End(V )
that restricts to φ on F and sends x to f . In this context, the Cayley-Hamilton
Theorem states that Φ(char f) = 0.

We will come back to this example later in the context of the Jordan Normal Form
Theorem.

Seeing the universal property in Thm. 12.6 above, a natural question is whether
one can construct more general polynomial rings in any set of variables. Let R be
a ring, X a set. Then this polynomial ring R[X] (which we write R[x1, x2, . . . , xn]
if X = {x1, x2, . . . , xn}) should have a natural ring homomorphism R → R[X]
and a natural map X → R[X] such that the following universal property holds.

12.8. Theorem. For every ring homomorphism φ : R → R′ and every map ψ :
X → R′ such that the elements of ψ(X) commute with each other and the image
of φ, there is a unique ring homomorphism Φ : R[X] → R′ such that Φ|R = φ and
Φ|X = ψ. In other words, Φ makes the following diagram commutative.

R[X]

Φ

��

R

==zzzzzzzz

φ ""E
EE

EE
EE

EE X

bbDDDDDDDD

ψ||yy
yy

yy
yy

y

R′

We can construct R[X] inductively when X is finite.

12.9. Definition. Let X = {x1, x2, . . . , xn} be a finite set. We define the ring
R[X] = R[x1, x2, . . . , xn] to be R when X = ∅ and to be R[x1, . . . , xn1][xn] other-
wise.

It is then an easy induction based on Thm. 12.6 to prove the universal property
in this case. The universal property implies that any two polynomial rings R[X]
(with the same R and X) are isomorphic in a unique way. This tells us, for
example, that in the iterative construction above, the ordering of the elements
of X does not matter.

Now we come to a very important property of polynomials: there is a procedure
of division with remainder, like for integers.

12.10. Proposition. Let f, g ∈ R[x], with g monic. Then there are q, r ∈ R[x]
such that deg r < deg g (this includes r = 0) and such that f = qg + r.

Proof. The proof is by induction on deg f and mimics the “long division” procedure
for polynomials.

First assume that deg f < deg g. The we can take q = 0 and r = f .

Now assume that deg f ≥ deg g (and that the statement is valid for f of smaller
degree). Write f = axn+m + f1, where deg g = n, deg f = n + m, a 6= 0 is the
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leading coefficient of f and deg f1 < deg f . Write g = xn + g1 with deg g1 < n.
Set

f2 = f − axmg = axn+m + f1 − axn+m − axmg1 = f1 − axmg1 .

By Lemma 12.5, deg f2 < n + m, so by induction, there are q2, r ∈ R with
f2 = q2g + r and deg r < deg g. Then f = qg + r, where q = q2 + axm. �

Note that we need to assume that g is monic, since otherwise, we would have to
divide by the leading coefficient of g, which is not possible in general.

The existence of a procedure like in the preceding proposition is so important that
there is a special name for rings that have it

12.11. Definition. An integral domain R is a Euclidean domain, if there is a map
N : R \ {0} → N such that

(1) for all a, b ∈ R \ {0}, N(ab) ≥ N(b);
(2) for all a ∈ R, b ∈ R \ {0}, there exist q, r ∈ R with r = 0 or N(r) < N(b)

such that a = qb+ r.

12.12. Examples. The ring of integers in a Euclidean domain. If F is a field, then
the polynomial ring F [x] is a Euclidean domain. Indeed, all nonzero constants are
invertible in this case, so we can scale g above to be monic and then apply the
proposition.

We have seen earlier that all ideals of Z are principal. This is true more generally
for Euclidean domains, with essentially the same proof.

12.13. Definition. An integral domain R is a principal ideal domain or PID if
every ideal of R is principal (i.e., of the form Ra for some a ∈ R).

12.14. Theorem. If R is a Euclidean domain, then R is a PID.

Proof. Let I ⊂ R be an ideal. The zero ideal is always principal, so we can
assume I 6= 0. Let a ∈ I \ {0} be an element with smallest possible “norm” N(a)
(this exists, since norms are natural numbers). Then Ra ⊂ I. To see the other
inclusion, take b ∈ I. By the Euclidean property, there are q and r such that
b = qa + r and r = 0 or N(r) < N(a). But the latter possibility cannot occur,
since r = b − qa ∈ I, and a has smallest norm among all nonzero elements of I.
So r must be zero, hence b = qa ∈ Ra. �

12.15. Remark. There are PIDs that are not Euclidean; an example is given by

R = Z[1+
√
−19

2
] = Z[x]/(x2 − x+ 5)Z[x].

There are integral domains that are not PIDs. For example, in Z[x], the ideal
generated by 2 and x is not principal.

13. Divisibility and Factorization

The motivation for what we will do in the following is the wish to generalize the
“Fundamental Theorem of Arithmetic”, which states that every (positive, say)
integer can be written as a product of prime numbers in an essentially unique
way. We would like to prove this for arbitrary PIDs.

In order to do this, we first have to generalize the relevant notions from Z to more
general rings.
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13.1. Definition. Let R be an integral domain.

(1) Let a, b ∈ R. We say that a divides b, or that b is divisible by a, written
a | b, if there is c ∈ R such that b = ac.
This is equivalent to saying that b ∈ Ra or that Rb ⊂ Ra.

(2) Two elements a, b ∈ R are associate, written a ∼ b, if a | b and b | a.
Equivalently, Ra = Rb, or a = bu with a unit u ∈ R×.

(3) An element a ∈ R \ (R× ∪ {0}) is called irreducible, if it cannot be written
as a product in a nontrivial way: a = bc implies b ∼ a or b ∈ R× (note
that b ∼ a ⇐⇒ c ∈ R× when a = bc).
Equivalently, Ra is maximal among proper principal ideals.

Note that the definition of irreducible elements is analogous to the usual definition
of prime numbers in Z. We will, however, later introduce the notion of prime
elements, which captures a different property. However, as we will see, in a PID
both notions coincide.

Now we can already show that we can write every nonzero nonunit as a product
of irreducibles.

13.2. Theorem. Let R be a PID, a ∈ R \ ({0} ∪ R×). Then a can be written as
a product of irreducible elements of R.

Proof. If R were a Euclidean domain, then we could mimick the usual proof for the
integers by doing an induction on N(a). (Note that in a nontrivial factorization
a = bc, we have N(b), N(c) < N(a).) But a general PID is not Euclidean, and so
we have to use some other sort of induction principle. Let us start by assuming the
statement is false. Then there is some a0 ∈ R\ ({0}∪R×) that is not a product of
irreducibles. In particular, a0 itself is not irreducible, and so we can write a0 = bc
with b and c non-units. If b and c both are products of irreducibles, then so would
be a0, so at least one of the two is not a product of irreducibles. Call it a1. Then
a1 is not a product of irreducibles, and Ra0 ( Ra1. Continuing in this way, we
obtain a strictly increasing sequence of principal ideals

Ra0 ( Ra1 ( Ra2 ( Ra3 ( . . .

Let I =
⋃
nRan. Since R is a PID, I = Rr for some r ∈ R. But then there must

be some n such that r ∈ Ran. It follows that

Rr ⊂ Ran ( Ran+1 ⊂ I = Rr ,

a contradiction. Therefore, our initial assumption must be false, and the statement
of the theorem must be true. �

Looking at this proof, we realize that we only need to know that there cannot
be an ever-increasing sequence of ideals, and so the theorem should hold for even
more general rings.

13.3. Definition. A commutative ring R is called noetherian (derived from the
name of the female German mathematician Emmy Noether) if every ascending
chain of ideals of R

I0 ⊂ I1 ⊂ I2 ⊂ . . .

becomes stationary, i.e., there is some n such that

In = In+1 = In+1 = . . . .
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13.4. Corollary. Let R be a noetherian integral domain. Then every element
a ∈ R \ ({0} ∪R×) is a product of irreducible elements.

Proof. Same proof as before, using the noetherian property to derive the contra-
diction. �

Here are two other useful characterization of noetherian rings.

13.5. Proposition. Let R be a commutative ring. Then the following statements
are equivalent.

(1) R is noetherian.
(2) Every nonempty set of ideals of R has a maximal element.
(3) Every ideal of R is finitely generated.

Proof. “(1) ⇒ (2)”: Assume R is noetherian, and let X be a nonempty set of
ideals of R. Assume X has no maximal element. Then there is I0 ∈ X (since
X 6= ∅). I0 is not maximal, so there is I1 ∈ X such that I0 ( I1. Continuing in
this way, we find a chain of ideals

I0 ( I1 ( I2 ( I3 ( . . . ,

contradicting the noetherian property of R.

“(2) ⇒ (1)”: Assume (2) and let

I0 ⊂ I1 ⊂ I2 ⊂ I3 ⊂ . . .

be an ascending chain of ideals. Let X = {I0, I1, I2, . . . }. By assumption, X has a
maximal element In. But this implies In = In+1 = In+1 = . . . , so R is noetherian.

“(1) ⇒ (3)”: Suppose there is an ideal I that is not finitely generated. Pick r0 ∈ I
and let I0 = Rr0 ⊂ I. Since I is not finitely generated, I0 ( I, so we can pick
r1 ∈ I \ I0. Let I1 = I0 + Rr1; then I0 ( I1 ⊂ I. I1 is finitely generated, but
I is not, so there is r2 ∈ I \ I1. Pick r2 ∈ I \ I1, and let I2 = I1 + Rr2; then
I0 ( I1 ( I2 ⊂ I. Continuing in this way, we find a chain I0 ( I1 ( I2 ( . . . ,
contradicting the noetherian property of R.

“(3) ⇒ (1)”: Assume that all ideals are finitely generated. Let I0 ⊂ I1 ⊂ I2 ⊂ . . .
be an ascending chain of ideals. Let I =

⋃
n In. By assumption, I is finitely

generated, so I = Rr1 +Rr2 + · · ·+Rrm for elements r1, . . . , rm ∈ R. Then there
are indices nj such that rj ∈ Inj

. Taking n = max{n1, . . . , nm}, we have that
r1, . . . , rm ∈ In. But then In = I, and therefore In = In+1 = In+2 = . . . . �

13.6. Examples. Clearly, any field is a noetherian ring, as there are only two
ideals.

Property (3) above implies (again) that any PID is noetherian: in a PID, every
ideal is even generated by one element.

It is not so easy to come up with an example of a commutative ring that is not
noetherian (we will see why this is so later in this course). The usual example is
the polynomial ring R in countably infinitely many variables x1, x2, x3, . . . over a
field F (say); then

0 ( Rx1 ( Rx1 +Rx2 ( Rx1 +Rx2 +Rx3 ( . . .

is an ascending chain of ideals that does not become stationary.

This example also shows that a subring of a noetherian ring need not be noetherian
— R is a subring of its field of fractions, which is a noetherian ring (being a field).
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We have seen that existence of a factorization into irreducibles holds quite generally
for noetherian integral domains. What about uniqueness?

We first have to figure out how unique we can such a factorization expect to be.
The most obvious way of changing a given factorization into another one is to
reorder the factors, and we certainly do not want to consider two factorizations
differing only in the ordering of the factors as essentially distinct (bear in mind
that we are working in commutative rings). But there is also another way in which
we can modify a factorization, and this is by multiplying each factor by a unit
(such that the product of all the units is 1). We also do not want to count two
factorizations as essentially distinct if they only differ in this way.

13.7. Definition. An integral domain R is a unique factorization domain or UFD,
if every element a ∈ R \ ({0} ∪ R×) can be written as a product of irreducible
elements, and if a = r1 · · · rm = s1 · · · sn are two such factorizations, then m = n,
and there is a permutation σ ∈ Sn such that rj ∼ sσ(j) for all j = 1, . . . , n.

The “Fundamental Theorem of Arithmetic” states that Z is a UFD.

How do we prove that factorization into primes in unique in Z? We use another
property of prime numbers: if p is prime, and p divides a product ab, then p must
divide one of the factors.

13.8. Definition. Let R be a commutative ring.

(1) Suppose R is an integral domain. An element p ∈ R \ ({0} ∪R×) is called
prime, if p | ab implies p | a or p | b, for all a, b ∈ R.

(2) A proper ideal P ⊂ R is called a prime ideal if ab ∈ P implies a ∈ P or
b ∈ P , for all a, b ∈ R.

It is clear that p ∈ R \ {0} is prime if and only if the principal ideal Rp is a prime
ideal.

Note that in the definition of “prime ideal”, P = 0 is allowed. The zero ideal is
prime if and only if R is an integral domain.

Let us first investigate uniqueness of factorization and then apply the results to
the case when R is a PID.

13.9. Lemma. Let R be an integral domain.

(1) If p ∈ R is prime, then p is irreducible.

(2) If p, q ∈ R are two prime elements such that p | q, then p ∼ q.

Proof.

(1) If p = ab, then p | a or p | b, so p ∼ a or p ∼ b, i.e., a ∼ p or a ∈ R×.

(2) By assumption, q = ap with some a ∈ R. By part (1), p ∼ q, or else p wold
have to be a unit, which is not the case. �
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13.10. Proposition. Let R be an integral domain and suppose

r1r2 · · · rm ∼ s1s2 · · · sn
with prime elements r1, . . . , rm and s1, . . . , sn. Then m = n, and up to reordering
the factors, rj ∼ sj for j = 1, . . . , n.

Proof. The proof is by induction on n (say). If n = 0, then s1 · · · sn = 1, and so
r1 · · · rm is a unit. If m > 0, then this would imply that r1 is a unit, contradicting
the assumption that r1 is prime.

Now assume that n > 0 and that the statement is true for smaller values of n.
sn divides r1 · · · rm, so sn | rj for some j ∈ {1, . . . ,m}, and (up to reordering) we
can assume that j = m. By Lemma 13.9, sn ∼ rm, and therefore, cancelling these
factors, r1 · · · rm−1 ∼ s1 · · · sn−1. By the induction hypothesis, m − 1 = n − 1, so
m = n, and the factors are associate, as claimed. �

13.11. Corollary. If R is a noetherian integral domain such that every irreducible
element of R is prime, then R is a UFD.

Proof. Since R is noetherian, factorizations into irreducibles exist by Cor. 13.4.
By assumption, all irreducibles are prime, so by Prop. 13.10, any two factorization
of the same element into irreducibles (and therefore primes) only differ by units
and ordering of the factors. �

13.12. Lemma. If R is a UFD and a ∈ R is irreducible, then a is prime.

Proof. Assume that a divides bc, so bc = ad for some d ∈ R. If d ∈ R×, then
b ∼ a or c ∼ a, since a is irreducible. If b ∈ R× (or c ∈ R×), then a | c (a | b).
So we cann assume that none of b, c, d is a unit. Write b, c and d as products of
irreducibles: b = b1 · · · bm, c = c1 · · · cn, d = d1 · · · dk. Then

b1 · · · bmc1 · · · cn = ad1 · · · dk
are two factorizations into irreducibles of the same element. Hence a must be
associate to one of the factors in the left hand side, implying that a divides b
or c. �

So in a UFD, the notions of irreducible and prime elements coincide. Therefore
one usually talks about prime factorization in a UFD.

13.13. Lemma. Let R be a commutative ring.

(1) An ideal I ⊂ R is prime if and only if R/I is an integral domain.

(2) If M ⊂ R is a maximal ideal, then M is a prime ideal.

Proof. (1) Write a for a+ I, the image of a in R/I. I is a prime ideal if and only
if ab ∈ I implies a ∈ I or b ∈ I, if and only if ab + I = I implies a + I = I or
b + I = I, if and only if ab = 0 implies a = 0 or b = 0 in R/I, if and only if R/I
has no zero divisors.

(2) If M is a maximal ideal, then R/M is a field and therefore an integral domain.
By part (1), M is a prime ideal. �



39

13.14. Theorem. Let R be an integral domain. If R is a PID, then R is a UFD.

Proof. Since R is a PID, R is noetherian. It remains to show that every irreducible
element of R is prime. So assume that a ∈ R is irreducible. Then Ra is maximal
among proper principal ideals. But all ideals are principal in a PID, so Ra is
a maximal ideal. By Lemma 13.13, Ra is a prime ideal, and so a is a prime
element. �

13.15. Corollary. Let F be a field. Then F [x] is a UFD.

14. Greatest Common Divisors

We have seen that a Euclidean domain is a PID, and a PID is a UFD. In a UFD,
greatest common divisors exist, as we will see. In a PID, greatest common divisors
have a nice interpretation, and in Euclidean domains, we can compute them easily.

But first let us give a slightly different formulation of the unique factorization
property.

14.1. Proposition. Let R be a UFD. Pick a system P of representatives of the
prime elements of R modulo ∼. Then every a ∈ R \ {0} can be written uniquely
as

a = u
∏
p∈P

pep

with u ∈ R× and ep ∈ {0, 1, 2, . . . } with ep 6= 0 for only finitely many p ∈ P.

If

a = u
∏
p∈P

pep and b = v
∏
p∈P

pfp ,

then a | b if and only if ep ≤ fp for all p ∈ P.

Proof. Existence: If a is a unit, then we can take u = a and ep = 0 for all p.
Otherwise, we can write a as a product of primes: a = r1 · · · rn. Let

ep = #{j ∈ {1, . . . , n} : p ∼ rj} ;

then ep = 0 for all but finitely many p,
∑

p ep = n, and
∏

p p
ep ∼ r1 · · · rn = a, so

there is a unit u such that a = u
∏

p p
ep .

Uniqueness: Assume that

a = u
∏
p∈P

pep = v
∏
p∈P

pfp .

If a is a unit, then all the ep and fp must be zero, so a = u = v. Otherwise, we can
temporarily combine the units u and v with one of the factors in the product. Then
by uniqueness of factorization, for every p ∈ P , the number of factors associate
to p must be the same in both products. This means that ep = fp for all p, which
in turn implies u = v.

The second statement is clear. �

In some cases, there is a natural choice for the set P . If R = Z, we take for P
the set of prime numbers (i.e., positive prime (= irreducible) elements of Z). If
R = F [x] for a field F , we take for P the set of monic irreducible polynomials.
(Note that F [x]× = F×, so associate polynomials only differ by scaling with a
nonzero constant factor.)
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14.2. Definition. Let R be an integral domain, a, b ∈ R \{0}. An element d ∈ R
is a greatest common divisor of a and b if d | a and d | b, and for every r ∈ R such
that r | a and r | b, we have r | d. We write gcd(a, b) = d, even though in general,
d is not uniquely determined — it is determined up to associates (if it exists).

In a similar way, we can define the greatest common divisor of any set S of elements
of R: d = gcd(S) if d | s for all s ∈ S, and if for all r ∈ R such that r | s for
all s ∈ S, we have r | d. Note that the greatest common divisor of the empty set
exists and is zero (0 is the largest element of R with respect to divisibility).

It is then clear that if gcds of pairs of elements exist, then the gcd of any finite
set of elements exists, and

gcd(a1, . . . , an) = gcd(a1, gcd(a2, gcd(a3, . . . ))) .

14.3. Proposition. Let R be a UFD. Then any two elements a and b of R have
a greatest common divisor.

Proof. If a = 0, then b is a gcd of a and b; if b = 0, then a is a gcd of a and b. So
we can assume that a, b 6= 0. By Prop. 14.1, we can write

a = u
∏
p∈P

pep , b = v
∏
p∈P

pfp .

Then d =
∏

p∈P p
min{ep,fp} is a gcd of a and b, by the second statement in Prop. 14.1.

�

In the same way, one can prove that gcd(S) exists for any set S ⊂ R.

So to find a gcd in a general UFD, we first need to find the factorizations of a
and b. This can be rather hard — even for integers, there are no efficient algorithms
known.

14.4. Proposition. Let R be a PID, a, b ∈ R. Then there is d ∈ R such that
Ra + Rb = Rd, and gcd(a, b) = d. In particular, any multiple of a greatest
common divisor of a and b can be written as ua+ vb for suitable u, v ∈ R.

Proof. The ideal Ra+Rb is principal, hence there is d ∈ R such that Ra+Rb = Rd.
Since a ∈ Ra ⊂ Rd, b ∈ Rb ⊂ Rd, d divides both a and b. Conversely, suppose
r ∈ R divides both a and b. Then Ra,Rb ⊂ Rr, hence Rd = Ra+Rb ⊂ Rr (recall
that Ra+Rb is the smallest ideal containing Ra and Rb), so r divides d. �

14.5. Remark. An analogous statement is true for any set S ⊂ R: the ideal
generated by S equals Rd for some d ∈ R, and then d = gcd(S), and d is a finite
linear combination of elements of S. In particular, d is already the GCD of a finite
subset of S. In fact, this statement is already true in a general UFD (Exercise).

So in a PID, we can reduce to the problem of finding a generator of an ideal
generated by two elements. If the ring is Euclidean, then there is a efficient way
of doing this.
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14.6. Theorem. Let R be a Euclidean domain, a, b ∈ R. We can compute a
gcd of a and b as follows. Set r0 = a, r1 = b, n = 1. While rn 6= 0, write
rn−1 = qnrn + rn+1 with rn+1 = 0 or N(rn+1) < N(rn), and replace n by n + 1.
This loop terminates, and upon exit, we have gcd(a, b) = rn−1.

Proof. Since N(r1) > N(r2) > N(r3) > . . . , the loop must terminate with rn = 0.
Let I = Ra+ Rb. Then Rrn−1 + Rrn = I for all n (such that rn is defined): this
is certainly true for n = 0, and

Rrn +Rrn+1 = Rrn +R(rn−1 − qnrn) = Rrn−1 +Rrn .

Upon exit from the loop, rn = 0, therefore I = Rrn−1, and so rn−1 is a gcd of a
and b. �

This algorithm is the Euclidean Algorithm. It can be extended to also provide
elements u, v ∈ R such that ua+ vb = gcd(a, b).

In the case R = Z (or, for example, R = Q[x]), this provides a polynomial time
algorithm for computing greatest common divisors.

14.7. Remark. This illustrates a general fact. While essentially all the nice prop-
erties can be proved for PIDs, the Euclidean property allows for efficient algo-
rithms, which may be much harder to find for general PIDs.

The notion of greatest common divisor is crucial in the proof of the important fact
that R[x] is a UFD if R is a UFD.

14.8. Definition. Let R be a UFD, f ∈ R[x]. The content of f is the gcd of its
(non-zero) coefficients. f is called primitive if it has content 1.

If f 6= 0, then f can be written as f = cf0, where c is constant (the content) and
f0 is primitive.

14.9. Gauss’ Lemma. Let R be a UFD. If f, g ∈ R[x] are primitive, then so is
their product fg.

Proof. Assume fg is not primitive. Then there is a prime element p ∈ R that
divides all the coefficients of fg. On the other hand, p does not divide all the
coefficients of f , and p does not divide all the coefficients of g. Let f =

∑
n anx

n,
g =

∑
n bnx

n and define

k = min{n : p - an} , m = min{n : p - bn} .

The coefficient of xk+m in fg is

c = ak+mb0 + · · ·+ akbm + · · ·+ a0bk+m .

In all terms except akbm, p divides one of the factors, but p does not divide akbm.
Therefore p does not divide c, a contradiction. �
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14.10. Remark. Let R be an integral domain, F its field of fractions. Then there
is a canonical embedding R[x] → F [x] (using the embedding of R into F and
sending x to x).

If R is a UFD and 0 6= f ∈ F [x], then f can be written as cf0 with c ∈ F× and
f0 ∈ R[x] primitive: some multiple rf with r ∈ R \ {0} is in R[x] (take for r the
product of all denominators of the coefficients, for example); then we can write
rf = af0 with f0 primitive. Putting c = a/r gives the result.

In particular, we can choose a set P of representatives of the irreducible poly-
nomials in F [x] up to associates that contains only primitive polynomials with
coefficients in R.

14.11. Corollary. Let R be a UFD, F its field of fractions. Let f ∈ R[x] be a
primitive polynomial. Then f is irreducible in R[x] if and only if (the image of)
f is irreducible in F [x].

Proof. Assume that f is irreducible in R[x]. Suppose f = gh in F [x]. Write
g = ag0, h = bh0 with a, b ∈ F×, g0, h0 ∈ R[x] primitive. Then f = (ab)f0 with
f0 = g0h0 ∈ R[x] primitive (by Gauss’ Lemma). Since f is primitive, this implies
ab ∈ R×. But then f = (abg0)h0 is a factorization in R[x], therefore (f being
irreducible) deg g = deg g0 = 0 or deg h = deg h0 = 0. This shows that f is also
irreducible in F [x].

For the converse, assume that f is irreducible in F [x]. If f = gh in R[x], then
the same factorization holds in F [x], and so we must have that g or h is constant.
Since f is primitive, this constant must be a unit, showing that f is irreducible
in R[x]. �

14.12. Example. We can use this result in order to prove that a given polynomial
of degree 3 is irreducible in Q[x]. Consider for example f = 5x3 + 7x+ 1. f has
integral coefficients and is primitive, so f is irreducible in Q[x] if and only if f
is irreducible in Z[x]. If f is not irreducible in Z[x], then it has a factor ax + b
of degree 1, with a, b ∈ Z. Then a must divide 5 and b must divide 1, so there
are only four possibilities for the linear factor (note that we can assume a to be
positive): x+1, x− 1, 5x+1, 5x− 1. Since none of f(−1), f(1), f(−1/5), f(1/5)
is zero, none of these polynomials divides f , and so f is irreducible.

14.13. Theorem. If R is a UFD, then R[x] is also a UFD.

Proof. As before, let F be the field of fractions of R. We know that F [x] is a
UFD. Let P be the set specified in the remark above. By the corollary above, all
the elements of P are irreducible in R[x]. Every nonzero element f of R[x] ⊂ F [x]
can be written uniquely

f = c
∏
p∈P

pep

with c ∈ F×. Since the product is primitive by Gauss’ Lemma, c is in fact
in R \ {0}. Since R is a UFD, c is a product of irreducibles of R (which stay
irreducible in R[x]). This proves existence of the factorization. Uniqueness follows
from the fact that the ep are uniquely determined and uniqueness of factorization
in R. �

14.14. Examples. Z[x], and more generally, Z[x1, x2, . . . , xn] are UFDs.

F [x1, x2, . . . , xn] is a UFD when F is a field.
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15. More About Noetherian Rings

We have seen that some properties of a ring R carry over to the polynomial
ring R[x] —

R commmutative =⇒ R[x] commutative

R is a domain =⇒ R[x] is a domain

R is a UFD =⇒ R[x] is a UFD

There is at least one other very important implication of this kind, which we want
to prove (among other things) in this section:

R noetherian =⇒ R[x] noetherian

15.1. Theorem (Hilbert Basis Theorem). Let R be a noetherian commutative
ring. Then R[x] is also noetherian.

Proof. Let I ⊂ R[x] be an ideal. The main idea in this proof is to consider the
“ideals of leading coefficients” associated to I: for n ≥ 0, set

Ln(I) = {a ∈ R : a xn + f ∈ I for some f ∈ R[x] with deg f < n} .

It is clear that Ln(I) is an ideal. We also have that (use that x · I ⊂ I)

L0(I) ⊂ L1(I) ⊂ L2(I) ⊂ . . .

Since R is noetherian, this chain stabilizes, and we have

Ln(I) = Ln+1(I) = Ln+2(I) = · · · =: L(I)

for some n = n(I). Now the key point is the following claim.

If I ⊂ I ′ are two ideals of R[x] such that Ln(I) = Ln(I
′) for all n, then I = I ′.

To prove this claim, assume that I ( I ′ and consider f ∈ I ′ \ I with m = deg f
minimal. Since Lm(I) = Lm(I ′), there is g ∈ I with deg g = m and deg(f−g) < m.
Now f, g ∈ I ′, so f −g ∈ I ′, hence by minimality of m, f −g ∈ I. But this implies
f = (f − g) + g ∈ I, a contradiction.

Now consider a chain

I0 ⊂ I1 ⊂ I2 ⊂ . . .

of ideals of R[x]. We obtain a chain

L(I0) ⊂ L(I1) ⊂ L(I2) ⊂ . . .

of ideals of R, which beomes stationary at some m:

L(Im) = L(Im+1) = L(Im+2) = · · · =: L

Let n = n(Im) be such that Ln(Im) = Ln+1(Im) = · · · = L(Im). Then for all
N ≥ n and all M ≥ m, we have

L = L(Im) = Ln(Im) ⊂ Ln(IM) ⊂ LN(IM) ⊂ L(IM) = L ,

so LN(IM) = L. Now consider the chains

Lk(I0) ⊂ Lk(I1) ⊂ Lk(I2) ⊂ . . .

for k = 0, 1, . . . , n − 1. They all become stationary eventually, so there is some
m′ ≥ m such that

Lk(Im′) = Lk(Im′+1) = Lk(Im′+2) = . . .
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for all 0 ≤ k < n and therefore for all k ≥ 0. By the claim proved above, this
implies

Im′ = Im′+1 = Im′+2 = . . . ,

so our original chain of ideals of R[x] also stabilizes. �

There is another construction that preserves the noetherian property.

15.2. Lemma. Let R be a commutative ring, I ⊂ R an ideal. If R is noetherian,
then the quotient ring R/I is also noetherian.

Proof. Indeed, let φ : R→ R/I be the quotient map, and let

J0 ⊂ J1 ⊂ J2 ⊂ . . .

be a chain of ideals of R/I. Then

φ−1(J0) ⊂ φ−1(J1) ⊂ φ−1(J2) ⊂ . . .

is a chain of ideals of R, which by assumption becomes stationary:

φ−1(Jn) = φ−1(Jn+1) = . . .

for some n. But then

Jn = φ(φ−1(Jn)) = φ(φ−1(Jn+1)) = Jn+1

etc., so the chain of ideals of R/I also becomes stationary. �

In order to summarize these results in a convenient way, we introduce yet another
notion.

15.3. Definition. Let R be a commutative ring. An R-algebra is a ring A, to-
gether with a ring homomorphism φ : R → A such that φ(R) ⊂ Z(A) (where
Z(A) = {a ∈ A : ∀b ∈ A : ab = ba} is the center of A).

Let (A, φ), (A′, φ′) be two R-algebras. An R-algebra homomorphism A→ A′ is a
ring homomorphism ψ : A→ A′ such that ψ ◦ φ = φ′.

A
ψ // A′

R
φ

__??????? φ′

>>~~~~~~~

15.4. Examples. R, together with the identity homomorphism, is an R-algebra.
More generally, every quotient R/I of R (with the quotient map) is an R-algebra.

The polynomial ring R[x], or more generally, R[x1, x2, . . . , xn] (or even R[X] for
any set X) is an R-algebra (with the canonical embedding R→ R[X]). The uni-
versal property of the polynomial ring R[x1, . . . , xn] can then be stated as follows.

Let A be an R-algebra, and let a1, . . . , an ∈ A be commuting elments. Then there
is a unique R-algebra homomorphism ψ : R[x1, . . . , xn] → A satisfying ψ(xj) = aj
for all j = 1, . . . , n.

Compare this to the universal property of the F -vector space V on the ba-
sis x1, . . . , xn:

Let W be an F -vector space, w1, . . . , wn. Then there is a unique F -linear map
ψ : V → W satisfying ψ(xj) = wj for all j = 1, . . . , n.

In this sense, R[x1, . . . , xn] is the free commutative R-algebra on the set {x1, . . . , xn}.
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The matrix ring Matn(R) of n × n matrices with entries in R is an R-algebra
(with the embedding sending r to r times the identity matrix). This algebra is
not commutative when n ≥ 2.

15.5. Definition. Let (A, φ) be an R-algebra. An R-subalgebra of A is a subring
B ⊂ A containing the image of φ, together with the restricted homomorphism
φB : R→ B.

The intersection of any family of R-subalgebras of A is again an R-subalgebra.
Therefore we can speak of the R-subalgebra generated by a subset S ⊂ A. The
R-algebra A is finitely generated if it equals the R-subalgebra generated by a finite
subset S ⊂ A.

15.6. Lemma. Let (A, φ) be a commutative R-algebra. Then A is a finitely gen-
erated R-algebra if and only if A is isomorphic to a quotient R[x1, . . . , xn]/I of a
polynomial ring in finitely many variables over R.

Proof. Assume A is finitely generated, with generators a1, . . . , an. By the uni-
versal property of the polynomial ring, there is an R-algebra homomorphism
ψ : R[x1, . . . , xn] → A sending xj to aj. Its image is an R-subalgebra containing
the generating set, hence ψ is surjective. Let I = kerψ, then A ∼= R[x1, . . . , xn]/I.

Conversely, let A = R[x1, . . . , xn]/I. Then A is generated by the images of
x1, . . . , xn as an R-algebra. �

Using the notion of R-algebra, the two main results of this section can be conve-
niently summarized as follows.

15.7. Corollary. Let R be a noetherian commutative ring, A a finitely generated
commutative R-algebra. Then A is also noetherian.

15.8. Remark. Let F be a field. Finitely generated F -algebras (also called F -
algebras of finite type) are important because they occur in Algebraic Geometry as
the “affine coordinate rings” of “affine algebraic sets” — subsets of affine n-space
defined by a collection of polynomial equations.

Note that the Hilbert Basis Theorem implies that every set of polynomial equations
in a finite number of variables x1, . . . , xn over a field F is equivalent to a finite set
of such equations. Indeed, the set of all equations that can be derived from the
collection of equations f = 0 for f ∈ S ⊂ F [x1, . . . , xn] is given by f = 0 for f in
the ideal I generated by S. By the Hilbert Basis Theorem, this ideal is finitely
generated, leading to a finite set of equations that is equivalent to the original
set. (The name Hilbert Basis Theorem refers to the fact that it implies that every
ideal in F [x1, . . . , xn] has a finite “basis”, i.e., generating set.)

16. Modules — Basics

Modules are a generalization of vector spaces. Basically, they are like vectors
spaces, but instead of the field of scalars, we now have a commutative ring. The
fact that rings are in some respects less “nice” than fields (or, put positively, that
rings have a richer structure) leads to new phenomena. For example, it is no longer
true that a finitely generated module necessarily has a basis.
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16.1. Definition. Let R be a commutative ring. An R-module is an abelian
group M , together with a “scalar multiplication” R ×M → M , usually written
(r,m) 7→ rm, satisfying the following conditions.

(1) Distributivity: r(m+m′) = rm+ rm′ for all r ∈ R, m,m′ ∈M ,

(r + r′)m = rm+ r′m for all r, r′ ∈ R, m ∈M .

(2) Identity: 1m = m for all m ∈M
(3) Associativity: (rr′)m = r(r′m) for all r, r′ ∈ R, m ∈M .

16.2. Remark. This definition makes sense for arbitrary (not necessarily com-
mutative) rings R. In this case, what we have defined is called a left R-module,
and right R modules are defined in a similar way, using a multiplication map
M ×R→M .

16.3. Remark. Alternatively, ifM is an abelian group, giving an R-module struc-
ture on M is equivalent to specifying a ring homomorphism R→ End(M), where
End(M) is the endomorphism ring of M (addition point-wise, multipication is
composition of endomorphisms).

This may (and should!) remind you of group actions — an R-module is essentially
a ring acting on an abelian group.

16.4. Definition. Let M be an R-module. An R-submodule of M is an abelian
subgroup M ′ of M , closed under multiplication by elements from R: rm′ ∈M ′ for
all r ∈ R, m′ ∈M ′.

Every module has the trivial submodules 0 = {0} and M .

The intersection of any family of submodules ofM is again a submodule. Therefore
it makes sense to speak of the submodule generated by a subset S ⊂ M . The R-
module M is finitely generated if there is a finite subset S ⊂M such that M is the
submodule generated by S. M is called cyclic if M is generated by one element m;
then M has the form Rm = {rm : r ∈ R}.
If M1,M2 ⊂ M are two submodules, then their sum M1 + M2 as abelian groups
is the submodule generated by M1 ∪M2, i.e., the smallest submodule containing
both M1 and M2. The analogous statement holds for any family of submodules
(where the sum

∑
i∈IMi is defined to be the set of all finite sums of elements from⋃

i∈IMi).

16.5. Examples. An abelian group A is the same as a Z-module. Indeed, there
is always a natural multiplication Z × A → A, given by taking multiples of an
element. Equivalently, there is always a unique ring homomorphism Z → End(A).

The ring R is itself an R-module, using the ring multiplication. The submodules
are then exactly the ideals of R. Similarly, Rn (the set of n-tuples of elements of R)
is an R-module with addition and scalar multiplication defined component-wise.
Rn is called the (finitely generated) free R-module of rank n.

More generally, any R-algebra (A, φ) is an R-module, with scalar multiplication
given by ra = φ(r)a.

If F is a field, then an F -module is the same as an F -vector space.

Let F be a field, V an F -vector space and φ : V → V an F -linear map. Then V is
an F [x]-module via the homomorphism F [x] → End(V ) that sends x to φ (and F
to scalar mulitplications). If f ∈ F [x] is the characteristic or minimal polynomial
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of φ, then V is an F [x]/F [x]f -module in the same way (since the homomorphism
F [x] → End(V ) above has kernel containing f , it factors through F [x]/F [x]f).
We will use this point of view for the proof of the Jordan Normal Form Theorem
for matrices.

16.6. Definition. Let M and M ′ be two R-modules. An R-module homomor-
phism or R-linear map from M to M ′ is a homomorphism φ : M →M ′ of abelian
groups such that φ(rm) = rφ(m) for all r ∈ R, m ∈M .

The image of φ is a submodule of M ′.

If φ is bijective, it is called an R-module isomorphism; in this case M and M ′ are
called isomorphic, M ∼= M ′. As usual, in this case the inverse φ−1 is again an
R-module homomorphism.

The composition of two R-module homomorphisms is again an R-module homo-
morphism.

The kernel of φ is the kernel as homomorphism of additive groups:

kerφ = {m ∈M : φ(m) = 0} .

Note that kerφ is a submodule of M , and φ is injective if and only if kerφ = 0 is
the zero submodule.

We denote by HomR(M,M ′) the set of all R-module homomorphisms M → M ′.
This set has the structure of an R-module under point-wise addition and scalar
multiplication:

(φ+ ψ)(m) = φ(m) + ψ(m) , (rφ)(m) = rφ(m) .

In particular, there is always the zero homomorphism sending every m ∈ M to
0 ∈M ′.

16.7. Example. An R-algebra homomorphism is the same as a ring homomor-
phism that is at the same time an R-module homomorphism.

A homomorphism of abelian groups is the same as a Z-module homomorphism.

Let M be an R-module. Then there is a unique R-module homomorphism 0 →M
and a unique R-module homomorphism M → 0; in both cases, it is the zero
homomorphism.

16.8. Proposition. Let M be an R-module, M ′ ⊂M a submodule. Then there is
a unique R-module structure on the abelian group quotient M/M ′ that makes the
quotient map φ : M →M/M ′ an R-module homomorphism.

M/M ′ is called the quotient module of M by M ′.

Proof. Uniqueness is clear, as usual — we need to have

r(m+M ′) = rφ(m) = φ(rm) = rm+M ′ .

It remains to check that this is well-defined (if it is, it inherits the axioms from M).
So let m +M ′ = m′ +M ′; then m−m′ ∈ M ′, and rm− rm′ = r(m−m′) ∈ M ′

as well, hence rm+M ′ = rm′ +M ′. �

We have the usual isomorphism theorems.
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16.9. Proposition.

(1) If φ : M →M ′ is an R-module homomorphism, then φ(M) ∼= M/ kerφ.

(2) If φ : M → M ′ is an R-module homomorphism and N ⊂ M is a submod-
ule contained in kerφ, then there is a unique R-module homomorphism
ψ : M/N →M ′ such that ψ(m+N) = φ(m).

(3) If M is an R-module and M1 ⊂ M2 ⊂ M are two submodules, then the
natural R-module homomorphism M/M1 →M/M2 is surjective with kernel
M2/M1; in particular, (M/M1)/(M2/M1) ∼= M/M2.

(4) If M is an R-module and M1,M2 ⊂ M are two submodules, then the
natural R-module homomorphism M1 → (M1 +M2)/M2 is surjective with
kernel M1 ∩M2; in particular, M1/(M1 ∩M2) ∼= (M1 +M2)/M2.

Proof. Use the corresponding statements for abelian groups and check that every-
thing is compatible with the scalar multiplication. �

16.10. Definition. A diagram of R-modules and R-module homomorphisms

M0
φ1−→M1

φ2−→M2
φ3−→ · · · φn−1−→ Mn−1

φn−→Mn

is called exact at Mj (1 ≤ j ≤ n− 1) if the image of φj equals the kernel of φj+1.
The diagram is called an exact sequence if it is exact at all Mj for j = 1, . . . , n−1.
An exact sequence of the form

0 −→M ′ α−→M
β−→M ′′ −→ 0

(where 0 denotes the zero module) is called a short exact sequence. In this case,
α is injective, β is surjective, so α(M ′) ∼= M ′ and M ′′ ∼= M/α(M ′).

As for vector spaces, we can define external and internal direct sums and direct
products of R-modules

16.11. Definition. Let (Mj)j∈J be a family of R-modules. The direct product of
the Mj is ∏

j∈J

Mj = {(mj)j∈J : mj ∈Mj for all j ∈ J} ,

with component-wise addition and scalar multiplication. We have natural projec-
tion homomorphisms

πk :
∏
j∈J

Mj −→Mk , (mj)j∈J 7−→ mk

for k ∈ J . If J = {1, . . . , n} is finite, we also write M1× · · ·×Mn for the product.

The (external) direct sum of the Mj is the submodule⊕
j∈J

Mj = {(mj)j∈J ∈
∏
j∈J

Mj : mj = 0 for all but finitely many j ∈ J} .

We have natural inclusion homomorphisms

ιk : Mk −→
⊕
j∈J

Mj , m 7−→ (mj)j∈J where mj = 0 for j 6= k and mk = m

for k ∈ J . If J = {1, . . . , n} is finite, we also write M1 ⊕ · · · ⊕Mn for the direct
sum.

Note that the direct sum and product coincide when the index set J is finite, but
are distinct when J is infinite.
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We have the usual universal properties.

16.12. Proposition. Let (Mj)j∈J be a family of R-modules, M another R-module.

(1) If φj : M → Mj are R-module homomorphisms, then there is a unique
R-module homomorphism Φ : M →

∏
j∈JMj such that πj ◦ Φ = φj for all

j ∈ J .

(2) If φj : Mj → M are R-module homomorphisms, then there is a unique
R-module homomorphism Φ :

⊕
j∈JMj → M such that Φ ◦ ιj = φj for all

j ∈ J .

M

φj
  @

@@
@@

@@
@@

@@
Φ //

∏
j∈J

Mj

πj

��
Mj

M

⊕
j∈J

MjΦoo

Mj

φj

``AAAAAAAAAAA
ιj

OO

Proof. As usual: uniqueness is clear; it remains to check that the definition of Φ
that is forced gives a well-defined R-module homomorphism, which is easy. �

16.13. Definition. LetM be an R-module, (Mj)j∈J a family of submodules ofM .
M is the internal direct sum of the Mj if the natural R-module homomorphism⊕

j∈JMj →M is an isomorphism. In this case, we write M =
⊕

j∈JMj.

A submodule M ′ ⊂ M is called a direct summand of M if there is a complement
M ′′ ⊂ M , i.e., a submodule M ′′ such that M = M ′ ⊕M ′′ is the internal direct
sum of M ′ and M ′′.

16.14. Remark. M is the internal direct sum of submodules Mj, j ∈ J , if and
only if

(1) M =
∑

j∈JMj is generated by the Mj, and

(2) for every k ∈ J , Mk ∩
∑

j∈J\{k}Mj = 0.

(Exercise.)

16.15. Example. Let M1,M2 ⊂M be submodules of an R-module M . Then we
have a short exact sequence

0 −→M1 ∩M2
α−→M1 ⊕M2

β−→M1 +M2 −→ 0

with the maps α : m 7→ (m,−m) and β : (m1,m2) 7→ m1 +m2.

16.16. Examples. If R = F is a field (so that R-modules are F -vector spaces),
then every submodule is a direct summand: we can pick a basis of the subspace
and extend it to a basis of the full vector space. This is not true for general
R-modules. For example, the Z-submodules of Z are all of the form nZ, but only
0 and Z itself are direct summands. (Exercise.)

The Z-module Z/nZ has (an isomorphic copy of) Z/mZ as a direct summand if
and only if n = mm′ with m and m′ coprime. In particular, if n = pe11 · · · p

ek
k is

the prime factorization of n, then

Z/nZ ∼= Z/pe11 Z⊕ · · · ⊕ Z/pek
k Z .

(Compare the Chinese Remainder Theorem.) A similar statement is true for any
PID in place of Z.
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17. Noetherian Modules

Similarly as for rings, we can consider a finiteness condition for modules, expressed
in terms of submodules.

17.1. Definition. An R-module M is called noetherian if every increasing se-
quence of submodules of M

M0 ⊂M1 ⊂M2 ⊂M3 ⊂ . . .

stabilizes, i.e., Mn = Mn+1 = . . . for some n.

17.2. Proposition. Let M be an R-module. Then the following statements are
equivalent.

(1) M is noetherian.

(2) Every non-empty set of submodules of M has a maximal element.

(3) Every submodule of M is finitely generated.

Proof. Identical to the proof of Prop. 13.5. �

With this definition, a commutative ring R is noetherian as a ring if and only if
it is noetherian as an R-module.

17.3. Proposition. Let

0 −→M ′ α−→M
β−→M ′′ −→ 0

be a short exact sequence of R-modules. Then M is noetherian if and only if both
M ′ and M ′′ are noetherian.

Proof. First assume that M ′ and M ′′ are both noetherian. Let M0 ⊂ M1 ⊂ . . .
be an increasing sequence of submodules of M . Then β(M0) ⊂ β(M1) ⊂ . . .
is an increasing sequence of submodules of M ′′ and α−1(M0) ⊂ α−1(M1) ⊂ . . .
is an increasing sequence of submodules of M ′. By assumption, both become
stationary, so there is some n such that β(Mn) = β(Mn+1) = . . . and α−1(Mn) =
α−1(Mn+1) = . . . . Now I claim that if N ⊂ N ′ are two submodules of M such
that β(N) = β(N ′) and α−1(N) = α−1(N ′), then N = N ′. This implies that
Mn = Mn+1 = . . . , so the sequence of submodules of M also stabilizes.

To prove the claim, let x ∈ N ′. Since β(N) = β(N ′), there is some y ∈ N such
that β(x) = β(y), so x− y ∈ ker β ∩N ′ = α(α−1(N ′)). Since α−1(N) = α−1(N ′),
it follows that x− y ∈ α(α−1(N)) ⊂ N , and finally that x = y + (x− y) ∈ N .

Now assume that M is noetherian. Let M ′′
0 ⊂M ′′

1 ⊂ . . . be an increasing sequence
of submodules of M ′′. Then β−1(M ′′

0 ) ⊂ β−1(M ′′
1 ) ⊂ . . . is an increasing sequence

of submodules of M , which by assumption stabilizes. Since β(β−1(M ′′
n)) = Mn,

the original sequence of submodules of M ′′ also stabilizes.

Let M ′
0 ⊂ M ′

1 ⊂ . . . be an increasing sequence of submodules of M ′. Then
α(M ′

0) ⊂ α(M ′
1) ⊂ . . . is an increasing sequence of submodules of M , which by as-

sumption stabilizes. Since α−1(α(M ′
n)) = Mn, the original sequence of submoudles

of M ′ stabilizes as well. �

In particular, every submodule and every quotient module of a noetherian module
is again noetherian.
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17.4. Theorem. Let R be a noetherian commutative ring, M a finitely generated
R-module. Then M is a noetherian R-module.

Proof. Since M is finitely generated, say by m1, . . . ,mn, M is a quotient of the
free module Rn, for some n. It therefore suffices to pove the claim for M = Rn.
This now follows by induction n, the case n = 1 being the assumption that R is a
noetherian ring, using the obvious exact sequences

0 −→ Rn−1 −→ Rn −→ R −→ 0 .

�

17.5. Corollary. Let R be a PID and M a finitely generated R-module. Then
every R-submodule of M is again finitely generated.

Proof. As a PID, R is noetherian, so M is noetherian as well. �

18. Finitely Generated Modules over Principal Ideal Domains

We have seen at the end of the last section that finitely generated modules over
a PID R are noetherian. In particular, every submodule of the free module Rn is
finitely generated. In this section, we want to study the structure of submodules
and quotients of Rn in more detail. The main result will be that submodules of Rn

are again free modules of rank at most n and that quotients of Rn are products
of at most n cyclic modules.

In this section, R will always be a PID.

For the proof, we need a few results about matrices over R.

18.1. Definition. Two m × n matrices A and A′ with entries in R are called
equivalent if there are invertible matrices U ∈ GLm(R) and V ∈ GLn(R) such
that A′ = UAV . We write A ∼ A′. This is clearly an equivalence relation.

We write gcd(A) for a gcd of all the entries of A. More generally, we write gcdr(A)
for a gcd of all r× r minors of A, i.e., determinants of r× r matrices obtained by
extracting any choice of r rows and columns from A.

18.2. Remarks. We can think of the matrix A as specifying an R-linear map
Rn → Rm (identifying the elements of Rn and Rm with column vectors of the
appropriate length). Then multiplying A on the left or right with invertible ma-
trices corresponds to changing bases in the two free modules. So two matrices
are equivalent if and only if they describe the same map with respect to suitable
bases. Compare with the situation in Linear Algebra.

Our goal in the following will be to find a normal form for matrices with respect
to equivalence. Over a field, the normal form is diagonal (i.e., with zero entries
off the main diagonal), with diagonal entries 1, . . . , 1, 0, . . . , 0. What we do here
is a generalization of this to PIDs instead of fields.

Note that (as in Linear Algebra), elementary row and column operations on A
(swapping two rows/columns, multiplying a row/column by a unit, adding a mul-
tiple of a row/column to another) correspond to multiplying A on the left/right
by certain invertible matrices.
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18.3. Lemma. If A ∼ A′, then gcdr(A) ∼ gcdr(A
′) for all r.

Proof. Exercise. �

18.4. Lemma.

(1) Let A = (a b). Then A is equivalent to A′ = (g 0) where g = gcd(A).
(2) Let A =

(
a b
c d

)
. Then A is equivalent to A′ =

(
g 0
0 h

)
where g = gcd(A).

(3) Let A be any m × n matrix over R, with m,n ≥ 1. Then A is equivalent
to a matrix whose upper left entry is a gcd of the entries of A.

Proof.
(1) There are u, v ∈ R such that ua + vb = g. Write a = ga′, b = gb′. We set

U = (1) and V =
(
a′ b′

−v u

)
, then U(g 0)V = (a b).

(2) Among all matrices equivalent to A, consider one with upper left entry minimal

with respect to divisibility, say
(
a′ b′

c′ d′

)
. We must have that a′ divides b′ and c′;

otherwise we could apply part (1) (or its transpose) to get a smaller upper left
entry gcd(a′, b′) (or gcd(a′, c′)). But then we can add a suitable multiple of the
first row/column to the second row/column (this amounts to multiplying on the

left/right by invertible matrices) and obtain an equivalent matrix
(
a′ 0
0 h

)
. If a′

does not divide h, then adding the second row to the first and then performing
column operations, we get a matrix with left upper entry gcd(a′, h), which is
smaller than a′. This is not possible by our choice of a′, hence a′ divides h and so
a′ = gcd(a′, h) = gcd(a, b, c, d).

(3) As in the proof of part (2), consider an equivalent matrix A′ with minimal
upper left entry a (w.r.t. divisibility). If a is not a gcd of the entries of A′, then
there is a 1× 2 or a 2× 1 or a 2× 2 submatrix of A′ with left upper entry a that
has the same property. But then (by parts (1) or (2)) we can find an equivalent
matrix with a smaller left upper entry, a contradiction. �

18.5. Definition. An m× n matrix A = (aij) is called diagonal if aij = 0 for all
i 6= j. We write A = diagmn(a11, a22, . . . , akk), where k = min{m,n}. (This is
ad-hoc notation.)

18.6. Proposition. Let A be an m×n matrix with entries in R. Then A is equiv-
alent to a diagonal m× n matrix A′ = diagmn(d1, . . . , dk) (where k = min{m,n})
such that d1 | d2 | . . . | dk. The sequence of diagonal entries (di)i is uniquely
determined up to associates.

The diagonal entries d1, d2, . . . , dk with k = min{m,n} are called the elementary
divisors of A.

Proof. To prove existence, we proceed by induction on k. There is nothing to
prove if k = 0. Otherwise, by Lemma 18.4, A is equivalent to a matrix whose
upper left entry is a gcd d1 of the entries of A. We can then perform row and
column operations to make all other entries of the first row and column zero, so

A ∼

 d1 0

0 A1


with some (m−1)×(n−1) matrix A1. By induction, A1 ∼ diagm−1,n−1(d2, . . . , dk)
with d2 | . . . | dk, so A ∼ diagmn(d1, d2, . . . , dk). Note also that d1 | d2, since d1

divides all entries of A1.



53

It remains to show uniqueness. Assume that

A = diagmn(d1, . . . , dk) ∼ diagmn(d
′
1, . . . , d

′
k) = A′

and d1 | . . . | dk, d′1 | . . . | d′k. Then d1d2 · · · dr = gcdr(A) ∼ gcdr(A
′) = d′1d

′
2 · · · d′r

for all 1 ≤ r ≤ k. This implies dj ∼ d′j for 1 ≤ j ≤ k (note that dr = 0 implies
dj = 0 for j ≥ r). �

18.7. Example. Let us see how this works in a specific example. Consider

M =


−3 1 0 1
1 −5 0 2
0 0 −2 1
1 2 1 −2


over R = Z. We can interchange the first two rows in order to get a 1 into the
upper left corner, and then clear out the first row and column. This gives

1 0 0 0
0 −14 0 7
0 0 −2 1
0 7 1 −4

 .

We now move the 1 in the remaining 3 × 3 matrix into its upper left corner (by
interchanging rows 2 and 4 and columns 2 and 3) and then clear out row and
column 2: 

1 0 0 0
0 1 0 0
0 0 14 −7
0 0 −14 7


Now we move 7 to the next diagonal position and clear out, leading to

1 0 0 0
0 1 0 0
0 0 7 0
0 0 0 0

 ,

so the elementary divisors of M are 1, 1, 7, 0.

18.8. Remark. The result is valid for any PID; however in order to compute the
elementary divisors of a matrix, you need to be able to express the gcd of two
elements a, b ∈ R as a linear combination of a and b. This is possible in Euclidean
rings with an extension of the Euclidean Algorithm, but may be hard in more
general PIDs.

18.9. Definition. An element (r1, . . . , rn) ∈ Rn is called primitive if we have
gcd(r1, . . . , rn) = 1. Note that this is equivalent to saying that Rr1+· · ·+Rrn = R.

18.10. Corollary. The group GLn(R) ∼= AutR(Rn) = EndR(Rn)× of invertible
n × n matrices over R acts transitively on the set of primitive elements of Rn.
More generally, two elements are in the same orbit if and only if the gcds of their
entries agree.

Proof. Identifying elements of Rn with column vectors, i.e., n× 1 matrices, this is
just a special case of Prop. 18.6. �
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18.11. Corollary. Given a primitive element (r1, . . . , rn) ∈ Rn, there exists a
matrix A ∈ GLn(R) whose first column is (r1, . . . , rn).

Proof. By the preceding corollary, there is A ∈ GLn(R) such that

A ·


1
0
...
0

 =


r1
r2
...
rn

 .

But this means that that (r1, . . . , rn) is the first column of A. �

18.12. Corollary. Let M ⊂ Rn be a submodule. Then M is free of rank ≤ n.

Proof. We know that M is finitely generated. Let (r1j, . . . , rnj) be generators
of M , j = 1, . . . ,m. Consider the matrix A whose columns are (r1j, . . . , rnj). By
Prop. 18.6 above, there are invertible matrices U and V such that A′ = UAV is
diagonal. The submodule M ′ of Rn generated by the columns of A′ is obviously
free of rank ≤ n. Since V is invertible, this is the same as the submodule generated
by the columns of UA. Since U is an automorphism of Rn, M is isomorphic to M ′

and therefore also free of rank ≤ n. �

18.13. Corollary. Let M be an R-module generated by n elements. Then M is
isomorphic to a direct product (or sum) of at most n cyclic modules:

M ∼= R/d1R×R/d2R× · · · ×R/dmR

with m ≤ n and such that d1 is not a unit and d1 | d2 | . . . | dm. The sequence of
the dj’s is uniquely determined up to associates.

Proof. Let m1, . . . ,mn be generators of M and let φ : Rn → M be the R-linear
map that sends (r1, . . . , rn) to r1m1 + . . .+ rnmn. The kernel of φ is a submodule
of Rn, and by considerations similar to the ones in the proof of the preceding
corollary, we can assume that kerφ is generated by d1e1, . . . , dmem (where the ej
are the standard basis elements of Rn) with m ≤ n and d1 | d2 | . . . | dm. Let k be
the smallest index such that dk is not a unit. Then M ∼= Rn/ kerφ is isomorphic to
R/dkR× . . .×R/dmR×Rn−m. Uniqueness follows from the uniqueness statement
in Prop. 18.6. �

18.14. Definition. Let M be an R-module. An element m ∈ M is torsion if
there is r ∈ R \ {0} such that rm = 0. M is called torsion free if the only torsion
element of M is 0.

18.15. Corollary. A finitely generated torsion free R-module is free.

Proof. In the preceding corollary, the product of cyclic modules is torsion free if
and only if all dj = 0; then M ∼= Rm. �

Note that the assumption on finite generation is necessary. For example, Q as
a Z-module is torsion free, but not free. (Which proves that Q is not a finitely
generated abelian group.)

Now we want to apply these results to prove two important theorems. One is the
classification theorem for finitely generated abelian groups; the other is the Jordan
Normal Form Theorem for matrices.
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18.16. Theorem. Let G be a finitely generated abelian group. Then there are
uniquely determined integers d1, . . . , dm with d1 > 1 and d1 | d2 | . . . | dm and an
integer r ≥ 0 such that

G ∼= Z/d1Z× Z/d2Z× . . .× Z/dmZ× Zr .

G is finite if and only if r = 0, and G is a free abelian group if and only if m = 0.

Proof. Apply Corollary 18.13 to the case R = Z and note that every nonzero
integer is associate to a unique positive integer. �

If we use that Z/nZ ∼= Z/pe11 Z × . . . × Z/pek
k Z when n = pe11 · · · p

ek
k is the prime

factorization, then we can state the classification theorem also in the following
form.

Every finitely generated abelian group is a product of finitely many cylic groups of
prime order and a finitely generated free abelian group.

A similar statement is true over a general PID.

18.17. Theorem. Let M be a finitely generated R-module. Then M is isomorphic
to a direct product (or sum) of a finitely generated free R-module and finitely many
cyclic modules of the form R/peR, where p is a prime element of R and e ≥ 1.

Now we want to use our results in order to prove the Jordan Normal Form Theo-
rem. Recall its statement.

18.18. Theorem. Let F be a field, M ∈ Matn(F ) a matrix such that the char-
acteristic polynomial f factors into linear factors. Then there is an invertible
matrix T ∈ GLn(F ) such that T−1MT is a block diagonal matrix whose blocks are
“Jordan blocks” of the form 

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


Proof. The statement amounts to saying that we can write the vector space F n

as a direct sum of subspaces Vj such that each Vj is invariant under M , and the
action of M on Vj with respect to a suitable basis vj1, . . . , vjk is given by a Jordan
block, i.e.,

Mvjk = λvjk + vj,k−1 , . . . , Mvj2 = λvj2 + vj1 , Mvj1 = λvj1 .

In order to show this, we exhibit F n as a finitely generated F [x]-module. We have
an F -algebra homomorphism F [x] → Matn(F ) that sends x to M , and we know
by the Cayley-Hamilton Theorem that the characteristic polynomial f is in the
kernel. We can therefore consider F n as an F [x]-module, in which every element
is “killed” by f : if v ∈ F n, then fv = f(M) · v = 0. Since F n is finitely generated
as a vector space, it is also finitely generated as an F [x]-module (a vector space
basis will generate F n also as an F [x]-module). By Theorem 18.17, we can write

F n ∼= F [x]/〈pe11 〉 ⊕ . . .⊕ F [x]/〈pek
k 〉 .

(There is no free part, since f kills everything.) This induces a splitting F n =
V1⊕ . . .⊕ Vk of F n as an internal direct sum of F [x]-submodules Vj ∼= F [x]/〈pej

j 〉.
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Note also that every pj must divide f , and since f splits into linear factors, every
pj must be of the form x − λ, with λ an eigenvalue of M . So we only have to
study the action of x on F [x]-modules of the form Mλ,e = F [x]/〈(x − λ)e〉. Now
division with remainder shows that the images of 1, x, . . . , xe−1 form an F -basis
of Mλ,e. But then, v1 = (x− λ)e−1, v2 = (x− λ)e−2, . . . , ve = 1 (modulo (x− λ)e)
also form an F -basis, and the action of x on the vj is

xv1 = λv1 , xv2 = λv2 + v1 , . . . , xve = λve + ve−1 .

�

19. Roots of Polynomials

In this section, F will always be a field. Note that any ring homomorphism F → R,
where R is not the zero ring, is injective (the kernel is an ideal of F and not all
of F , so it must be the zero ideal). Therefore, we can identify F with a subring
of the F -algebra R.

19.1. Definition. Let f ∈ F [x] be a polynomial, and let R 6= 0 be an F -algebra.
An element r ∈ R is called a root or zero of f if f(r) = 0.

Recall that f(r) is the image of f under the unique F -algebra homomorphism
F [x] → R that sends x to r.

19.2. Lemma. Let f ∈ F [x] be a polynomial, a ∈ F . Then a is a root of f if and
only if f is divisible by x− a.

Proof. We use polynomial division, see Prop. 12.10: there is a constant polyno-
mial r and a polynomial q such that f(x) = q(x)(x − a) + r. Evaluating this
equation at a, we get f(a) = r. Hence a is a root of f iff f(a) = 0 iff r = 0 iff
x− a divides f . �

19.3. Proposition. Let 0 6= f ∈ F [x] be a polynomial of degree n. Then f has at
most n distinct roots in F .

Proof. By induction on n. The claim is clear for constant polynomials (n = 0).
Otherwise, assume that n > 0 and that f has at least one root a1 ∈ F . Then by
the previous lemma, f = (x − a1)g with some polynomial g of degree n − 1. By
induction, g has at most n− 1 distinct roots in F . Now 0 = f(a) = (a− a1)g(a)
implies that a = a1 or a is a root of g, so f can have at most n distinct roots
in F . �

Note that the statement is equivalent to the following.

19.4. Corollary. Let f ∈ F [x] be a polynomial of degree at most n. If f has at
least n+ 1 distinct roots in F , then f is the zero polynomial.
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19.5. Examples. The argument works more generally for integral domains in
place of F (or use the field of fractions). However, it is essential that there are no
zero divisors and that the ring is commutative, as the following examples show.

(1) Let R be the ring Z/8Z and consider f = x2 − 1 ∈ R[x]. Then f has the
four distinct roots 1, 3, 5, 7 in R.

(2) Now consider the quaternions H and let f = x2 +1 ∈ H[x]. Then f has the
six distinct roots ±i,±j,±k in H. In fact, the roots of f in H are exactly
the elements ai+ bj + ck with a2 + b2 + c2 = 1, so there are (uncountably)
infinitely many roots!

(Exercise: where does the proof go wrong when F is only a skew field?)

19.6. Corollary. If the polynomial f ∈ F [x] has the distinct roots a1, . . . , am
in F , then f is divisible by (x−a1) · · · (x−am). If f is monic of degree n and has
the n distinct roots a1, . . . , an in F , then f =

∏n
j=1(x− aj).

Proof. The first statement follows by induction from Lemma 19.2: we can write
f = (x − a1)f1; then 0 = (aj − a1)f1(aj), so a2, . . . , am are roots of f1, and by
induction, f1 is divisible by (x− a2) · · · (x− am).

As to the second statement, we know from the first part that f is divisible by the
right hand side. But both sides are monic polynomials of the same degree, hence
their quotient is 1. �

Now it is perhaps surprising that the seemingly innocuous result of Prop. 19.3 has
a very interesting consequence.

19.7. Theorem. Let G ⊂ F× be a finite subgroup. Then G is cyclic.

Proof. By Thm. 18.16, the classification theorem for finitely generated abelian
groups, G ∼= Z/d1Z × . . . × Z/dkZ with positive integers 1 < d1 | d2 | . . . | dk.
This implies that for all α ∈ G, αdk = 1 (recall that the group operation in G is
written multiplicatively). So all elements of G are roots of the polynomial xdk −1.
By Prop, 19.3, #G ≤ dk. But #G = d1d2 · · · dk, so this implies that k = 1, and
G ∼= Z/d1Z is cyclic. �

19.8. Corollary. Let F be a finite field, n = #F . Then F× is a cyclic group,
and all elements of F are roots of f = xn − x. In particular,

xn − x =
∏
a∈F

(x− a) in F [x].

Proof. By the previous theorem, F× is cyclic (as a finite subgroup of F×). Since
the order of F× is n− 1, all elements a ∈ F \ {0} are roots of xn−1− 1. Therefore,
all elements of F are roots of x(xn−1 − 1) = xn − x. The last statement follows
from Cor. 19.6. �

We will study finite fields more closely in a later section.

If a ∈ F is an element of a finite subgroup of F×, then an = 1 for some n ≥ 1.
Such elements have a special name.
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19.9. Definition. An element a ∈ F such that an = 1 for some n ≥ 1 is called
an nth root of unity. It is a primitive nth root of unity if am 6= 1 for all 1 ≤ m < n
(i.e., if o(a) = n in F×).

The nth roots of unity form a (finite) subgroup of F× denoted by µn(F ) or just µn
in case #µn(F ) = n. This group µn(F ) is cyclic of order dividing n; if the order
is n, then µn(F ) contains primitive nth roots of unity, and these are exactly the
generators of µn(F ).

19.10. Example. What are the nth roots of unity in C? Using polar coordinates,
we have (reiφ)n = rneniφ (where r > 0 and φ ∈ R/2πZ). This equals 1 if and only
if r = 1 and nφ ∈ 2πZ. Therefore, there are exactly the n solutions

1 , e2πi/n , e4πi/n , . . . , e2(n−1)πi/n .

In the complex plane, they are the vertices of a regular n-gon centered at the
origin and with one vertex at 1. The nth root of unity e2kπi/n is primitive if and
only if gcd(k, n) = 1.

19.11. Example. If F is a finite field of size n, then F× = µn−1(F ). For example,
we have all fourth roots of unity in F5 = Z/5Z. The two primitive ones are 2 and 3;
indeed 24 ≡ 34 ≡ 1 mod 5, but 22 = 4 and 32 = 9 are not ≡ 1.

20. Algebraic Field Extensions

In this section, we will consider the relations between fields. F will continue to
denote a field.

20.1. Definition. A field extension of F is another field F ′, together with a field
(= ring) homomorphism F → F ′. We frequently write F ′/F to indicate that F ′ is
a field extension of F (and hope that it does not lead to confusion with the other
uses of “/”).

Note that F ′ is then an F -algebra, in particular, F ′ is an F -vector space (i.e., an
F -module), and we can talk about its dimension over F . The extension F ′/F is
called finite if F ′ is a finite-dimensional F -vector space. In this case the dimension
is called the degree of the extension and written [F ′ : F ]. Extensions of degree 2
are called quadratic, extensions of degree 3, cubic, and so on.

We frequently identify F with its image in F ′; then the homomorphism is just
inclusion F ⊂ F ′.

20.2. Examples. F/F (with the identity map) is a finite field extension; its degree
is 1. A field extension of degree 1 is called trivial.

C/R is a quadratic field extension. R/Q is an infinite field extension.

20.3. Lemma. If F ′′/F ′/F is a chain of two field extensions, then F ′′/F is finite
if and only if F ′′/F ′ and F ′/F are both finite. In this case,

[F ′′ : F ] = [F ′′ : F ′][F ′ : F ] .

Furthermore, if (ai)i∈I is an F -basis of F ′ and (bj)j∈J is an F ′-basis of F ′′, then
(aibj)(i,j)∈I×J is an F -basis of F ′′.
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Proof. If F ′′/F is finite, then clearly F ′′/F ′ and F ′/F are both finite. Now assume
that F ′′/F ′ and F ′/F are both finite, and let (ai)i∈I be an F -basis of F ′ and (bj)j∈J
an F ′-basis of F ′′ (so I and J are finite). Then aibj (for i ∈ I, j ∈ J) generate
F ′′ as an F -vector space, hence F ′′ has finite dimension over F . (Given α ∈ F ′′,
we can write α as a linear combination of the bj with coefficients in F ′; then we
can write the coefficients as linear combinations of the ai with coefficients in F .
Expanding out shows that α is a linear combination of the aibj with coefficients
in F .)

We have to show that dimF F
′′ = dimF ′ F ′′ · dimF F

′ = #J#I. The argument
above shows ≤, so we only have to show that the aibj are linearly independent
over F . So assume there are λij ∈ F such that

∑
j∈J

∑
i∈I λijaibj = 0. Since the

bj are linearly independent over F ′, this implies that
∑

i∈I λijai = 0 for all j ∈ J .
Now since the ai are linearly independent over F , this in turn implies that all
λij = 0. �

20.4. Definition. Let K be a field. A subfield of K is a subring F of K that
is a field. Then K/F is a field extension, and K therefore an F -algebra. It is
clear that the intersection of arbitrary collections of subfields is again a subfield.
Therefore the following definitions make sense.

Let F ⊂ K be a subfield, α1, . . . , αn ∈ K. We denote by F [α1, . . . , αn] the F -
subalgebra of K generated by α1, . . . , αn, and by F (α1, . . . , αn) the subfield of K
generated by F and α1, . . . , αn.

Note that F [α1, . . . , αn] is the image of the polynomial ring F [x1, . . . , xn] under
the F -algebra homomorphism to K that sends xj to αj.

Next, we look at elements in field extensions.

20.5. Definition. Let F ′/F be a field extension and α ∈ F ′. We call α algebraic
over F if α is a root of a nonzero polynomial f ∈ F [x]. If α is not algebraic
over F , it is called transcendental over F . The extension F ′/F is called algebraic
if all elements α ∈ F ′ are algebraic over F ; otherwise it is transcendental.

F is called algebraically closed in F ′ if the only elements of F ′ that are algebraic
over F are those of F . F is called algebraically closed if F does not have nontrivial
algebraic extensions.

20.6. Lemma. Let F ′/F be a field extension and α ∈ F ′ an algebraic element.
Then there is a monic polynomial f ∈ F [x] such that f(α) = 0 and such that
f divides every polynomial g ∈ F [x] that has α as a root. The polynomial f is
irreducible.

If g ∈ F [x] is monic and irreducible and g(α) = 0, then g = f . In particular, f is
uniquely determined.

This polynomial f is called the minimal polynomial of α over F . If deg f = n,
then α is called algebraic of degree n over F .

Proof. Consider the F -algebra homomorphism φ : F [x] → F ′ that sends x to α.
Its kernel is not the zero ideal, since by assumption there is some g ∈ F [x] with
g(α) = 0. Since F [x] is a PID, the kernel is a principal ideal; it is then generated
by a unique monic polynomial f . Now α is a root of g ∈ F [x] if and only if
g ∈ kerφ, if and only if f divides g. Since the image of φ is an integral domain,
kerφ is a (nonzero) prime ideal, and therefore f is irreducible.
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For the last statement, we certainly have that f divides g. But f is not constant
and g is irreducible, so f ∼ g. Since both are monic, f = g. �

20.7. Examples. Consider i ∈ C, where C is a field extension of R. The minimal
polynomial is then x2 + 1. More generally, if α = a + bi ∈ C with b 6= 0, then its
minimal polynomial over R is x2 − 2a x+ a2 + b2.

Since i is a root of x2 + 1, it is also algebraic over Q. More generally, if ζ ∈ C is
an nth root of unity, then ζ is a root of xn − 1, and so ζ is algebraic over Q.

By a counting argument from set theory, “most” real (or complex) numbers are
transcendental (over Q), but it is hard to prove that for specific interesting num-
bers. Lindemann’s proof in 1882 that π is transcendental was a big achievement.
The number e is also transcendental (proved by Hermite a decade earlier), but
it is not known if both e + π and eπ are transcendental (they cannot both be
algebraic). On the other hand, eπ is known to be transcendental.

20.8. Lemma. Let F ′/F be a field extension, α ∈ F ′. The following statements
are equivalent.

(1) α is algebraic over F .

(2) dimF F [α] is finite.

(3) F [α] = F (α).

(4) α is contained in a finite subextension of F ′/F .

Proof. Let φ : F [x] → F ′ be the F -algebra homomomorphism sending x to α.
Then the image of φ is F [α], and the kernel of φ is a principal ideal 〈f〉. Since the
image of φ is an integral domain, the kernel is a prime ideal, hence f = 0, or f is
irreducible. We then have the following equivalences.

dimF F [α] <∞ ⇐⇒ f 6= 0

⇐⇒ α is algebraic over F

F [α] = F (α) ⇐⇒ F [α] is a field

⇐⇒ kerφ is a maximal ideal

⇐⇒ f is irreducible

⇐⇒ f 6= 0

(For the first, note that dimF F [x]/〈f〉 = deg f if f 6= 0, but dimF F [x] = ∞.)

This proves the equivalence of the first three statements. Together, they clearly
imply (4): α ∈ F (α) = F [α] is a finite subextension. Conversely, (4) obviously
implies (2). �

20.9. Corollary. If F ′/F is a finite field extension, then F ′/F is algebraic.

20.10. Corollary. Let F ′/F be a field extension.

(1) Let α, β ∈ F ′. If α is algebraic over F and β is algebraic over F (α), then
β is algebraic over F .

(2) The set of all elements of F ′ that are algebraic over F form a subfield of F ′

containing F : if α and β are algebraic, then α + β and αβ are algebraic,
and if α 6= 0, then α−1 is algebraic.
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Proof.
(1) By assumption and Lemma 20.8, F (α, β) = F (α)(β) is a finite extension
of F (α) and F (α) is a finite extension of F . By Lemma 20.3, F (α, β)/F is finite,
and so by Lemma 20.8 again, β ∈ F (α, β) is algebraic.

(2) Let α, β ∈ F ′ be algebraic over F . By the reasoning above, F (α, β) is finite
over F , and so all its elements are algebraic, in particular α + β, αβ and α−1 (if
the latter is defined). �

20.11. Example. The element 2 cos 2π
7
∈ R is algebraic over Q — it is a zero

of x3 + x2 − 2x − 1, which is also its minimal polynomial, since it is monic and
irreducible (it has no rational root). The fact that α = 2 cos 2π

7
is algebraic can

be seen from α = ζ + ζ−1 where ζ = e2πi/7 ∈ C is a seventh root of unity and
therefore algebraic. ζ satisfies ζ7 − 1 = 0, ζ 6= 1, so

ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 = 0 ,

which can be rewritten in the form

(ζ + ζ−1)3 + (ζ + ζ−1)2 − 2(ζ + ζ−1)− 1 = 0 .

20.12. Corollary. If F ′/F and F ′′/F ′ are algebraic extensions, then so is F ′′/F .

Proof. Let α ∈ F ′′. Then α is algebraic over F ′, so it is a root of some polynomial
f ∈ F ′[x]. The coefficients of f are all algebraic over F . By an argument similar
to that in the proof of the corollary above, the F -subalgebra K generated by the
coefficients is of finite F -dimension. But now K(α)/K is finite and K/F is finite,
so K(α)/F is also finite, hence α is algebraic over F . �

We now come to a very important construction that provides us with algebraic
field extensions.

20.13. Proposition. Let f ∈ F [x] be an irreducible polynomial of degree n. Then
F ′ = F [x]/〈f〉 is a field extension of F of degree n, in which f has a root.

If K/F is a field extension such that a ∈ K is a root of f , then there is a unique
field homomorphism F ′ → K sending the image of x in F ′ to a.

This construction is called adjoining a root of f to F .

Proof. Since f is irreducible, 〈f〉 is a maximal ideal of F [x] and therefore the
quotient ring F ′ = F [x]/〈f〉 is a field. It is an F -algebra in a natural way and has
F -dimension n = deg f . Let α ∈ F ′ be the image of x. Then f(α) = 0, since the
evaluation homomorphism F [x] → F ′ that sends x to α is the natural quotient
map, and f is in its kernel.

Now suppose K/F is a field extension and a ∈ K is a root of f . The evaluation
homomorphism F [x] → K that sends x to a then has kernel generated by f ,
therefore it induces an F -algebra homomorphism F ′ → K that sends the image α
of x to a. �
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20.14. Examples. This proposition allows us to construct fields like Q( 3
√

2) with-
out the need to define them as subfields of an already known field like R or C.
We simply set K = Q[x]/〈x3− 2〉 (we need to show that x3− 2 is irreducible) and
give the image of x the name 3

√
2.

In a similar way, consider f = x2 + x + 1 ∈ F2[x]. It does not have a zero in F2,
hence f is irreducible. Therefore we can construct the field K = F2[x]/〈x2+x+1〉,
which is a quadratic extension of F2 and therefore has four elements (and is usually
called F4). If α is the image of x, then F4 = {0, 1, α, α+ 1}, and we know how to
compute with these elements if we keep in mind that α2 = α+ 1. We will look at
finite fields more closely soon.

We see that irreducible polynomials are very important. Therefore, we need a way
of knowing when a given polynomial is irreducible. For example, if 2 ≤ deg f ≤ 3,
then f is irreducible in F [x] if and only if f has no root in F . (If f is reducible,
then it must have a factor of degree 1 and therefore a root.) Of course, linear
polynomials (of degree 1) are always irreducible.

To get more powerful criteria, we assume that the field F is the field of fractions of
a UFD R. Recall Gauss’ Lemma one of whose consequences was that a primitive
polyomial f ∈ R[x] is irreducible if and only if it is irreducible in F [x]. This
implies the following useful fact.

20.15. Lemma. Let f = anx
n + . . . + a0 ∈ R[x] with an 6= 0. If α ∈ F is a root

of f , then α = r/s with r, s ∈ R such that r | a0 and s | an.

Proof. In F [x], f is divisible by x−α, so in R[x], f must be divisible by c(x−α),
where c ∈ R is such that cx − cα ∈ R[x] is primitive. Write c(x − α) = sx − r;
then α = r/s, and s must divide the leading coefficient an of f , r must divide the
constant coefficient a0. �

20.16. Example. The polynomial 2x3 + x2 + 3 ∈ Q[x] is irreducible. Otherwise,
it would have to have a root r/s ∈ Q, with r | 3 and s | 2. But none of the
possibilities ±1,±3,±1

2
,±3

2
is a root.

20.17. Lemma. Let f = anx
n + . . .+ a0 ∈ R[x] be primitive. If p ∈ R is a prime

element that does not divide an, and the image of f in R/Rp[x] is irreducible, then
f is irreducible.

Proof. Note that there is a canonical R-algebra homomorphism R[x] → R/Rp[x]
that extends R→ R/Rp and sends x to x. (To be completely correct, one should
use a different variable for the polynomial ring over R/Rp.) Write a 7→ ā for this
homomorphism and assume that f̄ is irreducible. Note that deg f̄ = deg f , since
ān 6= 0. If f were reducible, then (since f is primitive) f would have to factor into
two polynomials of smaller degree: f = gh. But then f̄ = ḡh̄ is a factorization of f̄
into two polynomials of smaller degree, contradicting the irreducibility of f̄ . �

20.18. Example. The polynomial x3+x+1010100
+1 ∈ Z[x] ⊂ Q[x] is irreducible.

In fact, its image in F2[x] is irreducible (since it has no root there).

The most famous of all irreducibililty criteria is Eisenstein’s Criterion. It is as
follows.



63

20.19. Proposition. Let f = anx
n + . . . + a0 ∈ R[x] be primitive. If p ∈ R is a

prime element such that p - an, but p divides all the other coefficients of f , and
p2 - a0, then f is irreducible.

Proof. Suppose f = gh in R[x] with g and h of smaller degree. Consider again
the homomorphism R[x] → R/Rp[x]. By assumption, the image of f is ānx

n with
ān 6= 0. Since R/Rp is an integral domain, the only factors of f̄ are (constant
multiples of) polynomials of the form xk for 0 ≤ k ≤ n. In particular, ḡ = bxk and
h̄ = cxn−k where k = deg g ≥ 1, n− k = deg h ≥ 1 and b, c 6= 0. This means that
the constant terms in g and h are both divisible by p. But then their product a0

must be divisible by p2, a constradiction to our assumptions. �

A polynomial as in the statement above is called a p-Eisenstein polynomial.

20.20. Example. If n ≥ 1 and p is a prime number, then xn − p and xn + p are
p-Eisenstein polynomials (in Z[x]) and therefore irreducible.

20.21. Example. If p is a prime number, then f = xp−1 + . . .+x+1 is irreducible
in Q[x]. Here we use a trick. Note that f = (xp − 1)/(x− 1) and therefore,

f(x+ 1) =
(x+ 1)p − 1

x
=

p−1∑
j=0

(
p

j + 1

)
xj = xp−1 + p xp−2 + . . .+

(
p

2

)
x+ p

is a p-Eisenstein polynomial. (We use the fact that the binomial coefficients occur-
ring here are all divisible by p.) So f(x+1) is irreducible, but then f is irreducible
as well.

21. Splitting Fields and Algebraic Closure

As before, F denotes a field.

21.1. Definition. Let f ∈ F [x] be a nonzero polynomial. A field extension F ′/F
is called a splitting field for f over F , if f splits into linear factors in F ′[x]. If
in addition, F ′ is generated (as an F -algebra) by the roots of f , then F ′/F is a
minimal splitting field for f over F .

21.2. Proposition. Let f ∈ F [x] be a nonzero polynomial. Then there is a split-
ting field F ′/F for f . The subextension of F ′/F generated by the roots of f is
then a minimal splitting field for f .

Proof. Write f as a product of linear polynomials times a product f1 of irreducible
polynomials of degree > 1. Denote by n(F ) the degree of f1. We proceed by
induction on n(F ).

If n(F ) = 0, then f splits into linear factors over F , and F/F is a splitting
field. Otherwise, let g be one of the irreducible factors of f1, and let F1/F be
the extension obtained ba adjoining a root of g to F . Then g has a linear factor
in F1[x], and therefore n(F1) < n(F ) (f has more linear factors in F1[x] than
in F [x]). By induction, there is a splitting field F ′/F1 for f over F1. But then
F ′/F is a splitting field for f over F .

The last statement is clear. �
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21.3. Theorem. Let 0 6= f ∈ F [x]. If K/F is a minimal splitting field for f
and F ′/F is any splitting field for f , then there is an F -algebra homomorphism
φ : K → F ′. Any two minimal splitting fields for f are isomorphic as F -algebras.

Proof. K is obtained from F by successively adjoining roots of f . By Prop. 20.13,
we get an F -algebra homomorphism to F ′ for each of the intermediate fields, hence
also for K.

If F ′ is also a minimal splitting field, then φ is surjective (since the roots of f in K,
which generate K, are sent to the roots of f in F ′, which generate F ′), hence an
isomorphism (it is injective in any case). �

21.4. Example. The field Q(ζn) ⊂ C, where ζn = e2πi/n is a primitive nth root of
unity, is a minimal splitting field of xn − 1 over Q. It is called the nth cyclotomic
field.

For example, Q(ζ3) = Q(
√
−3), since x3 − 1 = (x− 1)(x2 + x+ 1), and the roots

of the quadratic factor are (−1±
√
−3)/2. Also, ζ4 = i, so Q(ζ4) = Q(i).

21.5. Proposition. Let F be a field. Then the following statements are equiva-
lent.

(1) F is algebraically closed.

(2) Every non-constant polynomial f ∈ F [x] has a root in F .

(3) All irreducible polynomials in F [x] have degree 1.

Proof. Assume F is not algebraically closed. Then there is a non-trivial algebraic
extension F ′/F , which contains an element α ∈ F ′ \F . Then the minimal polyno-
mial of α is irreducible of degree > 1 and therefore does not have a root in F . This
proves that (2) implies (1). Now, if there is an irreducible polynomial of degree
> 1, then we can construct a non-trivial algebraic extension of F by Prop. 20.13.
So (1) implies (3). Finally, if all irreducible polynomials are of degree 1, then every
non-constant polynomial f is divisible by an irreducible polynomial of the form
x− a and so f(a) = 0. So (3) implies (2). �

21.6. Example. The “Fundamental Theorem of Algebra” can be stated as fol-
lows.

The field C of complex numbers is algebraically closed.

21.7. Definition. Let F ′/F be a field extension. The subfield of F ′ consisting
of all elements algebraic over F is called the algebraic closure of F in F ′. The
field F ′ is called an algebraic closure of F if it is algebraically closed and algebraic
over F .

This raises the question whether every field necessarily has an algebraic closure.
What about an algebraic closure of Q?
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21.8. Lemma. If F ′/F is a field extension such that F ′ is algebraically closed,
then the algebraic closure of F in F ′ is an algebraic closure of F .

Proof. Let K be the algebraic closure of F in F ′. Then K/F is algebraic by
definition. We have to show that K is algebraically closed. Assume that there is
a non-trivial algebraic extension K ′/K. We can assume that K ′ = K(α) for some
α /∈ K, but algebraic over K. By Prop. 20.13, K ′ embeds into every field extension
of K in which the minimal polynomial of α has a root. Since F ′ is algebraically
closed, F ′ is such an extension, and so we can assume without loss of generality
that α ∈ F ′. But then α is algebraic over F by Cor. 20.12 and so already in K,
contradiction. �

So we can find an algebraic closure of Q by taking its algebraic closure in C; this
is the field Q̄ of algebraic numbers. Note that Q̄ is countable: if we map α ∈ Q̄
to its minimal polynomial, then we get a map Q̄ → Q[x] with finite fibers, and
Q[x] is countable. Since C is uncountable, “almost all” complex numbers are
transcendental (over Q).

But what can we do when we do not have a sufficiently large algebraically closed
field at our disposal?

The idea is basically to enlarge the field by adjoining roots of irreducible polyno-
mials until this cannot be done any further. However, countably many such steps
may not be sufficient, and we need again a more powerful induction principle like
Zorn’s Lemma to help us out.

21.9. Theorem. Every field F has an algebraic closure. If K/F is an algebraic
closure and F ′/F is algebraic, then there is an F -algebra homomorphism F ′ → K.
Any two algebraic closures of F are isomorphic as F -algebras.

Proof. To show existence, we consider the set of all algebraic extensions of F ,
ordered by inclusion. (To avoid problems with paradoxes in set theory, one has
to be a bit careful here. For example, one can restrict to extension fields whose
underlying set is a subset of a fixed sufficiently large set.) This set is nonempty,
since it contains the trivial extension F/F . If we have a (non-empty) chain in
this set, then the union of its elements is again an algebraic extension of F . So
we can apply Zorn’s Lemma, which tells us that there is a maximal algebraic
extension K/F . We have to show that K is algebraically closed. So let K ′/K be
an algebraic extension. Then K ′/F is also algebraic by Cor. 20.12. But K was a
maximal algebraic extension of F , hence we must have K ′ = K.

Now fix an algebraic closure K/F and let F ′/F be algebraic. We consider the set
of all pairs (L, φ), where L/F is a subextension of F ′ (i.e., F ⊂ L ⊂ F ′ and L is a
field) and φ : L → K is an F -algebra homomorphism, ordered by inclusion on L
such that the map on the larger L restricts to the map on the smaller L. This set
is non-empty (it contains (F, i), where i : F → K is the inclusion), and if we have
a non-empty chain {(Li, φi) : i ∈ I}, then L =

⋃
i∈I Li is a subextension of F ′/F ,

and the φi piece together to form an F -algebra homomorphism φ : L → K. So
Zorn’s Lemma applies again, and there is a maximal pair (L, φ). If L ( F ′, then
there is an algebraic element α ∈ F ′ \ L, and by Prop. 20.13, we get a strictly
larger pair (L[α], φ′). Hence L = F ′, and we are done.

For the last statement, let K and K ′ be two algebraic closures. By the previous
statement, there is an F -algebra homomorphism φ : K ′ → K; it is injective since
K ′ is a field. The image φ(K ′) is isomorphic to K ′ and is therefore an algebraic
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closure of F . But K/φ(K ′) is an algebraic extension, hence K = φ(K ′). So φ is
surjective as well and therefore an isomorphism. �

22. Finite Fields

In this section, we study the structure of finite fields. We already know the finite
fields Fp = Z/pZ, but we will see that there are more.

22.1. Definition. Let F be a field. There is a unique ring homomorphism Z → F ;
its kernel is a principal ideal and therefore of the form nZ with n ≥ 0. We call n
the characteristic of F , written char(F ).

22.2. Proposition. Let F be a field.

(1) The characteristic of F is either zero or a prime number.

(2) If char(F ) = 0, then F is a Q-algebra in a unique way. If char(F ) = p is
a prime number, then F is an Fp-algebra in a unique way.

Proof.
(1) Since F is a field, the image of the homomorphism Z → F is an integral
domain, Therefore the kernel is a prime ideal. The only prime ideals of Z are the
zero ideal and the ideals generated by a prime number.

(2) Assume first that char(F ) = p is prime. Then we have an injective ring
homomorphism Fp = Z/pZ → F , exhibiting F as an Fp-algebra. Now assume
that char(F ) = 0. Then Z → F is injective and therefore extends uniquely to a
homomorphism Q → F , exhibiting F as a Q-algebra. These algebra structures
are unique since the homomorphism Z → F is unique. �

22.3. Corollary. If F is a finite field, then there is a prime number p and a
positive integer f such that #F = pf . F is a vector space of dimension f over Fp.

Proof. If char(F ) = 0, then F would have to contain Q, which is not possible. So
char(F ) = p is a prime number. We know then that F is an Fp-algebra, hence an
Fp-vector space of some dimension f ≥ 1. The claim follows. �

Do finite fields of size pf exist for all prime powers pf , and how unique are they?
Before we answer these questions, we need a tool.

22.4. Lemma. Let F be a finite field of characteristic p. Then the map F 3 a 7→
ap ∈ F is a field automorphism of F .

This automorphism is called the Frobenius automorphism.

Proof. Let φ(a) = ap be the map. We obviously have φ(1) = 1 and φ(ab) =
(ab)p = apbp = φ(a)φ(b). Also,

φ(a+ b) = (a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp = φ(a) + φ(b) ,

since the binomial coefficients except the extremal ones are divisible by p. Also,
kerφ = {a ∈ F : ap = 0} = {0}, so φ is injective. Since F is finite, φ must be
bijective. �
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22.5. Lemma. If F is a finite field with #F = pf , then F is a minimal splitting
field for the polynomial xp

f − x over Fp.

Proof. By Cor. 19.8, all elements of F are roots of xp
f − x. Therefore, F/Fp is a

splitting field for xp
f − x. Since F obviously is generated by its elements (as an

Fp-algebra), it is a minimal splitting field. �

22.6. Theorem. For every prime number p and positive integer f , there exists a
field Fpf of size pf . Any two such fields are isomorphic.

Proof. By Prop. 21.2, there exists a minimal splitting field F of q = xp
f−x over Fp.

We claim that F consists exactly of the roots of q. For this, we have to show that
the roots of q form a field. Let φ be the Frobenius automorphism of F and let
Φ(a) = ap

f
be its f -fold iterate. Then for a ∈ F , we have q(a) = 0 ⇐⇒ Φ(a) = a.

Since Φ is a ring homomorphism, this implies q(a) = q(b) = 0 ⇒ q(a + b) =
q(ab) = 0. Therefore the set of roots of q in F is a subring, and since it is finite,
it is a subfield. Since F is generated by the roots, F must be this subfield. So
#F = deg q = pf .

By Thm. 21.3, any two minimal splitting fields of a polynomial are isomorphic.
By the preceding lemma, this implies that any two finite fields of the same size
are isomorphic. �

23. Constructions with Straightedge and Compass

Let us relate classical geometric constructions in the plane with field theory. We
identify the complex plane C with the geometric plane R2.

23.1. Definition. Let S ⊂ C be a subset containing 0 and 1. We let S ′ be S,
together with the points that can be obtained from points in S by the following
constructions. A line is called an “S-line” if it contains two distinct points of S.
A circle is called an “S-circle” if its center is a point in S and its radius is the
distance of two points in S.

(1) The point of intersection of two S-lines.

(2) The points of intersection of an S-line and an S-circle.

(3) The points of intersection of two S-circles.

We define S(0) = S and S(n+1) = (Sn)′. Let S̄ =
⋃
n≥0 S

(n). Then we call z ∈ C
constructible from S if z ∈ S̄.

23.2. Lemma. From {0, 1, a, b}, we can construct a± b, a · b, a−1 (if a 6= 0) and√
a.

Proof. These are classical constructions and left as an exercise. (For the square
root of a positive real, use a suitable right-angled triangle.) �

23.3. Corollary. F = S̄ ⊂ C is a subfield that contains S, and every polynomial
of degree 2 in F [x] has a root in F .

Proof. That F is a subfield follows from the preceding lemma. If x2 + 2ax + b
is a polynomial of degree 2 over F , then its roots are −a ±

√
a2 − b and so are

in F = S̄ as well by the lemma again. �
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23.4. Lemma. Let F0 = Q(S) be the subfield of C generated by S. Assume S is
stable under complex conjugation (i.e., a + bi ∈ S implies a− bi ∈ S). If z ∈ S ′,
then z is in an extension of F0 obtained by a sequence of successive quadratic
extensions, and S ′ is stable under complex conjugation.

Proof. If S is stable under complex conjugation and z = a + bi ∈ C, then z ∈
Q(S, i) if and only if a, b ∈ Q(S, i). Also, Q(S, i) = F0(i) is a quadratic extension
of F0. It therefore suffices to prove the claim for the real and imaginary parts
of the newly constructed points. Now the equations of S-lines and S-circles (in
terms of real and imaginary part as coordinates) have coefficients that are rational
expressions in the real and imaginary parts of points in S. If we intersect two
S-lines, then the point of intersection has coordinates that are again rational
expressions in real and imaginary parts of points in S. If we intersect an S-
line and an S-circle, we obtain a quadratic equation for one of the coordinates
(and then a linear equation for the other one). We therefore only have to make
a quadratic extension. If we intersect two S-circles, the the difference of their
equations (in standard form (x− a)2 + (y − b)2 = r2) is a linear equation, and we
are reduced to the previous case.

It is clear that S ′ will again be stable under complex conjugation. �

23.5. Theorem. Let {0, 1} ⊂ S ⊂ C be stable under complex conjugation. Then
F = S̄ ⊂ C is the smallest subfield of C containing S such that every polynomial
of degree 2 in F [x] has a root in F .

Proof. We already know that F is “closed under square roots”. On the other hand,
the lemma above implies that S̄ is contained in every subfield of C containing S
and closed under square roots. So F must be the smallest such subfield. �

23.6. Corollary. Let S be as above. Then z ∈ C is constructible from S if and
only if there is a chain Q(S) = F0 ⊂ F1 ⊂ · · · ⊂ Fn of quadratic field extensions
such that z ∈ Fn.

23.7. Corollary. Let S be as above, and let F0 = Q(S). If z ∈ C is constructible
from S, then z is algebraic over F0 of degree a power of 2.

Proof. By the above, there is a chain of quadratic extensions F0 ⊂ F1 ⊂ . . . ⊂ Fn
such that z ∈ Fn. Since [Fn : F0] = 2n, the degree of z is a divisor of 2n (note that
F0(z) ⊂ Fn, so [F0(z) : F0] | [Fn : F0]). �

This allows us to draw some conclusions. If we do not specify the set S in the
following, we assume that S = {0, 1}.

23.8. Theorem. We cannot “double the cube”.

“Doubling the cube” means to construct the side of a cube whose volume is twice
that of the unit cube.

Proof. The number we have to construct is 3
√

2. But this number is algebraic of
degree 3 (since it has minimal polynomial x3 − 2), which is not a power of 2. �
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23.9. Theorem. We cannot construct a regular 7-gon.

Proof. If we could, we certainly could also construct the x-coordinate of one of the
vertices next to 1 in a regular 7-gon centered at the origin and with one vertex at 1.
Twice this number is 2 cos 2π

7
and is algebraic of degree 3 (its minimal polynomial

is x3+x2−2x−1, which is for example seen to be irreducible via reduction mod 2).
Since 3 is not a power of 2, we have a contradiction. �

23.10. Remark. Analyzing the situation further, one can prove that the regular
n-gon can be constructed if and only if n = 2kp1 · · · p`, where the pj are distinct
Fermat primes of the form 22m

+ 1. Gauss was the first to prove that; he also
provided a construction of the regular 17-gon. (The only known Fermat primes
are 3, 5, 17, 257 and 65537.)

23.11. Theorem. We cannot construct an angle of 40 degrees.

Proof. If we could, we could also construct twice its cosine 2 cos 2π
9

. But again,
this number is algebraic of degree 3 (minimal polynomial is x3 − 3x+ 1). �

23.12. Corollary. We cannot trisect an arbitrary angle.

What we mean by “trisecting an arbitrary angle” is the following. Let α be some
angle (in radians). We let S = {0, 1, eiα, e−iα}. To trisect the angle α then means
to construct eiα/3 from S. Equivalently, we can replace the exponentials by cosines,
since we can easily (re-)construct the sines.

Proof. If we could, then we could also trisect the special angle 2π/3. Its cosine is
−1/2, so can be constructed from {0, 1}. But we know that the angle 2π/9 is not
constructible. �

23.13. Theorem. We cannot “square the circle”.

“Squaring the circle” means to construct the side of a square whose area is the
same as that of the unit circle.

Proof. The number we must construct is
√
π. If this is constructible, then so is

its square π. But π is not even algebraic! (The proof of this fact is unfortunately
beyond the scope of this course.) �
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