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1. Manifolds

Despite the title of the course, we will talk about manifolds first.

But before we go into that, let me remind you of two important theorems from
Analysis II.

1.1. Implicit Function Theorem. Let W ⊂ Rn = Rk × Rn−k be open and
p = (p1, p2) ∈ W . Let f ∈ Cq(W,Rn−k) (with q ≥ 1) such that f(p) = 0; we write
f(z) = f(x, y) with x ∈ Rk, y ∈ Rn−k. If Dyfp is invertible, then there are open
neighborhoods V1 of p1 in Rk and V2 of p2 in Rn−k such that V1 × V2 ⊂ W , and
there is h ∈ Cq(V1,Rn−k) such that for all x ∈ V1, y ∈ V2, we have f(x, y) = 0 if
and only if y = h(x).

This says that under an appropriate regularity condition on the derivative, we can
locally solve an equation f(x, y) by a smooth function y = h(x).

1.2. Inverse Function Theorem. Let U ⊂ Rn be open, p ∈ U , and g ∈
Cq(U,Rn) (with q ≥ 1). If Dgp is invertible, then there are open neighborhoods
U ′ ⊂ U of p and V of g(p) such that g : U ′ → V is bijective and g−1 ∈ Cq(V,Rn).

This says that if the derivative is invertible, then the function is locally invertible,
and the inverse has the same “smoothness”. The Inverse Function Theorem follows
from the Implicit Function Theorem by considering the function f(x, y) = x−g(y).

Back to manifolds.

Intuitively, k-dimensional manifolds are spaces that locally “look like Rk”. We
distinguish several levels of “smoothness” that specify how closely like Rk our
manifold is supposed to be. There are various ways to make this notion precise,
and it turns out that they are all equivalent.

We first assume that the manifold-to-be M is embedded into real space Rn.

1.3. Definition. Let 0 ≤ k ≤ n and q ∈ {1, 2, 3, . . . ,∞}. A subset M ⊂ Rn is
a k-dimensional Cq-submanifold of Rn if the following equivalent conditions are
satisfied.

(1) (M is locally a zero set)
For every p ∈ M there is an open neighborhood W of p in Rn and a
map f ∈ Cq(W,Rn−k) such that W ∩M = f−1(0) and such that Dfp has
maximal rank (= n− k).

(2) (M locally looks like Rk ⊂ Rn)
For every p ∈ M there is an open neighborhood W of p in Rn and open
neighborhoods V1 of 0 in Rk and V2 of 0 in Rn−k, and there is a Cq-
diffeomorphism F : W → V1 × V2 such that F (W ∩M) = V1 × {0} and
F (p) = (0, 0).

(3) (M is locally diffeomorphic to Rk)
For every p ∈ M there is an open neighborhood U of p in M (i.e., U =
W ∩M with an open neighborhood W of p in Rn), an open neighborhood
V of 0 in Rk, and a homeomorphism φ : U → V such that φ−1 ∈ Cq(V,Rn),
φ(p) = 0 and D(φ−1)0 has maximal rank (= k).
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(4) (M is locally a graph)
For every p ∈ M , there is a permutation matrix P ∈ GLn(R), an open
neighborhood W of p in Rn and open neighborhoods V1 of 0 in Rk and V2

of 0 in Rn−k, and there is a map g ∈ Cq(V1, V2) with g(0) = 0 such that
W ∩M = {p+ P · (x, g(x))> : x ∈ V1}.

1.4. Examples. The unit circle in R2 is a 1-dimensional C∞-submanifold of R2,
and the unit sphere in R3 is a 2-dimensional C∞-submanifold of R3. This can be
seen in any of the four ways indicated in the definition above.

We still have to prove the equivalence of the four conditions.

Proof. We first show that (2) implies (1) and (3). So let p ∈ M , and V1, V2,W
and F as in (2). For (1), we define f = π2 ◦ F , where π2 : V1 × V2 → V2 is the
projection onto the second factor. Then W ∩M = F−1(V1 × {0}) = f−1(0), and
it remains to show that rkDfp = n − k. Since F is a diffeomorphism, we know
that DFp is invertible; also, rk(Dπ2)0 = n − k, hence Dfp = (Dπ2)0 · DFp has
rank n− k as well.

To show (3), we set U = W ∩M , V = V1, and φ = π1 ◦ F ◦ ι, where ι is the
inclusion of U in W and π1 : V1 × V2 → V1 is the projection to the first factor.
Then φ is continuous, and φ−1 = F−1 ◦ ι′ (with ι′ : V1 → V1 × {0} ⊂ V1 × V2) is a
Cq-function. We have φ(p) = π1(F (p)) = 0 and D(φ−1)0 = (DFp)

−1 ·Dι′0 has the
same rank as Dι′0, which is k.

Let us show that (4) implies (2). Let p ∈M , and assume P , W , V1, V2 and g given
as in (4). Then we can define F (z) = (x, y − g(x)) where (x, y)> = P−1 · (z − p).
It is clear that F is a Cq-map. If we define for x ∈ V1, y ∈ Rn−k the Cq-map
G(x, y) = p + P · (x, y + g(x))>, then G ◦ F is the identity on W . Let V ′1 , V

′
2 be

open neighborhoods of 0 in Rk,Rn−k such that W ′ = G(V ′1 × V ′2) ⊂ W . Then
we obtain a Cq-invertible map F : W ′ → V ′1 × V ′2 such that F (p) = (0, 0) and
F (W ′ ∩M) = V ′1 × {0}.
The remaining implications “(1) ⇒ (4)” and “(3) ⇒ (4)” are less trivial, since
there we need to reconstruct a piece of information. We will need to use some of
the major theorems from the study of differentiable functions in several variables.

We show that (1) implies (4). Let p ∈ M and take W and f as in (1). The
matrix Dfp is a (n − k) × n matrix of rank n − k, therefore we can select n − k
of its columns that are linearly independent. Without loss of generality (and to
ease notation), we can assume that these are the last n− k columns and also that
p = 0. If we write z = (x, y)> with x ∈ Rk and y ∈ Rn−k, then for z ∈ W ,
we have z ∈ M ⇐⇒ f(x, y) = 0, and Dyfp is invertible. We can therefore
apply the Implicit Function Theorem 1.1 and obtain neighborhoods V1, V2 of 0
in Rk,Rn−k such that V1 × V2 ⊂ W , and a map g ∈ Cq(V1,Rn−k) such that for
z = (x, y) ∈ V1 × V2 we have z ∈M ⇐⇒ f(x, y) = 0 ⇐⇒ y = g(x).

Finally, we show that (3) implies (4). Let p ∈ M and U , V , φ as in (3). We can
assume that p = 0. Since (Dφ−1)0 has rank r, we can pick r linearly independent
rows of this matrix, and without loss of generality, these are the first r rows. If
π1 : Rn → Rk is the projection to the first k coordinates and π2 : Rn → Rn−k is
the projection to the last n − k coordinates, then we have that D(π1 ◦ φ−1)0 is
invertible. By the Inverse Function Theorem 1.2, there are open neighborhoods
V1, V

′ of 0 in Rk with V ′ ⊂ V such that π1 ◦ φ−1 : V ′ → V1 is bijective and the
inverse h of this map is in Cq(V1,Rk). We let g = π2 ◦ φ−1 ◦ h : V1 → Rn−k.
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Also let W ⊂ Rn open such that U = M ∩ W . If necessary, we replace V1

and V ′ by smaller neighborhoods such that there is an open neighborhood V2 of 0
in Rn−k with g(V1) ⊂ V2 and V1×V2 ⊂ W . Then for z = (x, y) ∈ V1×V2, we have
z ∈M ⇐⇒ z ∈ φ−1(V ′) ⇐⇒ z ∈ (φ−1◦h)(V1). Further, (φ−1◦h)(x) = (x, g(x)),
hence M ∩ V1 × V2 is exactly the graph of g. �

1.5. Examples.

(1) Let U ⊂ Rn be open. Then U is an n-dimensional C∞-submanifold of Rn.
Indeed, we can use part (3) of Def. 1.3 above, with U = V and φ = idU .

(2) Let p ∈ Rn. Then {p} is a 0-dimensional C∞-submanifold of Rn. We
can see this, for example, from part (1) of Def. 1.3, by taking W = Rn

and f(x) = x − p. More generally, any discrete set of points in Rn is a
0-dimensional submanifold. A subset S of Rn is discrete if every p ∈ S has
a neighborhood W in Rn such that W ∩ S = {p}. For example, the set
S = { 1

n
: n ∈ {1, 2, . . . }} ⊂ R is a 0-dimensional submanifold of R. On the

other hand, S ∪ {0} is not (Exercise!).

(3) Generalizing Example 1.4 above, define for n ≥ 1 the unit (n− 1)-sphere

Sn−1 = {x ∈ Rn : ‖x‖ = 1} = {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n = 1} .
Then Sn−1 is an (n− 1)-dimensional C∞-submanifold of Rn. This is most
easily seen using part (1) of Def. 1.3: we take W = Rn and f(x) = ‖x‖2−1;
then Dfp = 2p 6= 0 for p ∈ Sn−1.

At first sight, it may seem natural to consider submanifolds of Rn, since in many
cases, manifolds arise naturally in this context, for example as zero sets like the
spheres. However, there are situations where spaces that one would like to consider
as manifolds appear in a setting where there is no natural embedding into some Rn.
One instance of this is when we want to “quotient out” by a (nice) group action.
For example, we may want to identify antipodal points on Sn (which means that
we quotient by the action of the group {±1} acting by scalar multiplication).
Since antipodal points never collapse, it is clear that the quotient (not-quite-
yet-)manifold locally looks exactly like Sn, and since we understand the quality
of being a manifold as a local property, we would like to consider this quotient
space as a manifold. However, there is no obvious way to realize this space as a
submanifold of some RN .

Another situation where we run into similar problems is the construction of “pa-
rameter spaces”. For example, consider the problem of describing the “space of
all lines through the origin in Rn”. Given one line, it is fairly easy to describe
(or parametrize) all nearby lines, and it is also fairly clear how to “glue together”
these local descriptions. Again, we obtain something that locally looks like a piece
of some Rk (here k = n − 1) and so morally should be a manifold. But again,
there is no obvious or natural way to realize the whole of the space we construct
as a submanifold of some RN .

(Note that the two sample problematic cases we have described are in fact equiv-
alent, up to a shift of n — Exercise!)

The way out of these problems is to define manifolds in a more abstract and
intrinsic way, without relying on the structure of an ambient space. If we look at
the various parts of our Definition 1.3 above, we see that (1), (2), and (4) make use
of the ambient Rn in essential way. On the other hand, (3) is less dependent on
the ambient space; it is only used to ensure the correct smoothness (by requiring
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that φ−1 is of class Cq and is regular at 0). So we will base our new approach
on this part of the definition. We have to remove the dependence on the ambient
space for the smoothness part. The idea is to compare different “charts” of M
with each other instead of a comparison of M sitting in Rn with something in Rk.

We begin with some observations on submanifolds of Rn.

1.6. Lemma and Definition. Let M be a k-dimensional Cq-submanifold of Rn,
p ∈ M . Let φ : U → V be a map as in part (3) of Def. 1.3. Then there is
an open neighborhood p ∈ U ′ ⊂ U such that (Dφ−1)x has maximal rank k at all
x ∈ V ′ = φ(U ′).

A homeomorphism φ : U → V , where p ∈ U ⊂ M and 0 ∈ V ⊂ Rk are open
neighborhoods, φ(p) = 0, φ−1 is Cq, and Dφ−1 has rank k everywhere on V , is
called a Cq-chart of M centered at p.

Proof. By assumption, (Dφ−1)0 has rank k, so there are k rows of this matrix
that are linearly independent; in particular, the determinant of the corresponding
k × k submatrix is nonzero. Since (Dφ−1)x varies continuously with x ∈ V , there
is an open neighborhood 0 ∈ V ′ ⊂ V such that this determinant is nonzero for all
x ∈ V ′; in particular, rk(Dφ−1)x = k for all x ∈ V ′. The claim follows by setting
U ′ = φ−1(V ′). �

In this language, we can say that M ⊂ Rn is a k-dimensional Cq-submanifold if
and only if for every p ∈M there is a Cq-chart φ : U → Rk centered at p.

1.7. Lemma. Let M be a k-dimensional Cq-submanifold of Rn. Let φ : U → V
and φ′ : U ′ → V ′ be two Cq-charts of M . Then the map

Φ = φ′ ◦ φ−1 : φ(U ∩ U ′) −→ φ′(U ∩ U ′)

is a Cq-diffeomorphism.

Proof. Since φ and φ′ are homeomorphisms, it is clear that Φ is also a home-
omorphism (and well-defined). We have to show that Φ and Φ−1 are both of
class Cq. We would like to use the Implicit Function Theorem on y = Φ(x) ⇐⇒
(φ′)−1(y)−φ−1(x) = 0, but this does not immediately work, as the values of (φ′)−1

and of φ−1 are in Rn and not in Rk. However, we can remedy this by (locally)
picking k coordinates in a suitable way. So let x0 ∈ φ(U ∩ U ′), y0 ∈ φ′(U ∩ U ′)
with Φ(x0) = y0. We know that rk(D(φ′)−1)y0 = k, hence there is a projection
π : Rn → Rk selecting k coordinates such that (D(π ◦ (φ′)−1))y0 is invertible.
By the Implicit Function Theorem 1.1, there is a unique Cq-function f such that
y = f(x) solves π

(
(φ′)−1(y) − φ−1(x)

)
= 0 in a neighborhood of (x0, y0). On the

other hand, we know that y = Φ(x) is a solution as well. Hence Φ = f ∈ Cq on
this neighborhood, and since y0 was arbitrary, we have Φ ∈ Cq. Interchanging the
roles of φ and φ′, we find that Φ−1 is also of class Cq. �

This now allows us to reduce the definition of the “Cq-structure” on a manifold to
a comparison between charts.
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1.8. Definition. Let M be a topological space, which we assume to be Hausdorff
and to have a countable basis. A (k-dimensional) chart on M is a homeomorphism
φ : U → V , where U ⊂ M and V ⊂ Rk are open sets. We say that φ is centered
at p ∈M if p ∈ U and φ(p) = 0.

Two k-dimensional charts φ : U → V and φ′ : U ′ → V ′ on M are Cq-compatible if
the transition map

Φ = φ′ ◦ φ−1 : φ(U ∩ U ′) −→ φ′(U ∩ U ′)

is a Cq-diffeomorphism.

A set A of charts of M is a Cq-atlas of M if for every p ∈ M there is a chart
φ : U → V in A such that p ∈ U , and every pair of charts in A is Cq-compatible.
In this case, the pair (M,A) is an (abstract) k-dimensional Cq-manifold. Usually,
we will just write M , with the atlas being understood.

A Cq-structure on M is a maximal Cq-atlas on M . If (M,A) is a k-dimensional
Cq-manifold, there is a unique corresponding Cq-structure, which is given by the
set of all k-dimensional charts on M that are Cq-compatible with all charts in the
atlas A. We do not distinguish between manifold structures on M given by atlases
inducing the same Cq-structure.

1.9. Exercise. Let A be a Cq-atlas on M and let φ, φ′ be two charts on M . Show
that if both φ and φ′ are Cq-compatible with all charts in A, then φ and φ′ are
Cq-compatible with each other.

This implies that the set of all charts on M that are Cq-compatible with A forms
a Cq-atlas, which then must be maximal. It is the Cq-structure on M induced by
the given atlas A.

1.10. Remarks. A topological space X is Hausdorff if for any two distinct points
x, y ∈ X there are disjoint neighborhoods of x and y in X. The reason for this
requirement is that we want to avoid pathological examples like the “real line with
a double origin”. We obtain it by identifying to copies of R everywhere except at
the origins. We wouldn’t want to consider this a manifold, even though it satisfies
the other required properties.

A basis of a topological space X is a collection of open sets of X such that every
open set is a union of sets from the collection. For example, a (countable) basis
of Rn is given by all open balls of rational radius centered at points with rational
coordinates. The requirement of a countable basis is of a technical nature; it is
needed to allow certain constructions (in particular, partitions of unity) which are
necessary to obtain a useful theory.

Any subspace (subset with the induced topology) of a Hausdorff space with count-
able basis has the same two properties, so they are automatically satisfied for
submanifolds of Rn.

1.11. Remark. One could start with just a set M ; then the topology is uniquely
defined by the charts (by requiring that they are homeomorphisms). However, we
still have to require that with this topology, M is a Hausdorff space with countable
basis.
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1.12. Remark. One can replace the condition “Cq-diffeomorphism” in the defi-
nition of compatibility of charts by “homeomorphism”. What one then gets are
topological manifolds. We will not look at them in more detail, since we want
to do analysis, and for this we need a differentiable (i.e., Cq for some q) struc-
ture. So in the following, “manifold” always means “differentiable manifold”, i.e.,
“Cq-manifold” for some q ≥ 1.

1.13. Example. If M is a k-dimensional Cq-submanifold of Rn, then M is an
abstract k-dimensional Cq-manifold in a natural way: we take as atlas A the set of
all charts φ : U → V on M such that φ−1 is of class Cq as a map from V into Rn.
These are essentially the maps from part (3) of Def. 1.3. Lemma 1.7 shows that
A really is an atlas, hence (M,A) is a manifold.

1.14. Example. Let us show that M = Sn/{±1} is a manifold in a natural way.
We consider Sn as a C∞-submanifold of Rn+1. We take as atlas on Sn the orthog-
onal projections to hyperplanes, restricted to open half-spheres. Let ι : x 7→ −x
be the antipodal map on Sn. Then for any φ in our atlas, φ ◦ ι is compatible with
all charts in the atlas again.

The topology on M is defined by saying that U ⊂ M is open if and only if its
preimage π−1(U) is open in Sn, where π : Sn → M is the canonical map. It is
then also true that the open sets of M are exactly the images under π of open
sets of Sn, which implies that M has a countable basis of the topology. Also, M
is Hausdorff: Let p, q ∈ M be distinct, and let x, y ∈ Sn with π(x) = p, π(y) = q.
Then x,−x, y,−y are pairwise distinct, hence we can find neighborhoods U of x
and V of y in Sn such that U,−U, V,−V are disjoint in pairs. Then π(U) and π(V )
are disjoint neighborhoods of p and q, respectively.

We now define charts on M . Let φ : U → Rn be a chart in our atlas of Sn;
we have U ∩ −U = ∅. Then π|U : U → π(U) is a homeomorphism, and we let
φ′ = φ ◦ (π|U)−1 : π(U)→ Rn be a chart on M . Since for every x ∈ Sn, there is a
chart on Sn centered at x, it is clear that our charts cover M . Also, the transition
maps between charts locally are transition maps between charts on Sn or charts
composed with ι and therefore are C∞-compatible. This gives us a C∞-atlas on M .

1.15. Remark. In the same way, one can prove the following. Let M be a Cq-
manifold, and let Γ be a finite group acting on M such that no x ∈M is fixed by a
non-identity element of Γ and such that for every φ in the differentiable structure
of M and every γ ∈ Γ, φ◦γ is again in the differentiable structure. (In the language
we will soon introduce, this means that Γ acts on M via Cq-diffeomorphisms.)
Then the quotient M/Γ can be given the structure of a Cq-manifold in a natural
way.

(For infinite groups Γ, one has to require that for all x, y ∈ M not in the same
orbit under Γ, there are neighborhoods x ∈ U and y ∈ V such that U ∩ γV = ∅
for all γ ∈ Γ; this is to make sure the quotient space is Hausdorff.)

1.16. Example. Let us look at the second motivational example for introducing
abstract manifolds and see how to turn the set of all lines through the origin
in Rn into a manifold. We will first define charts, which then will also determine
the topology. So let ` be a line through 0 ∈ Rn, and let 0 6= x ∈ `. Let E be
the hyperplane orthogonal to x. Then we have a chart φx mapping the set of
all lines not contained in E to E (which we can identify with Rn−1) by setting
φ−1(y) = R(x+y), the line through the point x+y. If x and x′ are two generators
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of the same line `, then the transition map between the charts φx and φx′ is just
a scaling. In general, the transition map is easily seen to be of the form

z 7−→ ‖y‖2

(x+ z) · y
(x+ z)− y ,

which is a C∞ map. This gives us a C∞-atlas for our manifold. We still need
to check the topological conditions. We can take as a basis of the topology the
images of balls around the origin of rational radius under φ−1

x , where x has rational
coordinates, so we have a countable basis. Also, it is easy to see that for any pair
of distinct lines, we can find a chart that contains both of them, and then find
disjoint neighborhoods within that chart, so the space is also Hausdorff.

1.17. Remark. Whitney proved in 1936 that every sufficiently smooth k-dimen-
sional manifold can be embedded into R2k+1 (he later improved that to R2k for
k > 2). Given this, it would be sufficient to only consider submanifolds of Rn. On
the other hand, such an embedding may not be natural or easy to construct (try
to do it for our examples above!) and is to some extent arbitrary, whereas the
abstract notion of manifold only captures the intrinsic features of the given object,
independently of the surrounding space. It thus lets us focus on the essentials,
and we are not encumbered with the unnecessary construction of an embedding
into Rn.

2. Differentiable Maps and Tangent Spaces

Now after we have defined what manifolds are, we want to use them. For this, we
need to consider maps between them. These maps should respect the differentiable
structure. The way to define the concept of a differentiable map between manifolds
is to make use of the charts. (The general philosophy here is to use the charts to
reduce everything to known concepts on Rk.)

2.1. Definition. Let M and M ′ be two Cq-manifolds, let f : M →M ′ be contin-
uous and 1 ≤ r ≤ q. Let p ∈M . Then f is differentiable of class Cr at p, if there
are charts φ of M centered at p and φ′ of M ′ centered at f(p) such that φ′ ◦f ◦φ−1

is a Cr-map in a neighborhood of 0. If f is Cr at all p ∈M , then f is a Cr-map or
differentiable of class Cr.

If M ′ = R, then we speak of Cr-functions on M ; we write Cr(M) for the vector
space of all such functions.

It is clear that if the defining property holds for some pair of charts φ, φ′ (centered
at p, f(p)), it will hold for all such pairs.

Note that φ′ ◦ f ◦ φ−1 is a map between subsets of spaces Rk and Rk′ (if k and k′

are the dimensions of M and M ′, respectively), hence for this map it makes sense
to talk about being of class Cr.

2.2. Definition. Let M and M ′ be two Cq-manifolds, and let f : M → M ′

be a homeomorphism. If both f and f−1 are Cr-maps, then f is called a Cr-
diffeomorphism, and M and M ′ are said to be Cr-diffeomorphic.
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2.3. Example. The antipodal map x 7→ −x is a C∞-diffeomorphism of the sphere
Sn to itself.

Our next goal will be to define derivatives of differentiable maps. Recall that
the derivative of a map Rn ⊃ U → Rm at a point is a linear map that gives
the best linear approximation to the given map near the given point. This works
because Rn and Rm are vector spaces, so we can put a linear structure on the
neighborhoods of our point and its image. With manifolds, we have the problem
that we do not have such a linear structure. Therefore we first need to construct
one, which means that we have to linearize the manifolds, too, not only the map.
This leads to the notion of tangent space.

The tangent space to a manifold at a point is easy to define when we have a
submanifold of Rn.

2.4. Definition. Let M be a k-dimensional submanifold of Rn, and let p ∈ M .
Let φ : U → Rk be a chart of M centered at p. Then the tangent space to M at p,
TpM , is the linear subspace (Dφ−1)0(Rk) of Rn.

It is clear that this does not depend on the chart: changing the chart, we precom-
pose with the derivative of the transition map, which is an invertible linear map
and so does not change the image space.

The idea is that near p, M is the image of the differentiable map φ−1, hence the
best linear approximation to M is by the image of the derivative of φ−1 at the
point we are interested in.

Note that the tangent space TpM is a linear subspace of Rn. If we shift its origin
to p, then p+TpM is tangent to M at p in the geometric sense: it is the tangent line
to M at p when M is of dimension 1, the tangent plane, when M is of dimension 2,
and so on.

2.5. Exercise. Write the tangent space TpM in terms of the data given in parts
(1), (2), and (4) of Def. 1.3.

2.6. Example. Consider the “north pole” N = (0, . . . , 0, 1) ∈ Sn. To find the
tangent space TNSn, we take the chart

φ : {x ∈ Sn : xn+1 > 0} −→ B1(0) ⊂ Rn , x 7−→ (x1, . . . , xn) ;

its inverse is φ−1(y) = (y,
√

1− ‖y‖2), with derivative (Dφ−1)0 : z 7→ (z, 0). Hence
TNSn is the “equatorial hyperplane” xn+1 = 0.

(Using the previous exercise and writing Sn as the zero set of ‖x‖2 − 1, we easily
find that TxSn is the hyperplane orthogonal to x, for all x ∈ Sn.)

If we want to define tangent spaces for abstract manifolds, we cannot use the
vector space structure of an ambient Rn, as we did above. We have to resort to
using charts again. Note that if M is a submanifold of Rn and p ∈ M , then any
chart φ of M centered at p sets up an isomorphism of Rk with TpM via (Dφ−1)0

(where k = dimM is the dimension of M). So we can take the tangent space to
be Rk, but we have to be careful how the various copies of Rk given by the various
charts are identified with each other.
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2.7. Definition. Let M be an abstract k-dimensional Cq-manifold, and let p ∈M .
A tangent vector to M at p is an equivalence class of pairs (φ, v), consisting of a
chart φ : U → V ⊂ Rk of M centered at p and a vector v ∈ Rk.

Two such pairs (φ, v) and (φ′, v′) are equivalent if DΦ0 ·v = v′, where Φ = φ′ ◦φ−1

is the transition map.

The tangent space TpM of M at p is the set of all tangent vectors to M at p.

2.8. Exercise. Verify that the relation between pairs (φ, v) defined above really
is an equivalence relation.

We need to justify the name tangent space.

2.9. Lemma. In the situation of the definition above, TpM is a k-dimensional
real vector space in a natural way.

Proof. First note that if φ and φ′ are two charts centered at p, then for every
v ∈ Rk, there is a unique v′ = DΦ0 · v ∈ Rk such that (φ, v) ∼ (φ′, v′). We fix
one chart φ; then we get an identification of TpM with Rk, which we use to define
the vector space structure on TpM . Since the identifying maps DΦ0 are invertible
linear maps, this structure does not depend on which chart φ we pick. �

2.10. Derivations on Rk. Our definition of tangent vectors is fairly concrete, but
maybe not very satisfying, since it is not intrinsic. There are alternative definitions
that are better in this respect.

We will now assume that everything (manifolds, differentiable maps, . . . ) is C∞.
This is sufficient for most applications and saves us the trouble of keeping track
of how differentiable our objects are.

First consider an open neighborhood of 0 ∈ Rk. To every v ∈ Rk, considered as
a tangent vector to Rk in 0, we can associate a linear form C∞(V )→ R, given by
the directional derivative in the direction of v:

∂v : f 7−→ d

dt
f(tv)

∣∣∣
t=0

.

This map has the additional property ∂v(fg) = f(0)∂v(g) + g(0)∂v(f), coming
from the Leibniz rule. Conversely, every linear form ∂ on C∞(V ) that satisfies
∂(fg) = f(0)∂(g) + g(0)∂(f) is of the form ∂ = ∂v for some v ∈ Rk. To see this,
note that every f ∈ C∞(V ) can be written as

f(x1, . . . , xk) = c+ f1(x)x1 + · · ·+ fk(x)xk

with functions f1, . . . , fk ∈ C∞(V ) and c ∈ R. Then

∂(f) = f1(0)∂(x1) + · · ·+ fk(0)∂(xk) =
∂f

∂x1

(0)v1 + · · ·+ ∂f

∂xk
(0)vk = ∂v(f) ,

where vj = ∂(xj) and v = (v1, . . . , vk). We can therefore identify Rk = T0V with
the space of all these derivations ∂ on C∞(V ). With respect to this identification,
it makes sense to denote the standard basis of the space by ∂

∂x1
, . . . , ∂

∂xk
.
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2.11. Derivations on Manifolds. Now suppose we have a k-dimensional man-
ifold M and a point p ∈ M . Assume φ and φ′ are two charts of M centered at p
and that f ∈ C∞(M). Let (φ, v) ∼ (φ′, v′) represent a tangent vector to M at p.
Then I claim that

∂v(f ◦ φ−1) = ∂v′(f ◦ (φ′)−1) .

In particular, we obtain the same derivation

∂ : C∞(M) −→ R , f 7−→ ∂v(f ◦ φ−1) = ∂v′(f ◦ (φ′)−1) .

To see the claimed equality, let Φ = φ′ ◦φ−1 be the transition map. Also note that
∂v(h) = Dh0 · v. We obtain

∂v(f ◦ φ−1) = D(f ◦ φ−1)0 · v = D(f ◦ (φ′)−1 ◦ Φ)0 · v
= D(f ◦ (φ′)−1)0DΦ0 · v = D(f ◦ (φ′)−1)0 · v′ .

What we get out of this is:

The tangent space TpM can be identified in a natural way with the space of all
derivations on M at p.

Here, a derivation on M at p is a linear form ∂ : C∞(M)→ R such that

∂(fg) = f(p)∂(g) + g(p)∂(f) for all f, g ∈ C∞(M).

Our intuition about directional derivatives is still valid on a manifold M . However,
we cannot use straight lines t 7→ tv, so we have to resort to more general curves.

2.12. Definition. Let M be a manifold. A smooth curve on M is a C∞-map from
an open interval in R to M .

Now let p ∈ M , where M is a manifold, and let γ : ]−ε, ε[ → M be a smooth
curve with γ(0) = p. Then

∂ : f 7−→ d

dt
f
(
γ(t)

)∣∣∣
t=0

is a derivation on M at p and hence corresponds to a tangent vector to M at p,
which we can consider to be the velocity of the curve γ at t = 0. Conversely,
every tangent vector can be obtained in this way — just transport a piece of the
straight line t 7→ tv from the chart φ to M , where the tangent vector is represented
by (φ, v).

In this way, we can also express the tangent space as the set of equivalence classes
of all curves γ as above, with two curves being considered equivalent if they induce
the same derivation on M at p.

2.13. Exercise. Write out what this equivalence means in terms of charts.

With the tangent space at hand, we can now define what the derivative of a
differentiable map should be.
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2.14. Definition. Let f : M → M ′ be a differentiable map between manifolds,
and let p ∈M be a point. Then the derivative of f at p is the linear map

Dfp : TpM −→ Tf(p)M
′ , ∂ 7−→

(
h 7→ ∂(h ◦ f)

)
.

Here, we identify the tangent spaces with the corresponding spaces of derivations.

In terms of our earlier definition of tangent vectors as equivalence classes of pairs
(φ, v), we get the following. Let φ and ψ be charts of M and M ′, centered at p
and f(p), respectively. Then

Dfp
(
(φ, v)

)
=
(
ψ,D(ψ ◦ f ◦ φ−1)0 · v

)
.

So what we get is just the derivative of our map when expressed in terms of the
charts.

To see this, recall that (φ, v) corresponds to the derivation g 7→ D(g ◦ φ−1)0 · v.
The image under Dfp therefore is

h 7−→ D(h ◦ f ◦ φ−1)0 · v = D(h ◦ ψ−1)0 ·D(ψ ◦ f ◦ φ−1)0 · v ,
which in turn is the derivation corresponding to

(
ψ,D(ψ ◦ f ◦ φ−1)0 · v

)
.

2.15. Lemma. Let M be a manifold, p ∈ M . Then for f, g ∈ C∞(M), we have
the usual rules

D(f ± g)p = Dfp ±Dgp and D(fg)p = f(p)Dgp + g(p)Dfp .

Proof. Exercise. �

2.16. Lemma. Let M be a manifold, p ∈ M , v ∈ TpM . Then v corresponds to
the derivation f 7→ Dfp · v on M at p.

Proof. Exercise. �

The following generalizes the Chain Rule to maps between manifolds.

2.17. Proposition. Let M , M ′ and M ′′ be manifolds, f : M →M ′, g : M ′ →M ′′

differentiable maps. Let p ∈M . Then D(g ◦ f)p = Dgf(p) ◦Dfp.

Proof. Let h ∈ C∞(M ′′) and ∂ ∈ TpM a derivation on M at p. Then on the one
hand, (

D(g ◦ f)p(∂)
)
(h) = ∂(h ◦ g ◦ f) ,

and on the other hand,(
(Dgf(p) ◦Dfp)(∂)

)
(h) =

(
Dgf(p)(Dfp(∂))

)
(h) =

(
Dfp(∂)

)
(h ◦ g) = ∂(h ◦ g ◦ f) .

�

2.18. Example. Let M be a manifold and γ : ]−ε, ε[ → M a smooth curve
on M with γ(0) = p. Then the velocity of γ at 0 is the same as Dγ0 applied to
1 ∈ R = T0 ]−ε, ε[. Indeed, the velocity v ∈ TpM is the derivation

f 7−→ d

dt
f
(
γ(t)

)
|t=0 = D(f ◦ γ)0 · 1 = Dfp · (Dγ0 · 1)

(by the Chain Rule), which by Lemma 2.16 corresponds to Dγ0 · 1 ∈ TpM .

On submanifolds, we can get differentiable maps and their derivatives quite easily.
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2.19. Proposition. Let M ⊂ Rn, M ′ ⊂ Rn′ be submanifolds, and let f : U → Rn′

be a differentiable map such that M ⊂ U ⊂ Rn and f(M) ⊂ M ′. Then the

restriction f̃ : M →M ′ is a differentiable map between manifolds, and for p ∈M ,
we have Df̃p = Dfp|TpM : TpM → Tf(p)M

′, where the tangent spaces are identified
with linear subspaces of the ambient spaces.

Proof. Let φ be a chart of M centered at p. Let Ψ : U ′ → V ⊂ Rn′ be a
map as in part (2) of Def. 1.3, such that f(p) ∈ U ′ and Ψ(f(p)) = 0. Then
(denoting k′ = dimM ′) ψ = Ψ|U ′∩M ′ → V ∩ (Rk′ ×{0}) is a chart on M ′ centered
at f(p). Let π : Rn′ → Rk′ be the projection to the first k′ coordinates. Then

ψ ◦ f̃ ◦ φ−1 = π ◦Ψ ◦ f ◦ φ−1 is a composition of differentiable maps and therefore
again a differentiable map (recall that ‘differentiable’ means ‘C∞’). By definition,

this means that f̃ is differentiable. Using the identifications of the various versions
of the tangent spaces, we find that

Df̃p = (Dψ−1)0 ◦D(ψ ◦ f ◦ φ−1)0 ◦ (Dφ−1)−1
0 ,

where the latter is the inverse of the isomorphism (Dφ−1)0 between RdimM and
TpM ⊂ Rn. By the chain rule, this gives

Df̃p = D(f ◦ φ−1)0 ◦ (Dφ−1)−1
0 = Dfp|TpM .

Since (Dψ−1)0 maps into Tf(p)M
′, we obtain a linear map as claimed. �

2.20. Example. Consider the “z-coordinate map” z : S2 → R. By Prop. 2.19, it
is a differentiable map. For x ∈ S2, we have TxS2 = x⊥ and

Dzx : x⊥ 3 v 7−→ 〈v, e3〉 .

This linear map is nonzero and therefore of rank 1 if and only if x is not a multiple
of e3. Otherwise (i.e., when x is the “north pole” or “south pole”), we have
Dzx = 0.

2.21. Definition. Let M be a manifold, f ∈ C∞(M). A point p ∈ M is called a
critical point of f if Dfp = 0. In this case, f(p) ∈ R is called a critical value of f .

So in our example above, the critical points are the north and south poles, and
the critical values are ±1. We will come back to these notions later.

3. Vector Bundles and the Tangent Bundle

We would like to take the set of all tangent vectors at all points p on a manifold M
together and turn it into a manifold TM , the tangent bundle of M . This should
come with a map TM → M that associates to a tangent vector the point it is
based at, with fiber over p the tangent space TpM . We want to include the linear
structure of the tangent spaces as part of the structure of TM . This leads to the
notion of vector bundles over M .
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3.1. Definition. Let E and M be manifolds and π : E → M a surjective differ-
entiable map. Then E is a vector bundle over E of rank n, if for every p ∈ M ,
there is a neighborhood U of p and a diffeomorphism ψ : π−1(U) → U × Rn

such that pr1 ◦ψ = π; furthermore, we require that for each pair ψ : π−1(U) →
U × Rn and ψ′ : π−1(U ′)→ U ′ × Rn of such diffeomorphisms, the transition map
ψ′ ◦ψ−1 : (U ∩U ′)×Rn → (U ∩U ′)×Rn is of the form (p, v) 7→ (p, g(p) ·v), where
g : U ∩ U ′ → GL(n,R) is a C∞-map.

It is then clear that the vector space structure induced on fibers of π by these
charts ψ is independent of the chart. We can therefore think of E → M as a
smoothly varying family of n-dimensional vector spaces, one for each p ∈ M . We
denote the fiber π−1(p) by Ep.

If n = 1, we call E a line bundle over M .

A homomorphism of vector bundles over M is a differentiable map f : E1 → E2,
where π1 : E1 → M and π2 : E2 → M are vector bundles over M , such that
π2 ◦ f = π1 and such that the induced map fp : (E1)p → (E2)p is linear for every
p ∈M . It is then clear what an isomorphism of vector bundles should be.

We call E a trivial vector bundle, if we can take U = M in the definition above.
Then E ∼= M × Rn as vector bundles. Accordingly, we call a map like ψ above a
local trivialization of E →M .

3.2. Example. Let M = S1 be the circle, and let

E = {(x, y) ∈ S1 × R2 : y ∈ Rx} ⊂ R4 .

Then E is a trivial line bundle over S1, since we can map E to S1 ×R by sending
(x, y) to (x, λ), where y = λx.

On the other hand, identifying S1 ⊂ C with the group of complex numbers of
absolute value 1, we can define a line bundle

E ′ = {(z, y) ∈ S1 × C : y ∈ R
√
z} ⊂ R4 ,

where
√
z is one of the two square roots of z (they differ by a sign, so span the

same real subspace of C). This line bundle is non-trivial (Exercise).

In fact, E and E ′ are the only two line bundles on S1, up to isomorphism. Roughly
speaking, this comes from the fact that when you walk around the circle once, you
have the choice of identifying the fiber with the copy you were carrying with you
either in an orientation-preserving or in an orientation-reversing way.

3.3. The Tangent Bundle. The motivation for introducing vector bundles was
our wish to construct the tangent bundle. So we do that now. LetM be a manifold.
Then locally, via a chart, we can identify the tangent bundle with V ×Rk (where
k = dimM and V is some open subset of Rk). We use the chart to go to U ×Rk,
where U ⊂M is open.

More precisely, let TM = {(p, v) : p ∈M, v ∈ TpM} as a set, and let π : TM →M
be the projection to the first component. Let φ : U → V ⊂ Rk be a chart on M .
Then we define ψ : π−1(U) → U × Rk by ψ(p, v) = (p, w), where (φ − φ(p), w)
represents the tangent vector v ∈ TpM (note that φ − φ(p) is a chart centered
at p). This is clearly a bijection. We check the compatibility. So let ψ′ be another
map as above, constructed from another chart φ′ : U ′ → V ′. We find that

(ψ′ ◦ ψ−1)(p, w) = (p,DΦφ(p) · w)
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where Φ = φ′ ◦ φ−1 is the transition map between the charts of M , compare
Def. 2.7. Since Φ is a C∞ map, the same is true of p 7→ DΦφ(p) ∈ GL(k,R).

The compatibility of the ‘local trivializations’ ψ then allows us to endow TM with
a topology and differentiable structure. The topology is Hausdorff, since (p, v)
and (q, w) can be separated by neighborhoods of the form π−1(U) and π−1(V ) if
p 6= q, and (p, v) and (p, v′) can be separated by neighborhoods pulled back from
sets of the form U × V and U × V ′ under a suitable map ψ. We can construct a
countable basis of the topology by letting (Ui) be a countable basis of the topology
on M such that each Ui is the domain of a chart and (Vj) a countable basis of the
topology of Rk; then

(
ψ−1
i (Ui×Vj)

)
i,j

is a countable basis of the topology of TM ,

where ψi is the local trivialization of TM constructed from the chart φi defined
on Ui.

3.4. Example. If M ⊂ Rn is a k-dimensional submanifold, then we can realize
TM as a 2k-dimensional submanifold of R2n: we have seen that we can identify
TpM with a k-dimensional linear subspace of Rn, so

TM = {(p, v) ∈M × Rn : v ∈ TpM} ⊂ R2n ,

and one can check that the differentiable structure induced by this embedding
in R2n agrees with the abstract one we have defined.

3.5. Lemma. Let f : M → M ′ be a differentiable map between manifolds. Then
its derivative gives a differentiable map Df : TM → TM ′, (p, v) 7→

(
f(p), Dfp(v)

)
.

Proof. This follows easily by looking at suitable charts. �

3.6. Corollary. Every diffeomorphism M → M ′ extends to a diffeomorphism
TM → TM ′ that induces linear isomorphisms on the fibers.

Proof. Clear. �

The tangent bundle now allows us, for example, to define the notion of a vector
field on M . Intuitively, a vector field gives us a tangent vector in every point of M ,
so it can be described by a map M → TM . More precisely, it is a section.

3.7. Definition. Let π : E →M be a vector bundle. A section of E is a differen-
tiable map s : M → E such that π ◦ s = idM (i.e., s(p) lies in the fiber Ep above
p, for all p ∈M).

The section s vanishes at p ∈M if s(p) = 0 ∈ Ep (recall that Ep is a vector space).

3.8. Exercise. A line bundle E → M is trivial if and only if it allows a non-
vanishing section.

More generally, a rank n vector bundle E →M is trivial if and only if it allows n
sections that are linearly independent at every point.

3.9. Example. The tangent bundle TS1 of the circle is a trivial line bundle. In-
deed, we can realize it as

TS1 = {(z, w) ∈ C2 : |z| = 1,Re(z̄w) = 0} ,
and z 7→ (z, iz) is a non-vanishing section.
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3.10. Definition. Let M be a manifold. A vector field on M is a section M →
TM .

3.11. Example. It can be shown that TS2 is a non-trivial vector bundle. (The
proof is non-trivial, too!) Given this, we show that there is no non-vanishing
vector field on the sphere S2: assume there was such a vector field v : S2 → TS2

with v(x) 6= 0 for all x ∈ S2. Then w(x) = x× v(x) (vector product in R3) would
give us a second vector field such that v(x) and w(x) were linearly independent
for every x ∈ S2. But then we would have a trivialization S2 × R2 → TS2,(
x, (a, b)

)
7→
(
x, av(x) + bw(x)

)
, which, however, does not exist. Hence:

Every vector field on S2 must vanish somewhere.

(“You cannot smoothly comb a hedgehog.”)

3.12. Constructions with Vector Bundles. There are various ways in which
to construct new vector bundles out of given ones. For example, if π : E →M is a
vector bundle and f : M ′ →M is a differentiable map, then we can construct the
pull-back of E to M ′, often denoted by f ∗E. It is a vector bundle π′ : E ′ → M ′

with a map f̃ : E ′ → E such that

E ′

π′

��

f̃ // E

π
��

M ′ f // M

commutes and gives isomorphisms f̃p : E ′p → Ef(p) of the fibers. Furthermore, if E

is trivial above U ⊂M , then E ′ is trivial above f−1(U) ⊂M ′, in a way compatible
with the maps in the diagram above. (Exercise.)

There is a whole class of constructions of a different type coming from construc-
tions of linear algebra. For example, let π : E → M and π′ : E ′ → M be two
vector bundles over M . Then we can form their direct sum E ⊕ E ′ → M in the
following way. Let U ⊂ M be open such that both E and E ′ are trivial over U .
(We can get a family of such open subsets that covers M by taking intersections
of subsets over which E or E ′ is trivial, respectively.) Let the trivializations be
ψ : π−1(U)→ U × Rm and ψ′ : (π′)−1(U)→ U × Rn. Then we take

E ⊕ E ′ =
⋃
p∈M

(
{p} × (Ep ⊕ E ′p)

)
to be the total space and declare

Ψ :
⋃
p∈U

(
{p} × (Ep ⊕ E ′p)

)
−→ U × (Rm ⊕ Rn) , (p, v ⊕ v′) 7−→ (p, w ⊕ w′) ,

where ψ(v) = (p, w) and ψ′(v′) = (p, w′), to be a local trivialization of E ⊕ E ′.
The compatibility condition is easily checked; this allows us to put a topology and
differentiable structure on E ⊕ E ′.

In the same way, we can construct the tensor product E ⊗ E ′, the dual bundle
E∗ (whose fiber at p is the vector space dual to Ep), tensor powers E⊗k, sym-

metric powers SkE and alternating (or exterior) powers
∧k E. The latter will be

important for us when discussing differential forms later.
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3.13. Example. If π : E → M is a rank n vector bundle, then
∧nE is a line

bundle over M .

Even though TS2 is nontrivial,
∧2 TS2 is. Consider TS2 as a subvector bundle

of S2 × R3, via the realization of TS2 ⊂ S2 × R3 coming from viewing S2 ⊂ R3

as a submanifold. Then the wedge product of two tangent vectors at p ∈ S2

can be identified with their vector product, which has its value in the bundle
E = {(x, y) ∈ S2 × R3 : y ∈ Rx}. So we see that

∧2 TS2 ∼= E. But E admits a
non-vanishing section x 7→ (x, x), so E is a trivial line bundle over S2.

4. Orientation and Orientability

You will remember from calculus that (for f ∈ C(R), say)

a∫
b

f(x) dx = −
b∫

a

f(x) dx ;

the value of the integral depends on the orientation of the interval.

Later, we will introduce two kinds of integrals on manifolds: one that is not
sensitive to orientation (and can be used to compute volumes and the like), and
one that is. In order to be able to deal with the second kind, we will need to orient
our manifolds, and so we have to define what we mean by this.

4.1. Orientations of Rn. The key fact is that GL(n,R), which gives us all the
ways to go from one basis of Rn to another, has two connected components that
are distinguished by the sign of the determinant (except when n = 0 — you can’t
orient points). We can therefore say that two bases of Rn have the same or opposite
orientation if the determinant of the basis change matrix is positive or negative,
respectively.

Since the determinant is defined intrinsically for automorphisms V → V of a finite-
dimensional vector space, the notion generalizes to arbitrary finite-dimensional real
vector spaces. We can then define an orientation of such a space V as a maximal
set of bases of V that all have the same orientation. An automorphism f : V → V
is then said to be orientation-preserving (or orientation-reversing) if it maps a
basis to another basis of the same (or the opposite) orientation; this is the case if
and only if det f is positive (or negative).

Note that Rn has a canonical orientation, which is given by the orientation that
contains the canonical basis.

We can extend the notion of preserving or reversing orientation to differentiable
maps f : U → Rn where U ⊂ Rn is open: we say that f preserves (resp., reverses)
orientation if detDfx > 0 (resp., detDfx < 0) for all x ∈ U .

We now extend this to manifolds.

4.2. Definition. Let M be a manifold. An orientation of M is a maximal atlas
consisting of charts such that the transition maps Φ satisfy detDΦx > 0 for all x
in the domain of definition of Φ. I.e., we require all transition maps to preserve
orientation.

We say that a manifold is orientable if it has an orientation, and we say that M
is oriented when we have chosen an orientation of M .
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4.3. Lemma. Let M be an oriented and connected manifold that is not just a
point. Then M has exactly one other orientation than the given one.

This other orientation is the opposite orientation.

Proof. Let O+ be the given orientation of M , and let O be another orientation.
Let O− be the orientation that consists of all charts in O+, post-composed with
(x1, x2, . . . , xk) 7→ (−x1, x2, . . . , xk). Define subsets A+, A− ⊂ M by saying that
p ∈ A± if there is a neighborhood U of p such that O±|U and O|U are the same
orientation of U . Since all charts in O− have orientation-reversing transition maps
with all charts in O+, A+ ∩ A− = ∅. On the other hand, let φ+ : U → V be a
chart centered at p ∈ M , which is in O+, and let φ : U → V ′ be a chart centered
at p that is in O. We can assume U (and hence V and V ′) to be connected. Let
Φ : V → V ′ be the transition map. Then detDΦ : V → R× must either be always
positive or always negative, which means that φ ∈ O+ or φ ∈ O−. This implies
that O|U = O+|U or O|U = O−|U , hence U ⊂ A+ or U ⊂ A−. This in turn implies
that A+ ∪ A− = M and that A+ and A− are both open. Since M is connected,
we must have either A+ = M (then O = O+) or A− = M (then O = O−). �

4.4. Definition. Let M be a manifold, p ∈ M . An orientation of M near p is
an equivalence class of oriented manifolds (U,O), where p ∈ U ⊂ M is open, and
(U,O) and (U ′,O′) are equivalent if O|U∩U ′ = O′|U∩U ′ .
Such local orientations always exist (compare the proof of the preceding lemma);
this comes from the fact that open subsets of Rk inherit the canonical orientation
of Rk. This notion is important for the definition of the orientable double cover
of M ; this is a manifold M∗ whose points correspond to pairs (p,O), where p ∈M
andO is an orientation of M near p. By the lemma above, the projection M∗ →M
(that forgets the local orientation) is a two-to-one map, and M∗ carries a natural
orientation. If M is connected, then M∗ is connected if and only if M is not
orientable (Exercise).

For example, the orientable double cover of the Möbius Strip is a cylinder; since
the cylinder is connected, the Möbius Strip is not orientable. As another example,
you may want to show that the orientable double cover of the real projective
plane is S2, hence the real projective plane is not orientable, either. (Which is no
surprise, since one can embed the Möbius Strip into it!)

Note that an orientation of M near p fixes an orientation of the tangent space TpM .
The manifold is orientable if we can orient all the tangent spaces in a consistent
manner. We can call a vector bundle E → M orientable if we can consistently
orient the fibers Ep.

4.5. Lemma. A line bundle L→M is orientable if and only if it is trivial.

Proof. If L is trivial, then L ∼= M × R, and we can just transfer the canonical
orientation of R to each of the fibers of L.

Conversely, assume that L is orientable; fix an orientation. Let (Ui) be an open
covering of M such that L|Ui is trivial. We will see later that there is a partition
of unity subordinate to this covering; this is a family (ψi) of C∞-functions on M
such that ψi(p) = 0 if p /∈ Ui, for any p ∈ M , only finitely many ψi are nonzero
on a neighborhood of p, and

∑
i ψi(p) = 1 (the sum then makes sense). We

have “oriented trivializations” φi : Ui × R
∼=→ L|Ui

, meaning that the orientation
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of L corresponds to the canonical orientation of R. We can then define a section
s : p 7→

∑
i ψi(p)φi(p, 1) (where we set ψi(p)φi(p, 1) = 0 for p /∈ Ui). Since for a

given p ∈M , all φi(p, 1) for i such that p ∈ Ui differ only by scaling with positive
factors, we have that s(p) 6= 0. So we have a non-vanishing section of L, hence L
is trivial. �

4.6. Example. Let M ⊂ Rn be an (n − 1)-dimensional submanifold. Then we
can define a line bundle NM →M , the normal bundle of M as

NM = {(p, v) ∈ Rn × Rn : p ∈M, v ⊥ TpM}
(this works for submanifolds of any dimension; in general it is a vector bundle of
rank n−dimM). Then M is orientable if and only if NM is a trivial line bundle.

To see this, note that the latter condition is equivalent to saying that there is
a section n : M → NM such that ‖n(p)‖ = 1 for all p ∈ M (there must be a
non-vanishing section, which we can then normalize). Such a section n defines
a smoothly varying unit normal vector to M . Now note that a nonzero vector
y ∈ (TpM)⊥ defines an orientation on TpM by taking as oriented bases b1, . . . , bn−1

those that when extended by y give a canonically oriented basis of Rn. A section n
as above therefore provides us with a consistent orientation of the tangent spaces,
and conversely.

4.7. Proposition. A manifold M is orientable if and only if
∧dimM TM is a

trivial line bundle over M .

Proof. Let k = dimM . An orientation of TpM defines an orientation of
∧k TpM

(given by the set of all v1 ∧ · · · ∧ vk where v1, . . . , vk is an oriented basis of TpM),

and conversely. So M is orientable if and only if
∧k TM is an orientable line

bundle if and only if
∧k TM is a trivial line bundle. �

4.8. Example. We can now see in two different ways that the sphere S2 is ori-
entable. On the one hand, there is the obvious “outer unit normal field” given by
x 7→ (x, x), so S2 is orientable by Example 4.6. On the other hand, we have seen
in Example 3.13 that

∧2 TS2 is trivial, so S2 is orientable by Prop. 4.7.

In fact, both ways are really the same, as

NM ∼= Hom(
∧n−1TM,M ×

n∧
Rn) ∼=

∧n−1TM∗

in the situation of Example 4.6. (If U and U ′ are complementary subspaces of a
vector space V , with dimU = k, dimU ′ = n− k and dimV = n, then the wedge
product gives a bilinear map∧kU ×

∧n−kU ′ →
∧nV

which induces an isomorphism
∧n−k U ′ ∼= Hom

(∧k U,
∧n V

)
.)

5. Partitions of Unity

We have already seen a partition of unity in the proof of Lemma 4.5. Such a
partition of unity is very useful if we want to split a global object into local ones
in a smooth way, or conversely, if we want to glue together local objects to a global
one in a smooth way, like in the proof mentioned above. In this section, we will
prove that partitions of unity exist on manifolds. We follow [W].
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5.1. Definition. Let (Ui)i∈I and (Vj)j∈J be open covers of a topological space X.
We say that (Vj)j∈J is a refinement of (Ui)i∈I if for every j ∈ J there is some i ∈ I
such that Vj ⊂ Ui.

Let (Ai)i∈I be a family of (not necessarily open) subsets of X. We say that (Ai)i∈I
is locally finite if every point p ∈ X has a neighborhood U such that U ∩ Ai 6= ∅
only for finitely many i ∈ I.

5.2. Definition. Let M be a manifold. A partition of unity on M is a family
of nonnegative C∞-functions (ψj)j∈J on M such that (suppψj)j∈J is locally finite
and

∑
j∈J ψj(p) = 1 for all p ∈ M . (The sum makes sense, since there are only

finitely many non-zero terms.)

The partition of unity is subordinate to an open cover (Ui)i∈I of M if for every
j ∈ J there is some i ∈ I such that suppψj ⊂ Ui. It is subordinate with the same
index set if I = J and suppψi ⊂ Ui for all i ∈ I = J .

5.3. Lemma. Let M be a manifold. Then there is a sequence (Wn)n≥1 of open
subsets of M such that

Wn is compact, Wn ⊂ Wn+1, and M =
∞⋃
n=1

Wn .

Proof. In fact, we only need that M is Hausdorff, locally compact (i.e., every
point as a compact neighborhood), and has a countable basis of the topology. Let
(Bm)m≥1 be a countable basis of the topology of M ; we can assume that Bm is
compact for all m. (Just take any countable basis and remove all sets that do
not satisfy the condition. The resulting collection will still be a basis, since M
is locally compact and Hausdorff: Let U ⊂ M be open and p ∈ U ; let V be
an open neighborhood of p with compact closure. Then there is a basis set B
with p ∈ B ⊂ U ∩ V , and the closure of B is a closed subset of V , which is
compact, hence B is again compact.) Now let W1 = B1 and recursively define an
increasing sequence (mn)n≥1 such that Wn =

⋃mn

m=1 Bm by taking mn+1 to be the

smallest integer > mn with Wn ⊂
⋃mn+1

m=1 Bm. This defines a sequence (Wn) with

the desired properties. Note that Wn ⊂
⋃mn

m=1Bm is a closed subset of a finite
union of compact sets, hence compact. �

5.4. Lemma. There exists a C∞-function hk on Rk with 0 ≤ hk ≤ 1, hk(x) = 1
for ‖x‖ ≤ 1, and hk(x) = 0 for ‖x‖ ≥ 2.

Proof. We start with the function

f : R −→ R , t 7−→

{
e−1/t if t > 0,

0 if t ≤ 0.

It is a standard fact (or an exercise) that f is C∞; f(t) is positive for t > 0. Then

g(t) =
f(t)

f(t) + f(1− t)
is again C∞; it is zero for t ≤ 0 and g(t) = 1 for t ≥ 1. We can then define

hk(x) = g(4− ‖x‖2) ;

this satisfies the requirements. �
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5.5. Theorem (Existence of Partitions of Unity). Let M be a manifold,
(Ui)i∈I an open cover of M .

(1) There exists a countable partition of unity (ψj)j∈J of M subordinate to (Ui)i∈I
and such that suppψj is compact for all j ∈ J .

(2) There exists a partition of unity (ψ′i)i∈I subordinate to (Ui)i∈I with the same
index set and with at most countably many of the ψ′i not identically zero.

Note that in the second case, we cannot require that ψi has compact support.
Consider for example M = R with the one-element open cover given by R itself.

Proof. Let (Wn)n≥1 be a sequence of open sets as in Lemma 5.3; let W0 = ∅. For
p ∈M , let np be the largest integer such that p /∈ Wnp . Pick ip such that p ∈ Uip ,

and let φp be a chart centered at p whose domain is contained in Uip∩(Wnp+2\Wnp)
and whose codomain contains the closed ball of radius 2 in Rk, where k = dimM .
Let hk be the function from Lemma 5.4, and define αp(x) = hk(φp(x)) for x in the
domain of φp and αp(x) = 0 else. Then αp ∈ C∞(M), αp has compact support
contained in Uip∩(Wnp+2\Wnp) and takes the value 1 on some open neighborhood
Vp of p.

For each n ≥ 1, choose a finite set of points p ∈ M such that the Vp cover
Wn \Wn−1, and let J be the union of these finite sets. Then (αj)j∈J is a countable
family of functions, whose supports form a locally finite family of subsets, so
α =

∑
j∈J αj is a well-defined C∞-function on M , and α ≥ 1 everywhere. We

define ψj = αj/α; this provides a partition of unity with compact supports and
subordinate to (Ui)i∈I .

For the second statement, fix for every j ∈ J an ij ∈ I such that suppψj ⊂ Uij ,
and define

ψ′i =
∑
j:ij=i

ψj .

Then suppψ′i ⊂ Ui (note that the union of a locally finite family of closed sets
is closed),

∑
i∈I ψ

′
i =

∑
j∈J ψj = 1, and ψ′i is not the zero function only for the

countably many i ∈ I of the form ij. �

The following is sometimes useful.

5.6. Corollary. Let M be a manifold, A ⊂ U ⊂ M with A closed and U open.
Then there is h ∈ C∞(M) with h|A = 1, h|M\U = 0, and 0 ≤ h ≤ 1.

Proof. There is a partition of unity (ψU , ψM\A) subordinate to the open cover
(U,M \ A) of M with the same index set. We can then take h = ψU . �

6. Volume Integrals on Submanifolds

We now want to discuss how to define volumes of submanifolds of Rn, or more gen-
erally, integrals of functions on submanifolds with respect to volume. The reason
for looking at this case first is that the ambient space Rn gives us a natural notion
of volume for k-dimensional parallelotopes; we can then use this to approximate
the volume of the manifold.
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6.1. Reminder: “Flat” Volume Integrals. Recall the “unoriented (Riemann)
integral” of a sufficiently nice function f : Rk → R (e.g., f continuous) with
compact support, ∫

Rk

f(x) |dkx| = lim
N→∞

2−kN
∑

C∈DN (Rk)

f(xC) ,

where DN(Rk) is the set of “lattice cubes” of side-length 2−N in Rk and xC ∈ C is
some choice of representative point. The limit exists and does not depend on the
choice of the xC if f is Riemann integrable (which is what we mean by ‘nice’).

The idea was to cut Rk (or the support of f) into little pieces (which are chosen
to be cubes here), estimate the integral on each little piece by its volume times a
representative value of f , and sum the numbers thus obtained.

6.2. Submanifolds. Now consider a k-dimensional submanifold M ⊂ Rn. For
simplicity, assume that M is described by a single chart φ : M → V ⊂ Rk. Let
f : M → R be continuous (say) with compact support. Then f ◦ φ−1 : V → R is
continuous with compact support, and we can extend it (by zero) to a continuous
function on all of Rk. In order to approximate

∫
M
f(x) |dkx|, we can use the chart.

We cut Rk into pieces C as before and try to approximate the integral of f over
the image in M of each little cube. Since locally φ−1 is very close to a linear map,
the little cube C will map to something very well approximated by a parallelotope;
this parallelotope is spanned by 2−N times the partial derivatives of φ−1. So we
would like to take∫

M

f(x) |dkx| = lim
N→∞

2−kN
∑

C∈DN (Rk)

f
(
φ−1(xC)

)
volk

(
P (D(φ−1)xC)

)
.

Here, P (D(φ−1)x) denotes the parallelotope spanned by the columns of the matrix
D(φ−1)x, and xC ∈ C is, as before, some choice of representative point.

6.3. Volumes of Parallelotopes. In order to turn this into something useful, we
need to know how to compute the k-dimensional volume of a k-dimensional par-
allelotope in Rn. For this, we recall that the volume of the parallelotope spanned
by the columns of a k × k matrix A is given by | detA|. This is not immedi-
ately useful, since the matrix D(φ−1)x will not be a square matrix in general.

However, note that we can also write the volume above as
√

det(A>A) (since
det(A>A) = (detA)2). Now if a1, . . . , ak are the columns of A, the (i, j)-entry
of A>A is the inner product ai · aj. This means that the entries only depend on
the lengths of the ai and the angles between them. (Recall that a · a = ‖a‖2 and
a · b = ‖a‖ ‖b‖ cosα, where 0 ≤ α ≤ π is the angle between a and b.)

This is now something we can carry over to k-parallelotopes in Rn: The k-
dimensional volume of the parallelotope spanned in Rn by the columns of the
n× k matrix T is

volk P (T ) =
√

det(T>T ) .

6.4. Definition. In the situation considered in 6.2 above, we define∫
M

f(x) |dkx| =
∫
V

f
(
φ−1(x)

)√
det
(
D(φ−1)>xD(φ−1)x

)
|dkx| .

More generally, we can define such an integral whenever f has compact support
contained in the domain of a chart of M .
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We need to check that this definition does not depend on the chart. So let f
have compact support contained in the domains of two charts φ and φ′, and let
Φ = φ′ ◦ φ−1 be the transition map. We can assume that φ : U → V and
φ′ : U → V ′ have the same domain; then Φ : V → V ′, and the change-of-variables
formula gives (note that φ−1 = (φ′)−1 ◦ Φ):∫

V

f
(
φ−1(x)

)√
det
(
D(φ−1)>xD(φ−1)x

)
|dkx|

=

∫
V

f
(
(φ′)−1(Φ(x))

)√
det
(
(D((φ′)−1)Φ(x)DΦx)>D((φ′)−1)Φ(x)DΦx

)
|dkx|

=

∫
V

f
(
(φ′)−1(Φ(x))

)√
det
(
D((φ′)−1)>Φ(x)D((φ′)−1)Φ(x) | detDΦx| |dkx|

=

∫
V ′

f
(
(φ′)−1(y)

)√
det
(
D((φ′)−1)>yD((φ′)−1)y |dky|

So we get the same result from both charts.

We now generalize to functions whose support is not necessarily contained in the
domain of a chart. The tool we use for this is a partition of unity.

6.5. Definition. Let M ⊂ Rn be a k-dimensional submanifold, and let f : M →
R be a function. Let (ψj)j be a countable partition of unity on M such that each
ψj has compact support contained in the domain of a chart of M . Then ψjf is a
function with compact support contained in the domain of a chart φj : Uj → Vj.
We say that f is Riemann integrable if for each j, the function

Vj −→ R , x 7−→ ψj
(
φ−1
j (x)

)
f
(
φ−1
j (x)

)√
det
(
D(φ−1)>xD(φ−1)x

)
is Riemann integrable, and

∑
j

∫
M
|ψj(x)f(x)| |dkx| converges.

In this case, ∫
M

f(x) |dkx| =
∑
j

∫
M

ψj(x)f(x) |dkx| ∈ R

exists and is defined to be the (Riemann) integral of f over M .

If f is continuous with compact support, then f is Riemann integrable over M .
In particular, if f is continuous and M is compact, then f is Riemann integrable
on M . If the constant function 1 is Riemann integrable on M , we call its integral∫
M
|dkx| the (k-dimensional) volume of M .

We have to check that this definition does not depend on the partition of unity
we choose. First, let (Ψj,`) be a refinement of (ψj); this is a partition of unity
such that for each j, only finitely many Ψj,` are not identically zero, and such that
ψj =

∑
` Ψj,`. Since we can take a common chart for ψj and all the Ψj,`, it is clear

that we get the same result with both partitions of unity.

Now consider two arbitrary partitions of unity (ψj) and (ψ′`) satisfying the assump-
tions of the definition above. Then Ψj,` = ψjψ

′
` gives rise to a common refinement

of both (reversing the indices j and ` to view it as a refinement of (ψ′`)), so by the
argument given in the preceding paragraph both partitions give the same result.

In practice, when you want to do computations, it is not very convenient to work
with partitions of unity. If we have a chart (or finitely many charts) that covers
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“most” of M (that have disjoint domains covering “most” of M), where “most”
means everything except a subset of k-dimensional volume zero, then we can use
this chart (these charts) to compute volumes and integrals.

6.6. Example: Length of a Curve. As a first example, take a curve (one-
dimensional submanifold) in Rn, parametrized by a smooth map γ : I → Rn,
where I is an open interval. If a, b ∈ I, a < b, then the length of the part of the
curve between γ(a) and γ(b) is given by

b∫
a

‖γ′(t)‖ dt .

For example, if we consider the unit circle parametrized by γ(t) = (cos t, sin t),
then ‖γ′(t)‖ = 1, and we find that the length of the circle is 2π.

If we look at a logarithmic spiral γ(t) = (ect cos t, ect sin t) (with c > 0), then we
have

‖γ′(t)‖ =

√(
ect(c cos t− sin t)

)2
+
(
ect(c sin t+ cos t)

)2
= ect

√
c2 + 1 .

We obtain for the length between γ(a) and γ(b) the result

`a,b =
√
c2 + 1

b∫
a

ect dt =

√
c2 + 1

c
(ebc − eac) .

Note that this has a limit for a→ −∞ and b fixed.

6.7. Example: Area of Sphere. Now consider the sphere S2. If we remove one
‘meridian’, we can parametrize it by spherical coordinates:

F : ]0, 2π[×
]
−π

2
, π

2

[
−→ R3 , (t, u) 7−→ (cos t cosu, sin t cosu, sinu) .

The derivative of F is

DF(t,u) =

− sin t cosu − cos t sinu
cos t cosu − sin t sinu

0 cosu

 ,

so

DF>(t,u)DF(t,u) =

(
cos2 u 0

0 1

)
and √

det
(
DF>t,uDF(t,u)

)
= cosu .

(Note that cosu > 0.) Therefore, the area of the sphere comes out as

2π∫
0

π/2∫
−π/2

cosu du dt =

2π∫
0

2 dt = 4π .
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6.8. Example: Higher-Dimensional Spheres. We can parametrize Sn in a
similar way by

F : ]0, 2π[×
]−π

2
, π

2

[n−1 −→ Rn ,

(u1, · · ·un) 7−→



cosu1 cosu2 cosu3 · · · cosun
sinu1 cosu2 cosu3 · · · cosun

sinu2 cosu3 · · · cosun
...

sinun−1 cosun
sinun


We then find that√

det
(
DF>DF

)
= cosu2 cos2 u3 · · · cosn−1 un .

Therefore, the volume of Sn is

2π

π/2∫
−π/2

cosu2 du2

π/2∫
−π/2

cos2 u3 du3 · · ·
π/2∫

−π/2

cosn−1 un dun = 2a0a1 . . . an−1 ,

where ak =
∫ π/2
−π/2 cosk t dt. We have the recurrence

a0 = π , a1 = 2 , ak+2 =
k + 1

k + 2
ak

(obtained via integration by parts). From this, we obtain by induction that

ak+1ak =
2π

k + 1
.

Hence, by induction again,

volS2n+1 = 2π(a1a2) · · · (a2n−1a2n) =
2πn+1

n!

and

volS2n = 2(a0a1) · · · (a2n−2a2n−1) =
2n+1πn

(2n− 1)(2n− 3) · · · 3 · 1
.

With the convention that (−1
2
)! =

√
π and the usual recurrence for factorials,

these can be combined into the single formula

volSn =
2π(n+1)/2(

n−1
2

)
!
.

6.9. Example (Möbius Strip). As another example, consider the Möbius StripM
embedded in R3 as the image of the map

F : R× ]−1, 1[ −→ R3 , (t, x) 7−→
(
(1 + x cos t) cos 2t, (1 + x cos t) sin 2t, x sin t

)
.

The inverse of F , after restricting it to ]0, π[× ]−1, 1[ is a chart of M that covers
all of M except the image of {0}× ]−1, 1[ under F (which is a line segment in R3).
Using another chart (restrict F to ]−ε, ε[× ]−1, 1[), we see that its characteristic
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function is integrable, with integral zero. So the volume (= area) of M is not
changed when we remove this line segment. We can then compute the volume as

vol2(M) =

∫
]0,π[×]−1,1[

√
det(DF>z DFz) |d2z|

=

π∫
0

1∫
−1

√
x2 + 4(1 + x cos t)2 dx dt

≈ 13.254 > 4π .

(The integral apparently cannot be evaluated in closed form.)

6.10. Example (Graphs). Consider an open subset U ⊂ Rk and a smooth func-
tion f : U → R. Then the graph of f is Γ(f) = F (U), where

F : U −→ Rk+1 , x 7−→
(
x, f(x)

)
;

it is a k-dimensional submanifold of Rk+1. The derivative of F is a (k+1)×k matrix
whose upper k rows form an identity matrix, and whose last row is the gradient
∇f of f . Therefore, DF> ·DF = (∇f)>∇f + Ik, and det(DF>DF ) = 1 + ‖∇f‖2

(this is a linear algebra exercise). So finally,

volk Γ(f) =

∫
U

√
1 + ‖∇fx‖2 |dkx| .

7. The Formalism of Differential Forms on Rn

Our main goal in the following is to prove the general version of Stokes’ Theorem:∫
M

dω =

∫
∂M

ω .

In order to do this, we first have to explain the various objects in this formula.

The main thing to be defined is the notion of a differential k-form, which is the
type of thing ω is; it is the kind of object that naturally can be integrated over a
k-dimensional domain.

7.1. Definition. A k-form on a real vector space V is an alternating multilinear
map V k → R.

In more down-to-earth terms, ω : V k → R is linear in each of its arguments sepa-
rately (this is the meaning of ‘multilinear’) and ω(v1, . . . , vk) = 0 if v1, . . . , vk ∈ V
are linearly dependent (this is equivalent to ‘alternating’, given that ω is multilin-
ear; ‘alternating’ by definition means that ω vanishes if two of its arguments are
equal).

If V = Rn, we can write down some k-forms. Namely, let i1, . . . , ik ∈ {1, 2, . . . , n}.
Then we define the k-form dxi1 ∧ dxi2 ∧ · · · ∧ dxik by

(
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

)(a11
...
an1

 ,

a12
...
an2

 , . . . ,

a1k
...
ank

) = det


ai11 · · · ai1k
ai21 · · · ai2k

...
...

aik1 · · · aikk


That this is a k-form follows from the fact that the determinant is multilinear and
alternating. Considering the determinant as a function of the rows, we also see
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that dxi1∧· · ·∧dxik is zero when two of the indices are equal and changes sign when
two of them are swapped. Therefore, we can restrict to 1 ≤ i1 < i2 < · · · < ik ≤ n.
It can be shown that the set of k-forms obtained in this way is a basis of the space
of all k-forms on Rn, which therefore has dimension

dim
(∧kRn

)∗
=

(
n

k

)
.

For example, up to scaling, there is only one n-form dx1∧· · ·∧dxn, and it is given
by the determinant of the matrix obtained from the entries of the n vectors.

7.2. Definition. Let ω be a k-form and η an l-form on Rn. Then we define their
wedge product as

(ω ∧ η)(v1, . . . , vk+l) =
1

k!l!

∑
σ∈Sk+l

ε(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+l))

=
∑
σ∈Sk,l

ε(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+l)) .

Here ε(σ) is the sign of the permutation σ, and Sk,l denotes the set of (k, l)-shuffles;
these are permutations σ ∈ Sk+l such that σ(1) < · · · < σ(k) and σ(k+1) < · · · <
σ(k + l). (Exercise: prove the second equality above.)

ω ∧ η is then a (k + l)-form on Rn.

7.3. Remark. The wedge product is associative and commutative up to sign:

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3) =: ω1 ∧ ω2 ∧ ω3 and η ∧ ω = (−1)klω ∧ η

when ω is a k-form and η is an l-form.

Proof. Exercise. �

Note also that this notation is compatible with the notation dxi1 ∧ · · · ∧ dxik used
earlier: this k-form really is the wedge product of dxi1 , . . . , dxik .

What we will be interested in in the following are not just k-forms on Rn, but
k-forms that depend smoothly on a point x ∈ U , where U ⊂ Rn is an open set.
(And later, we will generalize this notion to manifolds.)

7.4. Definition. Let U ⊂ Rn be open. A differential k-form on U is a smooth
map ω : U 3 x 7→ ωx ∈ (

∧k Rn)∗ that associates to every x ∈ U a k-form ωx
on Rn. In down-to-earth terms, this means that

ωx =
∑

1≤i1<···<ik≤n

fi1,...,ik(x) dxi1 ∧ · · · ∧ dxik

with fi1,...,ik ∈ C∞(U).

We will usually just speak of “k-forms” when we mean “differential k-forms” and
hope that this will not lead to confusion.

We define the wedge product of two differential forms on U point-wise:

(ω ∧ η)x = ωx ∧ ηx .
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7.5. Example. On R3, there are

• 0-forms; these are just smooth functions;
• 1-forms f dx+ g dy + h dz; they correspond to vector fields F = (f, g, h);
• 2-forms s dy ∧ dz − t dx ∧ dz + u dx ∧ dy; we can let them correspond to

vector fields U = (s, t, u) again;
• 3-forms r dx ∧ dy ∧ dz, given by the function r.

However, one has to be careful with these identifications, since the transformation
behavior is quite different — a 1-form really gives a cotangent vector at every
point and therefore transforms differently under diffeomorphisms than a vector
field, which gives a tangent vector at every point, and 2-forms transform still
differently from that. Also, 3-forms transform differently than functions. See
below where we introduce the pull-back of a differential form. On R3, we can
make these identifications, because we have a fixed euclidean structure (i.e., we
have a canonical inner product).

We need some more ingredients in order to understand the formula giving Stokes’
Theorem. One of them is the exterior derivative of k-forms.

7.6. Definition. Let f be a 0-form on U ⊂ Rn (i.e., a smooth function). Then
we define the 1-form df by

df =
n∑
i=1

∂f

∂xi
dxi .

If ω =
∑

i1<···<ik fi1,...,ik dxi1 ∧ · · · ∧ dxik is a k-form on U , then we define the
(k + 1)-form dω by

dω =
∑

i1<···<ik

dfi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik

(where dfi1,...,ik is defined as above.)

7.7. Remark. df encodes the directional derivatives of f :

dfx(v) = lim
h→0

f(x+ hv)− f(x)

h
.

One can interpret dω in a similar way, compare [HH].

7.8. Examples. Let us go back to R3 and see what the exterior derivative means
for the various kinds of forms.

• If f is a function (0-form), then the vector field corresponding to df is just
the gradient ∇f of f .
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• If F is the vector field corresponding to the 1-form ω = f dx+ g dy+ h gz,
then we obtain

dω = df ∧ dx+ dg ∧ dy + dh ∧ dz

=
∂f

∂x
dx ∧ dx+

∂f

∂y
dy ∧ dx+

∂f

∂z
dz ∧ dx

+
∂g

∂x
dx ∧ dy +

∂g

∂y
dy ∧ dy +

∂g

∂z
dz ∧ dy

+
∂h

∂x
dx ∧ dz +

∂h

∂y
dy ∧ dz +

∂h

∂z
dz ∧ dz

=
(∂h
∂y
− ∂g

∂z

)
dy ∧ dz −

(∂f
∂z
− ∂h

∂x

)
dx ∧ dz +

(∂g
∂x
− ∂f

∂y

)
dx ∧ dy

(note that dx ∧ dx = 0, dy ∧ dx = − dx ∧ dy etc.). The vector field
corresponding to that is the curl ∇× F of F.
• If U is the vector field corresponding to the 2-form

η = s dy ∧ dz − t dx ∧ dz + u dx ∧ dy ,
then dη is given by

dη = ds ∧ dy ∧ dz − dt ∧ dx ∧ dz + du ∧ dx ∧ dy =
(∂s
∂x

+
∂t

∂y
+
∂u

∂z

)
dx ∧ dy ∧ dz

and corresponds to the divergence ∇ ·U of U.

So we see that all these different operations from vector analysis really are just
different incarnations of the same uniform principle. (This correspondence also
explains the perhaps at first sight non-obvious way we did the identification of
2-forms and vector fields.)

7.9. Remark. We have a modified Leibniz rule for the exterior derivative of a
wedge product, and taking the exterior derivative twice gives zero:

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη and ddω = 0 ,

where ω is a k-form.

Proof. Exercise. �

Also note that our notation dxi is compatible with our general definition, if we
think of xi as the ith coordinate function on Rn.

What is the purpose of a k-form? It wants to be integrated over some k-dimensional
domain. Let us first do it for n-forms.

7.10. Definition. Let ω = f(x) dx1 ∧ · · · ∧ dxn be an n-form on an open subset
U ⊂ Rn. Then we define ∫

U

ω =

∫
U

f(x) |dnx| ,

where the integral on the right is the multiple integral known from Analysis II.

Note that our integral is an oriented integral: if we change orientation by switching
two of the coordinates, then ω (i.e., f) changes sign, and so does the integral.

Before we can define integrals of k-forms, we need to look at how k-forms should
transform under diffeomorphisms, or more generally, smooth maps.
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7.11. Definition. Let φ : U → V be a smooth map, where U ⊂ Rm, V ⊂ Rn are
open, and let

ω =
∑

i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxik

be a k-form on V . Then we define the pull-back of ω to U as

φ∗ω =
∑

i1<···<ik

(fi1,...,ik ◦ φ) dφi1 ∧ · · · ∧ dφik .

Here φ = (φ1, . . . , φn), and dφi is the exterior derivative as defined above.

7.12. Remark. Pull-back is compatible with exterior derivative and wedge prod-
uct:

φ∗(dω) = dφ∗ω and φ∗(ω ∧ η) = φ∗ω ∧ φ∗η .
If ψ : W → U is another smooth map, then (φ ◦ ψ)∗ω = ψ∗(φ∗ω).

Proof. Exercise. �

7.13. Example. If ω = f dx1 ∧ · · · ∧ dxn is an n-form on V ⊂ Rn and φ : U → V
is a smooth map, where U ⊂ Rn, then

φ∗ω = (f ◦ φ) dφ1 ∧ · · · ∧ dφn = det(Dφ) (f ◦ φ) dx1 ∧ · · · ∧ dxn .

This implies the following.

7.14. Lemma. Let φ : U → V be an orientation-preserving diffeomorphism,
U, V ⊂ Rn open, and let ω be an n-form on V . Then∫

U

φ∗ω =

∫
φ(U)

ω =

∫
V

ω .

Proof. Let ω = f dx1 ∧ · · · ∧ dxn. We have∫
U

φ∗ω =

∫
U

f
(
φ(x)

)
det(Dφ) |dnx|

=

∫
U

f
(
φ(x)

)
| det(Dφ)| |dnx| =

∫
V

f(x) |dnx| =
∫
V

ω .

Here we used that det(Dφ) > 0 (φ preserves orientation) and the transformation
formula for integrals. �

If φ reverses orientation, then we will get a change of sign.

Now we can define the integral of a k-form over a parametrized k-dimensional
subset of U ⊂ Rn.

7.15. Definition. Let U ⊂ Rn and V ⊂ Rk open, let φ : V → U be a smooth
map, and let ω be a k-form on U . Then we define∫

φ

ω =

∫
V

φ∗ω .
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7.16. Remark. This integral is invariant under orientation-preserving re-para-
metrization: if ψ : V ′ → V is an orientation-preserving diffeomorphism, then∫

φ◦ψ

ω =

∫
φ

ω .

Proof. ∫
φ◦ψ

ω =

∫
V ′

(φ ◦ ψ)∗ω =

∫
V ′

ψ∗(φ∗ω) =

∫
V

φ∗ω =

∫
φ

ω .

Note the use of Lemma 7.14 above. �

7.17. Example. We can now, for example, integrate a 1-form along a parametrized
curve. Let f dx + g dy + h dz be a 1-form on some open set U ⊂ R3, and let
γ : I → U be smooth, where I is an interval. Then∫

γ

(f dx+ g dy + h dz) =

∫
I

(
f(γ(t))γ′1(t) + g(γ(t))γ′2(t) + h(γ(t))γ′3(t)

)
dt .

In terms of the vector field F corresponding to the 1-form, this reads∫
γ

(f dx+ g dy + h dz) =

∫
I

F(γ(t)) · γ′(t) dt .

We can now already prove a special case of Stokes’ Theorem.

7.18. Lemma (Baby Stokes). Let H = R<0×Rn−1 be the lower half-space in Rn,
let ω be an (n− 1)-form on Rn with compact support (all the coefficient functions
occurring in ω have compact support), and let φ : Rn−1 → Rn, x 7→ (0, x). Then∫

H

dω =

∫
φ

ω .

We use the lower (instead of the upper) half-space in order to get the correct
orientation of the boundary {0}×Rn−1 when we use the obvious parametrization.

Proof. We can write

ω =
n∑
i=1

(−1)i−1fi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn .

Then

dω =
n∑
i=1

∂fi
∂xi

dx1 ∧ · · · ∧ dxn .

By Fubini’s Theorem and the Fundamental Theorem of Calculus, we have∫
H

∂f1

∂x1

dx1∧· · ·∧dxn =

∫
Rn−1

( ∞∫
0

∂f1

∂x1

dx1

)
|dx2 . . . dxn| =

∫
Rn−1

f1(0, x)|dn−1x| =
∫
φ

ω .

In a similar way, we find for i ≥ 2 that∫
H

∂fi
∂xi

dx1 ∧ · · · ∧ dxn =

∫
Hi

( ∞∫
−∞

∂fi
∂xi

dxi

)
|dx1 . . . dxi−1dxi+1 . . . dxn| = 0 .
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Here Hi = {0} × Rn−2 is the projection of H that forgets the ith coordinate.
Combining these relations gives the result. �

8. Differential Forms on Manifolds and Stokes’ Theorem

In order to be able to formulate Stokes’ Theorem, we have to look at open subsets
of manifolds and their boundaries.

8.1. Definition. Let M be an n-dimensional manifold, U ⊂ M open. A point
p ∈ ∂U is a smooth boundary point of U if there is a chart φ : U ′ → V of M
centered at p such that φ(U ∩ U ′) = H ∩ V , where H = R<0 × Rn−1 is the lower
half-space.

Note that this implies that φ(∂U ∩U ′) =
(
{0} ×Rn−1

)
∩ V and that all points in

∂U ∩ U ′ are smooth boundary points.

We say that U has smooth boundary if all p ∈ ∂U are smooth boundary points
of U . This is equivalent to the requirement that ∂U can be covered by charts of M
with the property required above.

8.2. Remark. When U has smooth boundary, then ∂U is an (n− 1)-dimensional
manifold in a natural way. If M is oriented, then ∂U inherits an orientation.

Proof. Let U have smooth boundary. Then ∂U is covered by charts φ as above,
and we obtain charts of ∂U by restriction:

φ′ : ∂U ∩ U ′ φ−→
(
{0} × Rn−1

)
∩ V

∼=−→ V ′ ⊂ Rn−1 ,

where V ′ = {v ∈ Rn−1 : (0, v) ∈ V }. The transition maps between these charts are
restrictions of transition maps between charts of M and therefore diffeomorphisms.

If M is oriented, we can choose the charts to be compatible with the orientation
(except when dimM = 1; then the boundary point gets negative orientation when
the chart is orientation-reversing). Since the transition maps preserve the lower
half-space, their derivatives at points on the boundary hyperplane do as well, and
we find that

DΦ =


λ 0 · · · 0
∗
... DΦ′

∗


with λ > 0, hence det(DΦ) > 0 implies det(DΦ′) > 0. �

For an oriented curve, this means that the endpoint gets positive orientation, and
the starting point gets negative orientation. For a subset of R2, we orient the
boundary curve counter-clockwise.

Now we extend the notion of differential forms to manifolds.
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8.3. Definition. Let M be a manifold. A differential k-form ω on M is a section
of the vector bundle

(∧k TM
)∗

(whose fiber at x ∈ M is the space of k-forms on

the vector space TxM). We denote by Ωk(M) the R-vector space of differential k-
forms on M . For example, Ω0(M) = C∞(M) is just the space of smooth functions
on M .

In more down-to-earth terms, for each chart φ : U → V of M , ω is represented by
a differential k-form ωφ on V , such that for any two charts φ, φ′ with transition
map Φ = φ′ ◦ φ−1, we have ωφ = Φ∗ωφ′ (on the relevant overlap).

The notions and properties of wedge products, exterior derivatives and pull-backs
carry over to differential forms on manifolds. (Do it on charts and observe that
everything is compatible.)

8.4. Example. Let us consider 1-forms on the circle S1. We use the two charts

φ1 =
(
f |]−π,π[

)−1
and φ2 =

(
f |]0,2π[

)−1
, where f : R → S1, t 7→ (cos t, sin t) is

the usual parametrization. Note that the transition map Φ = φ2 ◦ φ−1
1 goes from

]−π, 0[ ∪ ]0, π[ to ]0, π[ ∪ ]π, 2π[ and is translation by 2π on the left interval and
the identity on the right interval. If we write

ωφ1 = h1(t) dt (−π < t < π) and ωφ2 = h2(t) dt (0 < t < 2π) ,

then we need to have that h1(t) = h2(t+ 2π) for −π < t < 0 and h1(t) = h2(t) for
0 < t < π. This can be interpreted by saying that h1 and h2 are both restrictions
of a 2π-periodic function h on R. In fact, we have f ∗ω = h(t) dt.

Finally, we need to define integrals of differential forms.

8.5. Definition. Let M be an oriented n-dimensional manifold, ω ∈ Ωn(M).
Cover M by oriented charts φj : Uj → Vj, and let (ψj) be a subordinate partition
of unity. We say that ω is integrable over M if∑

j

∫
Vj

∣∣(ψjω)φj
∣∣ <∞ .

Here, we define ∫
V

|f dx1 ∧ · · · ∧ dxn| =
∫
V

|f(x)| |dnx| .

If ω is integrable over M , we set∫
M

ω =
∑
j

∫
Vj

(ψjω)φj .

As before, it can be checked that this does not depend on the choice of charts or
the partition of unity.

8.6. Definition. Let M be a manifold, let M ′ be an oriented k-dimensional man-
ifold, let φ : M ′ →M be a smooth map, and let ω ∈ Ωk(M). Then we set∫

φ

ω =

∫
M ′

φ∗ω

(if φ∗ω is integrable over M ′). Note that as before, this integral is invariant under
orientation-preserving re-parametrization.
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If U ⊂M is open with smooth boundary, M an oriented n-dimensional manifold,
ω ∈ Ωn−1(M), then we write ∫

∂U

ω for

∫
φ

ω ,

where φ : ∂U →M is the inclusion, and ∂U is oriented as in Remark 8.2.

Now we can state and prove Stokes’ Theorem.

8.7. Theorem (Stokes). Let M be an oriented n-dimensional manifold, U ⊂M
open with smooth boundary, ω ∈ Ωn−1(M). Assume that Ū is compact or that ω
has compact support. Then ∫

U

dω =

∫
∂U

ω .

Proof. We cover U by charts φj : Uj → Vj such that charts meeting the bound-
ary ∂U are of the form required in Definition 8.1. Choose a subordinate partition
of unity (ψj) with compact supports (we can re-number the charts to have the
same index set, letting φj denote a chart whose domains contains suppψj; we may
have repetitions of charts, but we don’t care). There will only be finitely many
ψj such that its support meets Ū and the support of ω (recall that the family of
supports of the ψj is locally finite). We then have∫
U

dω =

∫
U

d
(∑

j

ψjω
)

=
∑
j

∫
U

d(ψjω) =
∑
j

∫
Vj

(
d(ψjω)φj

)
=
∑
j

∫
Vj

d
(
(ψjω)φj

)
.

Note that the sum is finite, so there is no problem in interchanging it with the
integration.

Now if Uj ∩∂U = ∅, then (by an argument similar to that used in the proof of the
‘Baby Stokes’ result Lemma 7.18)∫

Vj

d
(
(ψjω)φj

)
= 0 .

In the other case, we find by Lemma 7.18 that∫
Vj

d
(
(ψjω)φj

)
=

∫
V ′j

(ψjω)φ′j ,

where φ′j : Uj ∩ ∂U → V ′j is the chart of ∂U obtained by restricting φj and

projecting to the last n − 1 coordinates (compare Remark 8.2). Let
∑′

j denote

the sum restricted to those j such that Uj ∩ ∂U 6= ∅. Then we find∫
U

dω =
∑
j

′
∫
V ′j

(ψjω)φ′j =
∑
j

′
∫
∂U

ψjω =

∫
∂U

∑
j

′
ψjω =

∫
∂U

ω .

(Note that on ∂U ,
∑′

j ψj = 1.) �

9. Interpretation of Integrals in Rn

Let us see what Stokes’ Theorem tells us about integration in R3 (or in Rn). First
we need to find out what integrals of k-forms on R3 correspond to.
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9.1. 0-Forms. A 0-form is just a function f ∈ C∞(Rn) = Ω0(Rn). We can inte-
grate it over a 0-dimensional subset, which is just a finite collection of oriented
points. On a single point p ∈ Rn, we have∫

±p

f = ±f(p) ,

where the sign denotes the orientation of the point (and is not applied to the
coordinates of p!).

9.2. 1-Forms. A 1-form on Rn has the shape

ω = f1(x) dx1 + f2(x) dx2 + · · ·+ fn(x) dxn .

We can identify ω with the vector field F = (f1, . . . , fn)>.

If γ : [a, b]→ Rn is a curve, then∫
γ

ω =

b∫
a

(
f1

(
γ(t)

)
γ′1(t)+· · ·+fn

(
γ(t)

)
γ′n(t)

)
dt =

b∫
a

F
(
γ(t)

)
·γ′(t) dt =

∫
γ

F·v |dx| ;

the latter denoting the unoriented integral; v denotes the unit tangent vector in
direction of the orientation of the curve. For this, we assume that γ′(t) does not

vanish; then γ′(t) = v(γ(t))‖γ′(t)‖, and ‖γ′(t)‖ is the factor
√

det(Dγ>Dγ) in the
definition of the volume integral (which can be carried over to immersed manifolds,
i.e., subsets parametrized by open subsets of Rk such that the derivative of the
parametrization (like γ here) has maximal rank k everywhere).

Note that F · v gives the tangential component of the vector field along the curve.

9.3. (n− 1)-Forms. An (n− 1)-form on Rn looks like this:

η = u1(x) dx2 ∧ · · · ∧ dxn − u2(x) dx1 ∧ dx3 ∧ · · · ∧ dxn + . . .

+ (−1)n−1un(x) dx1 ∧ · · · ∧ dxn−1

=
n∑
i=1

(−1)i−1ui(x) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn .

We can identify η with the vector field U = (u1, . . . , un)>.

If φ : W → Rn (with W ⊂ Rn−1 open) parametrizes a hypersurface in Rn, then
we have∫

φ

η =

∫
W

φ∗η

=

∫
W

( n∑
i=1

(−1)i−1ui
(
φ(x)

)
dφ1 ∧ . . . dφi−1 ∧ dφi+1 ∧ · · · ∧ dφn

)
(∗)
=

∫
W

det
(
U
(
φ(x)

)
,
∂φ

∂x1

, . . . ,
∂φ

∂xn−1

)
|dn−1x|

=

∫
φ

U · n |dn−1x| .
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Here, n is the unit normal vector to the tangent space of the hypersurface such
that n, ∂φ

∂x1
, . . . , ∂φ

∂xn−1
is a positively oriented basis. It can be checked that

det
(
U
(
φ(x)

)
,
∂φ

∂x1

, . . . ,
∂φ

∂xn−1

)
= U

(
φ(x)

)
· n
(
φ(x)

)√
det(Dφ>x Dφx) .

(“Volume of n-dimensional parallelotope is volume of base times height.”)

So here the integral gives the normal component of the vector field. If we interpret
the vector field as a flow (of some fluid, for example), then the integral gives
us the total flow through the hypersurface in the direction given by n (which
depends on the orientation of the hypersurface). Note that if the hypersurface
is the boundary of some open subset U ⊂ Rn, then n is the outer unit normal,
pointing away from U .

It remains to check equality (∗) above. Expanding the dφj’s, we find

dφ1 ∧ · · · ∧ dφi−1 ∧ dφi+1 ∧ · · · ∧ dφn

=
∑

σ∈Sn−1

ε(σ)
∂φτi(1)

∂xσ(1)

· · ·
∂φτi(n−1)

∂xσ(n−1)

dx1 ∧ · · · ∧ dxn−1

= det(Dφ)i dx1 ∧ · · · ∧ dxn−1 ,

where τi(k) = k if k < i, τi(k) = k + 1 if k ≥ i, and (Dφ)i denotes the matrix Dφ
with the ith row removed. We then have

n∑
i=1

(−1)i−1uidφ1 ∧ · · · ∧ dφi−1 ∧ dφi+1 ∧ · · · ∧ dφn

=
n∑
i=1

(−1)i−1ui det(Dφ)i dx1 ∧ · · · ∧ dxn−1

= det(U, Dφ) dx1 ∧ · · · ∧ dxn−1

as claimed.

9.4. n-Forms. Finally, an n-form on Rn is given by

r(x) dx1 ∧ dx2 ∧ · · · ∧ dxn .
for an open subset U ⊂ Rn, we then simply have∫

U

r(x) dx1 ∧ dx2 ∧ · · · ∧ dxn =

∫
U

r(x) |dnx| .

Now we can interpret Stokes’ Theorem in these cases.

9.5. Stokes for Curves and 0-Forms. Let γ : [a, b] → Rn be a curve, f ∈
C∞(Rn). Then ∫

γ

df = f
(
γ(b)

)
− f

(
γ(a)

)
,

and ∫
γ

df =

∫
γ

∇f · v |dx| =
∫
γ

Dvf |dx|

is the integral of the directional derivative of f in direction of the unit tangent
vector of the curve. This generalizes the Fundamental Theorem of Calculus to line
integrals.
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9.6. Stokes for Open Subsets and (n − 1)-Forms. Let U ⊂ Rn be an open
subset with smooth boundary ∂U and assume (say) that Ū is compact. Let η ∈
Ωn−1(Rn), corresponding to the vector field U as above. Then

dη =
n∑
i=1

∂ui
∂xi

dx1 ∧ · · · ∧ dxn = ∇ ·U dx1 ∧ · · · ∧ dxn ;

∇ · U is the divergence of U. We then obtain what is known as the Divergence
Theorem (also called Gauss’ Theorem):∫

U

∇ ·U |dnx| =
∫
∂U

U · n |dn−1x| ,

where n is the outer unit normal vector. This says that the total flow out of the
set U is the same as the total divergence of the vector field inside U ; this justifies
the interpretation of the divergence as the amount of flow that is ‘generated’ at a
point.

9.7. Green’s Theorem. This is the special case n = 2 of the preceding in-
carnation (or also the planar case of the following). If S ⊂ R2 is open and
bounded with sufficiently nice boundary curve ∂S (oriented counter-clockwise),
and f, g ∈ C∞(R2), then∫

S

(∂g
∂x
− ∂f

∂y

)
|dx dy| =

∫
∂S

(f dx+ g dy) .

9.8. Example. Let U ⊂ R2 be the upper semi-disk of radius R. To find∫
∂U

(x2 dx+ 2xy dy) ,

we can parametrize the two parts of the boundary and then have to integrate some
polynomial in sin t and cos t. Alternatively, we can use Green’s Theorem and get

∫
∂U

(x2 dx+ 2xy dy) =

∫
U

2y |dx dy| =
R∫

−R

√
R2−x2∫
0

2y dy dx =

R∫
−R

(R2 − x2) dx =
4

3
R3 .

9.9. Stokes for Surfaces and 1-Forms on R3. Let ω ∈ Ω1(R3), and let φ :
W → R3 be a parametrized surface (with W ⊂ R2). Let F be the vector field
corresponding to ω. If U is the vector field corresponding to dω, then we have
U = ∇× F, i.e., U is the curl of F. From Stokes’ Theorem we obtain what is in
fact the original result of Stokes:∫

S

(∇× F) · n |d2x| =
∫
∂S

F · v |dx| .

Here, S is the oriented surface parametrized by φ, and ∂S is its boundary curve,
oriented such that we move around S counter-clockwise when looking from the
side in which the normal vector n points. This leads to the interpretation of the
curl as giving the amount of rotation of the flow around a given axis (here, n).
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9.10. Example. Let C ⊂ R3 be the curve that is the intersection of the cylin-
der x2 + y2 = 1 and the graph z = f(x, y) of a smooth function (for example,
z = sin(10100xy) + 2), oriented clockwise when seen from ‘above’ (i.e., from large
positive z values). We want to find∫

C

(y3 dx+ x dy + z dz) .

We can parametrize C by γ(t) = (cos t,− sin t, f(cos t,− sin t)), but this is likely
to result in a rather ugly integral (but see below). Instead, we can use Stokes’
Theorem: let a ∈ R such that f(x, y) > a for all (x, y) on the unit circle, and let
S be the surface that is the cylinder intersected with a < z < f(x, y). Let C ′ be
the circle x2 + y2 = 1, z = a, oriented counter-clockwise when seen from above.
Then ∂S = C + C ′ (in suggestive notation), hence∫
C

(y3 dx+x dy+z dz) =

∫
S

0 |d2x|−
∫
C′

(y3 dx+x dy+z dz) = −
∫
C′

(y3 dx+x dy+z dz)

(note that the curl of the vector field in question is (0, 0, 1 − 3y2)> and the unit
normal vector on S is (x, y, 0)>, so the curl has vanishing normal component —
there is no flow through the surface of the cylinder). For the integral over C ′, we
can parametrize as usual and obtain

−
∫
C′

(y3 dx+x dy+z dz) =

2π∫
0

(sin4 t−cos2 t) dt =

2π∫
0

−1− 8 cos 2t+ cos 4t

8
dt = −π

4
.

Here is a different approach. Note that

y3 dx+ x dy + z dz = d
(
xy + 1

2
z2
)

+ (y3 − y) dx .

By Stokes for 0-forms, this implies that∫
C

(y3 dx+ x dy + z dz) =

∫
C

(y3 − y) dx .

The latter integral can be computed fairly easily from the parametrization (since
it does not involve z or dz); we get

2π∫
0

(sin4 t− sin2 t) dt = −π
4

as before.

10. Closed and Exact Forms

10.1. Definition. Let M be a manifold, ω ∈ Ωk(M). We say that ω is closed, if
dω = 0. We say that ω is exact, if ω = dη for some η ∈ Ωk−1(M). (When k = 0,
then only ω = 0 is exact.)

It is easy to see that every exact form is closed. What about the converse?

It is certainly not the case that a closed 0-form (which is a locally constant func-
tion) is necessarily exact (the zero function). So the question is only interesting
for k ≥ 1.
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10.2. Example. Consider ω = f dx ∈ Ω1(R). Then dω = 0 (since there are no
non-trivial 2-forms on R). I claim that ω is exact. Indeed, we can define

F (x) =

x∫
0

f(t) dt =

∫
[0,x]

ω ,

and then ω = F ′(x) dx = dF .

10.3. Example. Let φ : R → S1, t 7→ (cos t, sin t), be the standard map. If
ω ∈ Ω1(S1), then φ∗ω = f dt with a 2π-periodic function f , and conversely. If
ω = dF , then f(t) = (F ◦ φ)′(t); the function F ◦ φ ∈ C∞(R) is 2π-periodic. This
implies that

2π∫
0

f(t) dt =

2π∫
0

F
(
φ(t)

)
dt = F (2π)− F (0) = 0 .

So, for example, if φ∗ω = dt, then ω cannot be exact, since
∫ 2π

0
dt = 2π 6= 0. This

argument can be extended to show that the linear map

Ω1(S1) −→ R , ω 7−→
∫
S1

ω

is surjective and has kernel the subspace of exact forms dΩ0(S1).

We will now generalize the first example above and prove the following.

10.4. Theorem. If ω ∈ Ωk(Rn) is closed and k ≥ 1, then ω is exact.

Proof. We want to do induction on the number of variables. So we define Ωk
l (Rn) ⊂

Ωk(Rn) to be the subspace of all k-forms that only involve dx1, . . . , dxl, and for

ω =
∑

1≤i1<···<ik≤l

fi1,...,ik dxi1 ∧ · · · ∧ dxik ∈ Ωk
l (Rn) ,

we set
d(l)ω =

∑
1≤i1<···<ik≤l

d(l)fi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik ,

where

d(l)f =
l∑

i=1

∂f

∂xi
dxi .

The statement we now prove by induction on l is the following.

If ω ∈ Ωk
l (Rn) with k ≥ 1 and d(l)ω = 0, then there is η ∈ Ωk−1

l (Rn) such that
ω = d(l)η.

For l = n, we have Ωk
n(Rn) = Ωk(Rn) and d(n) = d, so we obtain the statement of

the theorem.

We start with l = 1. If ω 6= 0, then we must have ω = f dx1, and d(1)ω = 0
is automatic. We define η(x) =

∫ x1

0
f(t, x2, . . . , xn) dt; then ω = d(1)η, compare

Example 10.2 above.

Now assume the statement is proved for l, and we want to prove it for l+1. So let
ω ∈ Ωk

l+1(Rn) with k ≥ 1 and d(l+1)ω = 0. Then we can write ω = ω1 + ω2 ∧ dxl+1

with ω1 ∈ Ωk
l (Rn) and ω2 ∈ Ωk−1

l (Rn). We have

0 = d(l+1)ω = d(l)ω1 + ω′ ∧ dxl+1
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for some ω′ ∈ Ωk
l (Rn). Since d(l)ω1 does not involve terms with dxl+1, this implies

that d(l)ω1 = 0 as well (looking at coefficients of the standard basis). By induction,
there is η1 ∈ Ωk−1

l (Rn) such that d(l)η1 = ω1. Write

d(l+1)η1 = d(l)η1 + η2 ∧ dxl+1 = ω1 + η2 ∧ dxl+1

and set

ω̃ = ω − d(l+1)η1 = (ω2 − η2) ∧ dxl+1 .

We have d(l+1)ω̃ = d(l+1)ω − d(l+1)d(l+1)η1 = 0, so

d(l)(ω2 − η2) ∧ dxl+1 = d(l+1)(ω2 − η2) ∧ dxl+1 = d(l+1)ω̃ = 0 ,

which implies that d(l)(ω2 − η2) = 0. If k ≥ 2, then by induction again, there is
ζ ∈ Ωk−2

l (Rn) such that d(l)ζ = ω2 − η2. Then

d(l+1)(η1 + ζ ∧ dxl+1) = d(l+1)η1 + d(l)ζ ∧ dxl+1

= ω1 + η2 ∧ dxl+1 + (ω2 − η2) ∧ dxl+1

= ω1 + ω2 ∧ dxl+1 = ω ,

and we are done. If k = 1, then h = ω2 − η2 is a function that does not depend
on x1, . . . , xl. Write h(xl+1, . . . , xn) for it and define

H(x) =

xl+1∫
0

h(t, xl+2, . . . , xn) dt and η′1 = η1 +H .

Then

d(l+1)η′1 = d(l+1)η1 + d(l+1)H = ω1 + η2 dxl+1 + h dxl+1 = ω1 + ω2 dxl+1 = ω ,

and we are done again. �

Note that since everything commutes with pull-backs, the same result holds for
any manifold M such that M is diffeomorphic to some Rn, for example an open
ball. Note also that the proof is constructive: following the induction, we can
construct a form η such that ω = dη, in terms of simple (meaning 1-dimensional)
integrals.

10.5. Interpretation in R3. If we consider our interpretations of differential
forms and exterior derivatives on R3, we obtain the following.

• A vector field F on R3 is the gradient ∇f of a function if and only if its
curl vanishes: ∇× F = 0.

• A vector field U on R3 is the curl ∇×F of a vector field if and only if its
divergence vanishes: ∇ ·U = 0.

• Any function on R3 is the divergence of a vector field.

In general, we know that the image of d : Ωk−1(M) → Ωk(M) (i.e., the exact
k-forms) is a subspace of the kernel of d : Ωk(M) → Ωk+1(M) (i.e., the closed
k-forms). The following definition then makes sense.
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10.6. Definition. Let M be a manifold. For k ≥ 0, we define the kth de Rham
cohomology group of M to be the real vector space

Hk
dR(M) =

ker
(
d : Ωk(M)→ Ωk+1(M)

)
im
(
d : Ωk−1(M)→ Ωk(M)

) .
Here Ω−1(M) = 0, so H0

dR(M) is the space of functions f such that df = 0.
These are exactly the locally constant functions, i.e., they are constant on every
connected component of M . Therefore,

H0
dR(M) ∼= R{components of M} .

Also, if k > dimM , then Hk
dR(M) = 0, since already Ωk(M) = 0.

In general, these cohomology groups contain information about the topology of M .
Note that when ω is a closed k-form and S is an oriented (k+1)-submanifold of M ,
then by Stokes, ∫

∂S

ω =

∫
S

dω = 0 .

So if T and T ′ are oriented k-dimensional submanifolds of M such that T−T ′ = ∂S
for a (k + 1)-dimensional oriented submanifold S (where T − T ′ means the union
of T and T ′, where the orientation is reversed on T ′), then∫

T

ω −
∫
T ′

ω =

∫
∂S

ω = 0 .

The condition implies that T and T ′ have the same boundary, so
∫
T
ω only depends

on ∂T as long as T does not ‘cross a hole’ in M . An example of this ‘crossing
a hole’ is when we compare the upper and lower semicircle of S1; in this case a
closed form does not have to give the same integral.

If ω = dη is exact, then for an oriented k-submanifold T ⊂M ,∫
T

ω =

∫
T

dη =

∫
∂T

η ,

and so the integral only depends on ∂T without any conditions. So if M has
‘k-dimensional holes’, we can expect to find a non-trivial Hk

dR(M).

10.7. Example. We have

Hk
dR(Rn) =

{
R if k = 0,

0 if k > 0.

This follows from Theorem 10.4 above.

10.8. Example. We have

Hk
dR(S1) =

{
R if k = 0, 1,

0 if k > 1.

This follows from Example 10.3.

We mention the following result without proof.
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10.9. Theorem. If M is compact, then dimHk
dR(M) <∞ for all k ≥ 0.

This holds more generally for manifolds that can be covered by finitely many
charts such that the intersection of the domains of any nonempty subset of this
collection of charts is diffeomorphic to Rn (or to an open ball, which is the same
up to diffeomorphism). Here is a sketch for k = 1. (The case k = 0 follows from
the observation made in the definition above, since a compact manifold only has
finitely many connected components.)

So let M be compact, with charts φj : Uj → Vj that have the stated property, and
let ω ∈ Ω1(M) such that dω = 0. By Thm. 10.4, there are functions fj ∈ C∞(Uj)
such that dfj = ω|Uj

(since Uj is diffeomorphic to Rn). So on Ui ∩ Uj, we have
d(fj−fi) = dfj−dfi = 0, so there are constants (since Ui∩Uj is connected) cij ∈ R
with fj|Ui∩Uj

− fi|Ui∩Uj
= cij. Any change of fj will be by a constant γj, so cij can

be replaced by cij + γj − γi. We obtain a well-defined linear map

ker
(
d : Ω1(M)→ Ω2(M)

)
−→ {(cij)i<j : cij ∈ R}
{(γj − γi)i<j : γi ∈ R}

.

If ω is in the kernel of this map, then there are γi ∈ R such that fj − fi = γj − γi
on Ui ∩ Uj. So fj − γj = fi − γi, and we can define a function f on M such that
f = fj−γj on Uj, for all j. Then ω = df is exact. This gives us an injective linear
map

H1
dR(M) =

ker
(
d : Ω1(M)→ Ω2(M)

)
im
(
d : Ω0(M)→ Ω1(M)

) −→ {(cij)i<j : cij ∈ R}
{(γj − γi)i<j : γi ∈ R}

with target a finite-dimensional vector space, so dimH1
dR(M) <∞.

This approach can be extended to general k, but gets a bit technical. In the end, we
get an isomorphism of the de Rham cohomology group with the Čech cohomology
group of the cover by charts (this is defined in terms of the combinatorial structure
of the collection (Uj)), which computes the singular cohomology group (with values
in R) of M ; this is a topological invariant.

10.10. Exercise. Show that the wedge product induces bilinear maps on the de
Rham cohomology groups

∧ : Hk
dR(M)×H l

dR(M) −→ Hk+l
dR (M) .

10.11. Exercise. Denote by ∆n = {t1e1 + · · · + tnen : 0 < ti < 1} ⊂ Rn the
n-dimensional standard simplex (where e1, . . . , en is the canonical basis of Rn).

Set e0 = 0. We write e
(n)
j to distinguish the vectors in Rn from the corresponding

vectors in other spaces. Define ınm : Rn−1 → Rn to be the affine map that sends

e
(n−1)
0 , . . . , e

(n−1)
n−1 to e

(n)
0 , . . . , e

(n)
m−1, e

(n)
m+1, . . . , e

(n)
n (i.e., we leave out e

(n)
m ). Let M

be a manifold, and let Ck(M) be the set of all formal real linear combinations of
smooth maps f : Rk → M . Define a boundary operator ∂ : Ck(M) → Ck−1(M)
by

∂f =
k∑
i=0

(−1)i−1(f ◦ ıki ) .

(1) Show that ∂∂f = 0.
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We can therefore define homology groups

Hk(M) =
ker
(
∂ : Ck(M)→ Ck−1(M)

)
im
(
∂ : Ck+1(M)→ Ck(M)

) .
For example, H0(M) =

⊕
components of M R. The idea behind Hk(M) is that it

should in some way count the ‘k-dimensional holes’ in M .

(2) Show that

(ω, f) 7−→
∫

f |∆k

ω

induces a bilinear map Ωk(M) × Ck(M) → R. We denote it by (ω, α) 7→
〈ω, α〉.

(3) Show that 〈ω, ∂α〉 = 〈dω, α〉 for ω ∈ Ωk(M) and α ∈ Ck+1(M).

(4) Show that the bilinear map above induces a bilinear map

Hk
dR(M)×Hk(M) −→ R .

One can show that the latter bilinear map induces an isomorphism between
Hk

dR(M) and the dual space Hk(M)∗ = Hom(Hk(M),R).

11. Lebesgue Integration

We now turn to the other important topic of this course, which is the Lebesgue
Integral. Its introduction is motivated by some shortcomings of the Riemann
Integral; what it does is to generalize the Riemann integral to a larger class of
functions. However, the Riemann integral is still very important, since it provides
a way of actually computing an integral (as a limit of Riemann sums). Of course,
it is also important, because the definition of the Lebesgue integral is based on it.

The following is based on the book [HH].

One of the problems with the Riemann integral is that it does not behave very
well with respect to point-wise limits of functions. Ideally, we would like to have
a statement of the following type.

If f is a point-wise limit of a sequence of integrable functions (fn), then f is
integrable and

∫
f = limn→∞

∫
fn.

Now there are various reasons why this cannot be true in this generality. The
main reason is that we can ‘lose mass’ in the limit, because it gets shifted out to
infinity or to the boundary of the domain. For example, let D = ]−1, 0[∪]0, 1[, and
define fn to be n times the characteristic function of D ∩ ]−1/n, 1/n[. Then fn is
Riemann integrable on D, and

∫
D
fn(x) dx = 2 for all n. On the other hand, fn(x)

tends to zero for each x ∈ D, so fn → 0 point-wise, but the integral obviously
does not tend to zero. In order to avoid this problem, we have to prevent the
mass from escaping. A reasonable way of doing this is to require all the functions
to be bounded by a fixed integrable function. This gives the statement of the
Dominated Convergence Theorem:

Let g be an integrable function, and let (fn) be a sequence of integrable functions
such that |fn| ≤ g for all n. If (fn) converges point-wise to a function f , then f
is integrable, and

∫
f = limn→∞

∫
fn.

We will prove this later for Lebesgue integrable functions, with a slightly weakened
convergence hypothesis. But let us first see why this does not hold for Riemann
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integrable functions. For this, consider a sequence (an) that enumerates all the
rational numbers in the interval [0, 1], and define fn : [0, 1]→ R to be the function
that is zero everywhere except that fn(ak) = 1 for k ≤ n. Then each fn is
integrable, with integral zero. The sequence (fn) converges point-wise to a function
f , which is the characteristic function of Q ∩ [0, 1]. Now the problem is that this
function f is not Riemann integrable — it is ‘too discontinuous’. In fact, every
upper Riemann sum is 1 and every lower Riemann sum is 0. So we will need to
extend our notion of ‘integrable function’ to also include f (which then should
have integral zero). Before we can do this, we need to introduce the notion of
‘measure zero’.

11.1. Definition. An open box in Rn is an open cube

B = ]a1, a1 + δ[× · · · × ]an, an + δ[ ⊂ Rn

where (a1, . . . , an) ∈ Rn and δ > 0.

A subset X ⊂ Rn has measure zero if for every ε > 0, there exists a sequence (Bk)
of open boxes in Rn such that

X ⊂
⋃
k

Bk and
∑
k

voln(Bk) ≤ ε .

Note that this differs from the notion of volume zero, which requires a finite set of
cubes covering X of arbitrary small volume. Obviously, every set of volume zero
also has measure zero, but the converse is false.

11.2. Exercise. Show that in the definition of ‘measure zero’ we could use arbi-
trary pavable sets instead of open boxes without changing which sets have measure
zero.

11.3. Example. The set Q ∩ [0, 1] has measure zero (in R), but is not pavable
and therefore does not have a defined volume (or length, in this case).

To see that the set has measure zero, enumerate Q∩[0, 1] = {a1, a2, . . . }. For given
ε > 0, letBk =

]
ak − 2−k−1ε, ak + 2−k−1ε

[
, then vol1Bk = 2−kε, so

∑∞
k=1 vol1Bk =

ε, and clearly
⋃
k Bk contains Q ∩ [0, 1].

To see that the set is not pavable, note that any finite union of closed intervals
covering Q ∩ [0, 1] must also cover [0, 1] (since otherwise it would miss a whole
open interval which will contain lots of rational numbers). On the other hand, no
interval of positive length is contained in Q ∩ [0, 1], so the lower volume is 0 and
the upper volume is 1.

11.4. Proposition.

(1) If X ⊂ Rn has measure zero and Y ⊂ X, then Y ⊂ Rn has measure zero.

(2) If X1, X2, . . . ⊂ Rn all have measure zero, then their union X =
⋃∞
k=1Xk

also has measure zero.

Proof. The first statement is clear from the definition (just take the same boxes as
for X). For the second statement, we use the same idea as in the example above.
Let ε > 0. Then for each k, we can choose boxes Bkj, j = 1, 2, . . . covering Xk

and with total volume ≤ 2−kε. Then all these boxes together (which can again be
arranged in a sequence) cover X and have total volume ≤ ε. �
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The importance of sets of measure zero comes from the fact that they will be what
can be safely ignored when (Lebesgue) integrating functions. But they are also
important for the Riemann integral.

11.5. Theorem. Let f : Rn → R be bounded and have bounded support. Then f
is Riemann integrable if and only if f is continuous on Rn \X, where X is a set
of measure zero.

Proof. See [HH], Thm. 4.4.5, pages 440–442. �

Now let us turn back to convergence of integrals. One easy case is the following.

11.6. Theorem. If (fk) is a sequence of bounded Riemann integrable functions
on Rn, all with support contained in a fixed bounded set and converging uniformly
to a function f , then f is Riemann integrable, and∫

Rn

f(x) |dnx| = lim
k→∞

∫
Rn

fk(x) |dnx| .

Proof. Exercise. �

This is good enough for many applications, but not really satisfying. We can
go a bit further and prove a version of the Dominated Convergence Theorem for
Riemann integrals.

11.7. Dominated Convergence Theorem for Riemann Integrals. Let fk :
Rn → R, k = 1, 2, . . . be a sequence of Riemann integrable functions. Suppose
that supp fk ⊂ B for a fixed bounded set B ⊂ Rn and that |fk| ≤M for all k, with
some fixed M > 0. Let f : Rn → R be Riemann integrable and such that (fk(x))k
converges to f(x) except on a set of measure zero. Then∫

Rn

f(x) |dnx| = lim
k→∞

∫
Rn

fk(x) |dnx| .

The big weakness of this theorem is that is requires the limit function f to be
Riemann integrable. This is hard to show in practice, so we would like to have a
notion of integrability where this is automatic. Note also that the requirements on
boundedness and support of the fk is equivalent to saying that all |fk| are bounded
by a fixed Riemann integrable function g, which we can take to be MχB.

Proof. Let us make some simplifications of the statement. First of all, we can
consider fk − f instead of fk and so take f = 0 without loss of generality. The
next step is to remove the exceptional set of measure zero. So assume the theorem
holds when we require point-wise convergence everywhere, and let (fk), f = 0 etc.
be as in the statement above. Let ε > 0 and pick a countable union Xε =

⋃
j Bj

of open boxes covering the exceptional set and such that
∑

j volnBj ≤ ε. Then

there is a continuous function h : Rn → [0, 1] such that h(x) = 1 for x /∈ Xε and
0 ≤ h(x) < 1 for x ∈ Xε. Now consider the sequence of functions gk = hkfk. Then
the gk also satisfy the assumptions, but additionally, we have that gk(x) → 0
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for all x ∈ Rn. So we can apply the simplified version to the gk and find that
limk→∞

∫
gk = 0. On the other hand,∣∣∣∫

Rn

fk(x) |dnx| −
∫
Rn

gk(x) |dnx|
∣∣∣ ≤ ∫

Rn

|fk(x)− gk(x)| |dnx|

≤M

∫
Rn

(
1− h(x)k

)
|dnx| ≤M

∑
j

volnBj ≤Mε ,

so we see that

lim sup
k→∞

∣∣∣∫
Rn

fk(x) |dnx|
∣∣∣ ≤Mε .

Since ε > 0 was arbitrary, this implies that
∫
fk → 0 as desired.

Next, we can write fk = f+
k − f

−
k , where f+

k = max{fk, 0} and f−k = max{−fk, 0}
are the positive and negative parts of fk, as usual. Then f+

k → 0 and f−k → 0 point-
wise, and we see that it suffices to prove the theorem for non-negative functions.

Finally, we can scale the variable and the functions in such a way that 0 ≤ fk ≤ 1
and supp fk ⊂ Q for all k, where Q is the unit cube in Rn. The theorem therefore
follows from the result below. �

11.8. Proposition. Let (fk) be a sequence of functions with support in Q and
such that 0 ≤ fk ≤ 1. Suppose that fk(x)→ 0 for all x ∈ Q. Then

lim
k→∞

∫
Rn

fk(x) |dnx| = 0 .

In order to prove this, we will first look at a special case, where the functions form
a decreasing sequence.

11.9. Proposition. Let (fk) be a sequence of functions with support in Q and
such that 1 ≥ f1 ≥ f2 ≥ · · · ≥ 0. Suppose that fk(x)→ 0 for all x ∈ Q. Then

lim
k→∞

∫
Rn

fk(x) |dnx| = 0 .

Proof. Since the sequence of functions is decreasing, the sequence given by the
values of the integrals is also decreasing; it is also bounded below by zero, so if
the conclusion is false, then

lim
k→∞

∫
Rn

fk(x) |dnx| = 2K > 0 .

Define Ak = {x ∈ Rn : fk(x) ≥ K} ⊂ Q. The idea of the proof is that A1 ⊃ A2 ⊃
. . . is a nested sequence of sets each of which should have volume ≥ K, so their
intersection is non-empty, which contradicts the assumption that fk(x) → 0 for
all x. The problem with that approach is that the Ak need not be pavable. We
get around that by considering the lower volume volnAk, which I claim is ≥ K:

2K ≤
∫
Q

fk(x) |dnx| ≤
∫
Q

max{K, fk(x)} |dnx| = L
(
max{K, fk}χQ

)
≤ K+volnAk .
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Here, L(f) = limN→∞ LN(f) denotes the lower integral of f . For each N , we have

LN
(
max{K, fk}χQ

)
=

∑
Q′∈DN ,Q′⊂Q

2−Nn inf
{

max{K, f(x)} : x ∈ Q′
}

≤ K + 2−Nn#{Q′ ∈ DN : Q′ ⊂ Ak}
≤ K + volnAk

(Note that fk ≤ 1.) For each k, we can therefore find a finite union A′k of closed
dyadic cubes such that A′k ⊂ Ak and volnA

′
k ≥ volnAk − 2−k−1K. Let A′′k =

A′1 ∩ · · · ∩A′′k, then A′′1 ⊃ A′′2 ⊃ . . . is a nested sequence of compact sets. We have

volnA
′′
k = volnA

′
k − voln

(
A′k \

k−1⋂
j=1

A′j

)

≥ volnA
′
k −

k−1∑
j=1

voln(A′k \ A′j)

≥ K − 2−k−1K −
k−1∑
j=1

2−j−1K > K/2 > 0 ;

note that A′k \ A′j ⊂ Aj \ A′j, hence voln(A′k \ A′j) ≤ volnAj − volnA
′
j ≤ 2−j−1K.

This shows in particular that the A′′k are non-empty, so by a standard property of
compact sets, it follows that their intersection is non-empty as well. But then,

x ∈
∞⋂
k=1

A′′k =⇒ x ∈
∞⋂
k=1

Ak =⇒ fk(x) ≥ K for all k ≥ 1 ,

which contradicts the assumption fk(x) → 0 for all x and therefore finishes the
proof. �

11.10. Corollary. Let h and hk, for k ≥ 1, be Riemann integrable functions
with support in the unit cube Q, such that 0 ≤ h ≤ 1, hk ≥ 0 for all k, and
h(x) ≤

∑∞
k=1 hk(x) for all x ∈ Q (where we allow the series to diverge to ∞).

Then ∫
Rn

h(x) |dnx| ≤
∞∑
k=1

∫
Rn

hk(x) |dnx| .

Proof. Set fk(x) = max
{

0, h(x) −
∑k

j=1 hj(x)
}

. Then fk is Riemann integrable,

we have 0 ≤ fk(x) ≤ h(x) ≤ 1 for all x, f1 ≥ f2 ≥ . . . , and fk(x) → 0 for all x.
So by Prop. 11.9, we know that

∫
fk → 0. This implies∫

Rn

h(x) |dnx| = lim
k→∞

∫
Rn

(
h(x)− fk(x)

)
|dnx|

= lim
k→∞

∫
Rn

min
{
h(x),

k∑
j=1

hj(x)
}
|dnx|

≤ lim
k→∞

k∑
j=1

∫
Rn

hj(x) |dnx| =
∞∑
k=1

∫
Rn

hj(x) |dnx| .

�
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Now we come back to the proof of Prop. 11.8.

Proof. Ideally, we would like to consider gk = sup{fj : j ≥ k}; this would be a
decreasing sequence of functions converging to zero point-wise, and so we could
apply the Monotone Convergence Theorem Prop. 11.9 to it, allowing us to conclude
easily. However, the problem is (as usual) that these gk may not be Riemann
integrable. For example, enumerate Q ∩ [0, 1] = {a1, a2, . . . }, and let fk = χ{ak}.
These fk satisfy the assumptions of the proposition, but gk is the characteristic
function of Q∩ [0, 1]\{a1, . . . , ak−1}, which is not Riemann integrable. So we have
to use some tricks to make the proof work.

Assume the conclusion is false. Since all the integrals are nonnegative, this implies
that there is a subsequence of (fk), which we can assume to be the sequence (fk)
itself, such that

lim
k→∞

∫
Rn

fk(x) |dnx| = C > 0 .

Now, as a substitute for the gk considered above, we will take certain linear com-
binations of the fk. For p ≥ 1, Let

Kp =
{ ∞∑
k=p

akfk : ak ≥ 0,
∞∑
k=p

ak = 1, ak = 0 for k large
}
.

If (gp) is a sequence of functions with gp ∈ Kp, then we still have that gp(x)→ 0
for all x and

∫
gp → C. (For the former, let ε > 0. Then there is K such that for

k ≥ K, we have 0 ≤ fk < ε. So if p ≥ K, we have 0 ≤ gp < ε, too. For the latter,

given ε > 0 again, there is K such that
∣∣∣∫ fk − C∣∣∣ < ε for k ≥ K, hence∣∣∣∫ gp − C

∣∣∣ =
∣∣∣∫ ∑

k≥p

akfk − C
∣∣∣ =

∣∣∣∑
k≥p

ak

(∫
fk − C

)∣∣∣
≤
∑
k≥p

ak

∣∣∣∫ fk − C
∣∣∣ <∑

k≥p

akε = ε .)

Now the idea is to take gp that are small, so that we have a chance to get a
contradiction to

∫
gp → C. Therefore, we consider

dp = inf
{∫
Rn

gp(x)2 |dnx| : gp ∈ Kp

}
.

Since Kp+1 ⊂ Kp, this is an increasing sequence of nonnegative numbers; it is
bounded by 1 (since gp ≤ 1), so has a limit d. Then for every p ≥ 1, we can pick
a gp ∈ Kp such that ∫

Rn

gp(x)2 |dnx| ≤ d+
1

p
.

Now I claim that these gp are close to one another when p is large: Given ε > 0,
there is N such that whenever p, q ≥ N , we have∫

Rn

(
gp(x)− gq(x)

)2 |dnx| ≤ ε .

To see this, let N be so large that d − dN ≤ ε/8 and 1/N ≤ ε/8. By simple
algebra, we have that(1

2

(
gp(x)− gq(x)

))2

+
(1

2

(
gp(x) + gq(x)

))2

=
1

2
gp(x)2 +

1

2
gq(x)2 .
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This gives

1

4

∫
Rn

(
gp(x)− gq(x)

)2 |dnx|

=
1

2

∫
Rn

gp(x)2 |dnx|+ 1

2

∫
Rn

gq(x)2 |dnx| −
∫
Rn

(1

2

(
gp(x) + gq(x)

))2

|dnx|

≤ 1

2

(
d+

1

p

)
+

1

2

(
d+

1

q

)
− dN

≤ d− dN +
1

N
≤ ε

4
.

Note that p, q ≥ N , so 1
2
(gp + gq) ∈ KN .

This now allows us to pick a subsequence (hq) of (gp) such that
∞∑
q=1

(∫
Rn

(
hq(x)− hq+1(x)

)2 |dnx|
)1/2

<∞ .

To do this, pick a sequence (εq) of positive numbers such that
∑

q

√
εq <∞. Then

there is an increasing sequence N1 < N2 < . . . such that for p, p′ ≥ Nq, we have∫
(gp − gp′)2 ≤

√
εq. We can then set hq = gNq .

Now observe that hq =
∑∞

j=q(hj − hj+1) (since the partial sums are hq − hm, and

hm → 0). This implies

hq(x) ≤
∞∑
j=q

∣∣hj(x)− hj+1(x)
∣∣ for all x ∈ Rn.

We can then apply Cor. 11.10 and find∫
Rn

hq(x) |dnx| ≤
∞∑
j=q

∫
Rn

∣∣hj(x)− hj+1(x)
∣∣ |dnx|

≤
∞∑
j=q

(∫
Rn

(
hq(x)− hq+1(x)

)2 |dnx|
)1/2

.

(We use the Cauchy-Schwarz inequality for integrals here.) But the latter tends
to zero as q →∞, since it is the tail end of a converging series. This contradicts
the fact that

lim
q→∞

∫
Rn

hq(x) |dnx| = C > 0 ,

which was a consequence of our assumption that the conclusion of Prop. 11.8 does
not hold. So the Proposition is finally proved. �

Our next goal will be to define the Lebesgue integral. For this, we need the
following result.

11.11. Proposition. Let fk : Rn → R, k = 1, 2, . . . , be Riemann-integrable func-
tions such that

∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞ .

Then there is a set X ⊂ Rn of measure zero such that the series
∑∞

k=1 fk(x)
converges for all x ∈ Rn \X.
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Proof. We will take

X =
{
x ∈ Rn :

∞∑
k=1

|fk(x)| diverges
}
.

Then
∑

k fk(x) converges absolutely on Rn \X. The hard part is to show that X
has measure zero. Let

A =
∞∑
k=1

∫
Rn

|fk(x)| |dnx| .

If A = 0, then
∫
|fk| = 0 for all k. Now observe that if fk is continuous at x ∈

Rn and fk(x) 6= 0, then |fk| is bounded below by a positive constant on some
neighborhood of x, hence

∫
|fk| > 0. So fk(x) = 0 for all x where fk is continuous.

Since fk is Riemann-integrable, fk = 0 except on a set of measure zero. Since
a countable union of sets of measure zero is again a set of measure zero, fk = 0
for all k except on a set of measure zero; in particular,

∑
k fk converges (to zero)

except on a set of measure zero, and the claim is proved in this case.

So assume now that A > 0. We first ‘normalize convergence’ of the sum of
integrals: we choose an increasing sequence (km) of integers such that setting

hm =
km∑
k=1

|fk| , we have

∫
Rn

hm(x) |dnx| ≥ A
(

1− 1

22m+3

)
.

Let ε > 0. We will construct a countable union Y of dyadic cubes with total
volume ≤ 3ε and such that on Rn \ Y , we have hm ≤ 2A/ε for all m. The latter
implies that X ⊂ Y , and since ε can be chosen arbitrarily small, this will show
that X has measure zero.

The set Y will be a disjoint union of sets Ym, m = 0, 1, . . . , each a finite union of
dyadic cubes, and such that

m∑
j=0

voln(Yj) ≤ ε
(

3− 1

2m

)
and hm(x) ≤ A

ε

(
2− 1

2m

)
for all x ∈ Rn \

m⋃
j=0

Yj .

We will construct the Ym recursively. We begin with Y0. Since
∫
h0 ≤ A, there is

N0 such that
UN0(h0) ≤ LN0(h0) + A ≤ 2A

(where UN(h) and LN(h) denote the upper and lower Riemann sums of the func-
tion h with respect to dyadic cubes of size 2−N). We take Y0 to be the union of
those cubes C ∈ DN0(Rn) such that supx∈C h0(x) > A/ε. Then

A

ε
voln(Y0) =

A

ε

∑
C∈DN0

,C⊂Y0

voln(C) ≤
∑

C∈DN0

sup
x∈C

h0(x) voln(C) = UN0(h0) ≤ 2A ,

and hence voln(Y0) ≤ 2ε.

Now assume, Y0, . . . , Ym have been constructed, together with an increasing se-
quence N0 < N1 < · · · < Nm. Set gm+1 = hm+1 − hm, then∫

Rn

gm+1(x) |dnx| =
(
A−

∫
Rn

hm(x) |dnx|
)
−
(
A−

∫
Rn

hm+1(x) |dnx|
)
≤ A

22m+3
.

In the same way as above in the construction of Y0, we find Nm+1 > Nm such that

UNm+1(gm+1) ≤ A

22m+2
.
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We let Ym+1 be the union of the cubes C ∈ DNm+1(Rn) that are not contained in
Y0 ∪ · · · ∪ Ym such that

sup
x∈C

hm+1(x) >
A

ε

(
2− 1

2m+1

)
.

On each such C, we must then have supx∈C gm+1(x) > A/(2m+1ε), which implies

A

2m+1ε
voln(Ym+1) ≤ UNm+1(gm+1) ≤ A

22m+2
, hence voln(Ym+1) ≤ ε

2m+1
.

The Ym thus constructed then have the required properties. �

The upshot of this result is that whenever we have a sequence (fk) of Riemann-
integrable functions such that

∑
k

∫
|fk| converges, then

∑
k fk will be defined

“almost everywhere”, i.e., everywhere except on a set of measure zero. Based on
the intuition that sets of measure zero “don’t matter” with respect to integration,
we can then make the following definition.

11.12. Definition. Let fk, gk : Rn → R, k = 1, 2, . . . be Riemann-integrable
functions such that

∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞ and
∞∑
k=1

∫
Rn

|gk(x)| |dnx| <∞ .

We write
∞∑
k=1

fk =
L

∞∑
k=1

gk

if there is a set X ⊂ Rn of measure zero such that for all x ∈ Rn \X, both series∑
k fk(x) and

∑
k gk(x) converge and have the same value. More generally, if f

and g are functions defined on Rn except a set of measure zero, then we write
f =

L
g if f(x) = g(x) for all x ∈ Rn \ X, where X is a set of measure zero such

that f and g are both defined on Rn \X.

The ‘L’ in ‘=
L

’ stands for ‘Lebesgue’.

We need another theorem to make sure that the definition we are aiming at will
make sense.

11.13. Theorem. Let fk, gk : Rn → R, k = 1, 2, . . . be Riemann-integrable func-
tions such that

∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞ and
∞∑
k=1

∫
Rn

|gk(x)| |dnx| <∞

and assume that
∑∞

k=1 fk =
L

∑∞
k=1 gk. Then

∞∑
k=1

∫
Rn

fk(x) |dnx| =
∞∑
k=1

∫
Rn

gk(x) |dnx| .

Proof. Let hm =
∑m

k=1(fk − gk), then (hm) is a sequence of Riemann-integrable
functions that converges to zero except on a set of measure zero. If the hm are
all bounded by some constant M and all have support in a fixed bounded set B,
then the claim follows from the Dominated Convergence Theorem for Riemann



52

Integrals 11.7. In the general case, we use a suitable ‘truncation’: for any function
h on Rn and R > 0, define

[h]R(x) =

{
h(x) if ‖x‖ ≤ R and |h(x)| ≤ R

0 otherwise.

Pick ε > 0, then there is m such that both ‘tail ends’ of the sums of integrals are
small:

∞∑
k=m+1

∫
Rn

|fk(x)| |dnx| < ε

7
and

∞∑
k=m+1

∫
Rn

|gk(x)| |dnx| < ε

7
.

Also, hm is Riemann-integrable, hence bounded and with bounded support, so
there is some R > 0 such that hm = [hm]R. I claim that for k > m, we have

∣∣hk − [hk]2R
∣∣ ≤ 3

k∑
j=m+1

(
|fj − gj|

)
≤ 3

k∑
j=m+1

(
|fj|+ |gj|

)
.

Indeed, if a and b are functions such that [a]R = a, then for ‖x‖ ≤ 2R,

∣∣[a+b]2R(x)−a(x)−[b]2R(x)
∣∣ =


0 if |b(x)| ≤ 2R, |a(x) + b(x)| ≤ 2R,

|b(x)| if |b(x)| > 2R, |a(x) + b(x)| ≤ 2R,

|a(x) + b(x)| if |b(x)| ≤ 2R, |a(x) + b(x)| > 2R,

|a(x)| if |b(x)| > 2R, |a(x) + b(x)| > 2R.

In each case, this is ≤ 2|b(x)| (note that in the third line, we must have

|b(x)| ≥ |a(x) + b(x)| − |a(x)| > 2R−R = R ≥ |a(x)| ).

So with a = hm and b = hk − hm, we find that∣∣[hk]2R − hm − [hk − hm]2R
∣∣ ≤ 2

∣∣[hk − hm]2R
∣∣ ≤ 2|hk − hm|

The claim then follows, since

∣∣hk− [hk]2R
∣∣ ≤ ∣∣hk−hm− [hk−hm]2R

∣∣+2|hk−hm| ≤ 3|hk−hm| ≤ 3
k∑

j=m+1

|fj−gj| .

For k > m, we then have

∣∣∣∫
Rn

(
hk(x)− [hk]2R(x)

)
|dnx|

∣∣∣ ≤ 3
k∑

j=m+1

∫
Rn

(
|fj(x)|+ |gj(x)|

)
|dnx| < 6

7
ε .

Now we apply Thm. 11.7 to the sequence ([hk]2R). This tells us that there is an
index K ≥ m such that for k > K, we have∣∣∣∫

Rn

[hk]2R(x) |dnx|
∣∣∣ < ε

7
.
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So for p > K, we obtain∣∣∣ p∑
k=1

∫
Rn

fk(x) |dnx| −
p∑

k=1

∫
Rn

gk(x) |dnx|
∣∣∣

=
∣∣∣∫
Rn

hp(x) |dnx|
∣∣∣

≤
∣∣∣∫
Rn

[hp]2R(x) |dnx|
∣∣∣+
∣∣∣∫
Rn

(
hp(x)− [hp]2R(x)

)
|dnx|

∣∣∣
<
ε

7
+

6

7
ε = ε.

Since ε > 0 is arbitrary, this proves the claim. �

We can now (at last!) make the following definition.

11.14. Definition. Let f : Rn\X → R be a function, where X is a set of measure
zero. We say that f is (Lebesgue-)integrable if there is a sequence of Riemann-
integrable functions fk : Rn → R such that

∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞

and such that

f =
L

∞∑
k=1

fk .

In this case, the (Lebesgue) integral of f is∫
Rn

f(x) |dnx| =
∞∑
k=1

∫
Rn

fk(x) |dnx| .

By the preceding theorem, the Lebesgue integral is well-defined.

11.15. Example. If f : Rn → R is Riemann-integrable, then f is Lebesgue-
integrable, and the Lebesgue integral of f equals the Riemann integral of f . (And
thus we are justified to use the same notation for both integrals!)

Indeed, we can just take f1 = f and fk = 0 for k ≥ 2 in the definition above.

11.16. Corollary. If f, g are functions defined almost everywhere on Rn, f =
L
g,

and f is Lebesgue integrable, then so is g, and∫
Rn

f(x) |dnx| =
∫
Rn

g(x) |dnx| .

Proof. Take any sequence (fk) as in Def. 11.14 such that f =
L

∑
k fk. Then we

also have g =
L

∑
k fk, and the result follows. �

It thus makes sense to talk about Lebesgue integrability and Lebesgue integrals
of functions that are only defined on Rn \X, where X has measure zero.
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11.17. Example. The standard example that shows that Lebesgue integration
theory is richer than Riemann integration theory is the function f = χ[0,1]∩Q. As
we have seen, f is not Riemann integrable (all upper Riemann sums UN(f) are 1,
all lower Riemann sums LN(f) are zero), but f is certainly Lebesgue integrable,
since f =

L
0 (and so f has integral zero).

11.18. Examples. Another situation where the Lebesgue integral is of advantage
is when dealing with unbounded functions or functions with unbounded support.
For example, f(x) = 1/(x2 + 1) is not Riemann integrable, but it is Lebesgue
integrable: we can write f =

∑
k∈Z fχ[k,k+1[, and every fk = fχ[k,k+1[ is Riemann

integrable, with∫
R

|fk(x)| |dx| =
∫
R

fk(x) |dx| =
k+1∫
k

dx

x2 + 1
= arctan(k + 1)− arctan(k) ,

so ∑
k∈Z

∫
R

|fk(x)| |dx| =
∞∑

k=−∞

(
arctan(k + 1)− arctan(k)

)
= π ,

and since everything is nonnegative, this is also the (Lebesgue) integral of f .

As an example of an unbounded function, consider f(x) = 1/
√
x for 0 < x <

1, f(x) = 0 else. Again, we can write f as a series f =
∑∞

k=1 fk with fk =
fχ]1/(k+1),1/k], and we find that f is Lebesgue integrable with integral 2.

In both cases, the result agrees with the improper Riemann integral

lim
a→−∞,b→∞

b∫
a

dx

x2 + 1
or lim

ε↘0

1∫
ε

dx√
x
.

However, it is not always the case that a function, for which an improper integral
like the above exists, is Lebesgue integrable. As an example, consider f(x) =
(sinx)/x for x > 0, f(x) = 0 otherwise. The improper integral

lim
a→∞

a∫
0

sinx

x
dx

exists, but f is not Lebesgue integrable. Indeed, if it were, then |f | would also be
Lebesgue integrable (see below), which would imply that

lim
a→∞

a∫
0

| sinx|
x

dx <∞ ,

which is not the case.

We can now generalize the notion of pavable sets. First, we define measurable
functions; these are functions that are ‘locally integrable’.

11.19. Definition.

(1) A function f : Rn → R is measurable if for every R > 0, [f ]R is Lebesgue
integrable, where [f ]R is the ‘R-truncation of f ’ that was used in the proof
of Thm. 11.13.
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(2) A subset A ⊂ Rn is measurable if its characteristic function χA is a mea-
surable function. A has finite measure if χA is Lebesgue integrable; then
the measure of A is

meas(A) =

∫
Rn

χA(x) |dnx| .

Otherwise, A has infinite measure, and we write meas(A) =∞.

(3) If A ⊂ Rn is measurable and f : A → R is a function, then we say that

f is (Lebesgue) integrable on A if f̃ is Lebesgue integrable (on Rn), where

f̃(x) = f(x) for x ∈ A and f̃(x) = 0 else. We then write∫
A

f(x) |dnx| :=
∫
Rn

f̃(x) |dnx| .

Note that a Lebesgue integrable function is measurable, and a measurable function
f is Lebesgue integrable if and only if

sup
R>0

∫
Rn

∣∣[f ]R(x)
∣∣ |dnx| <∞ .

This will follow from the Monotone Convergence Theorem 11.24 below (applied
to |[f ]k|) and the discussion following it.

Also, a set of measure zero is measurable and has finite measure zero.

We will now prove some simple properties of the Lebesgue integral: it is linear
and monotonic.

11.20. Proposition. If f, g : Rn → R are Lebesgue integrable, a, b ∈ R, then
af + bg is Lebesgue integrable, and∫

Rn

(
af(x) + bg(x)

)
|dnx| = a

∫
Rn

f(x) |dnx|+ b

∫
Rn

g(x) |dnx| .

Proof. Let f =
L

∑
k fk and g =

L

∑
k gk as in Def. 11.14. Then

∞∑
k=1

∫
Rn

∣∣afk(x) + bgk(x)
∣∣ |dnx| ≤ |a| ∞∑

k=1

∫
Rn

∣∣fk(x)
∣∣ |dnx|+ |b| ∞∑

k=1

∫
Rn

∣∣gk(x)
∣∣ |dnx| <∞

and af + bg =
L

∑
k(afk + bgk). So af + bg is Lebesgue integrable, and

(
af(x) + bg(x)

)
|dnx| =

∞∑
k=1

∫
Rn

(
afk(x) + bgk(x)

)
|dnx|

= a
∞∑
k=1

∫
Rn

fk(x) |dnx|+ b
∞∑
k=1

∫
Rn

gk(x) |dnx|

= a

∫
Rn

f(x) |dnx|+ b

∫
Rn

g(x) |dnx| .

�
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In the following, we write f ≤
L
g, if f(x) ≤ g(x) for all x except on a set of measure

zero, and similarly for f ≥
L
g.

11.21. Proposition. If f, g : Rn → R are Lebesgue integrable and f ≤
L
g, then∫

Rn

f(x) |dnx| ≤
∫
Rn

g(x) |dnx| .

Proof. Write g = f + h where h = g − f ≥
L

0. It suffices to show that
∫
h ≥ 0.

Write h =
L

∑
k hk, and let Hk =

(∑k
j=1 hj

)
+

(where, as usual, F+ = max{0, F}).

Set h̃k = Hk −Hk−1 (with H0 = 0). Then |h̃k| ≤ |hk|, h =
L

∑
k h̃k, and

∑k
j=1 h̃j =

Hk ≥ 0. We find∫
Rn

h(x) |dnx| =
∞∑
k=1

∫
Rn

h̃k(x) |dnx| = lim
k→∞

∫
Rn

Hk(x) |dnx| ≥ 0 .

�

11.22. Proposition. If f, g : Rn → R are Lebesgue integrable, then max{f, g}
and min{f, g} are Lebesgue integrable as well. In particular, |f | is Lebesgue inte-
grable.

Proof. The definition of Lebesgue integrability can be formulated as follows: f is
Lebesgue integrable if there is a sequence (fk) of Riemann integrable functions
with fk → f almost everywhere (i.e., except on a set of measure zero) and such
that

∑∞
k=1

∫
|fk+1 − fk| < ∞. Now consider max{fk, gk} (or min{fk, gk}) and

observe that (for example)∣∣max{fk+1, gk+1} −max{fk, gk}
∣∣ ≤ |fk+1 − fk|+ |gk+1 − gk| .

The last statement follows from |f | = max{f,−f}. �

The next theorem is the key for the important results that follow. It generalizes
the formula that we used to define the Lebesgue integral in Def. 11.14 to series of
Lebesgue integrable functions.

11.23. Theorem. Let fk : Rn → R, k = 1, 2, . . . , be Lebesgue integrable and
assume that

∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞ .

Then the series
∞∑
k=1

fk converges almost everywhere. Let f =
L

∞∑
k=1

fk, then f is

Lebesgue integrable, and∫
Rn

f(x) |dnx| =
∞∑
k=1

∫
Rn

fk(x) |dnx| .
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Proof. We write fk =
L

∞∑
j=1

fk,j with fk,j Riemann integrable and
∑

j

∫
|fk,j| < ∞.

We would like to write f =
L

∑
k,j fk,j, but

∑
k,j

∫
|fk,j| may not converge. So we

need to modify our representations of the fk in such a way that the double sum
converges. We do this by putting most of each series into the first term.

For every k, there is an index m(k) such that∑
j>m(k)

∫
Rn

|fk,j(x)| |dnx| < 2−k .

We now set

gk,1 =

m(k)∑
j=1

fk,j and for j > 1, gk,j = fk,m(k)+j−1 .

Then fk =
L

∞∑
j=1

gk,j and

∞∑
j,k=1

∫
Rn

|gk,j(x)| |dnx| =
∞∑
k=1

∫
Rn

|gk,1(x)| |dnx|+
∞∑
k=1

∞∑
j=2

∫
Rn

|gk,j(x)| |dnx|

=
∞∑
k=1

∫
Rn

∣∣∣fk(x)−
∑

j>m(k)

gk,j(x)
∣∣∣ |dnx|+ ∞∑

k=1

∑
j>m(k)

∫
Rn

|fk,j(x)| |dnx|

≤
∞∑
k=1

(
|fk(x)| |dnx|+ 2−k

)
+
∞∑
k=1

2−k <∞ .

So the series
∞∑
k=1

fk =
∞∑

k,j=1

gk,j

converges almost everywhere (by Prop. 11.11), and if f =
L

∞∑
k=1

fk, then f is Lebesgue

integrable, and∫
Rn

f(x) |dnx| =
∞∑
k=1

∞∑
j=1

∫
Rn

gk,j(x) |dnx| =
∞∑
k=1

∫
Rn

fk(x) |dnx| .

�

An immediate corollary is the following.

11.24. Monotone Convergence Theorem. Let fk : Rn → R, k = 1, 2, . . . , be
Lebesgue integrable such that 0 ≤

L
f1 ≤

L
f2 ≤

L
. . . . If

sup
k

∫
Rn

fk(x) |dnx| <∞ ,

then limk→∞ fk exists almost everywhere. If f =
L

lim
k→∞

fk =
L

supk fk, then f is

Lebesgue integrable, and∫
Rn

f(x) |dnx| = lim
k→∞

∫
Rn

fk(x) |dnx| = sup
k

∫
Rn

fk(x) |dnx| .
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Proof. Apply Thm. 11.23 to the series f1 + (f2 − f1) + (f3 − f2) + . . . . All of its
terms are nonnegative (almost everywhere), therefore the assumption here implies
the assumption in that theorem. The limits equal the suprema since the sequences
are increasing (almost everywhere in case of the functions). �

If the assumption supk
∫
fk < ∞ is not satisfied, then either supk fk does not

exist almost everywhere (i.e., the subset on which supk fk(x) = ∞ does not have
measure zero), or else the resulting function f is not Lebesgue integrable (since
∞ >

∫
f ≥ supk

∫
fk otherwise, which is not possible).

11.25. Proposition. Let fk : Rn → R, k = 1, 2, . . . , be Lebesgue integrable and
assume that there is a Lebesgue integrable function F : Rn → R such that |fk| ≤

L
F

for all k. Then supk fk and infk fk exist almost everywhere and are Lebesgue
integrable, and we have

−
∫
Rn

F (x) |dnx| ≤
∫
Rn

inf
k
fk(x) |dnx| ≤ inf

k

∫
Rn

fk(x) |dnx|

≤ sup
k

∫
Rn

fk(x) |dnx| ≤
∫
Rn

sup
k
fk(x) |dnx| ≤

∫
Rn

F (x) |dnx| .

Proof. Once we prove that supk fk and infk fk are Lebesgue integrable, the in-
equalities will follow from Prop. 11.21. It suffices to consider supk fk (apply the

statement to (−fk) to get the inf). Also, if we replace fk by f̃k = fk + F , we

have 0 ≤
L
f̃k ≤

L
2F , so we can assume without loss of generality that fk ≥

L
0. Now

consider the sequence

g1 = f1, g2 = max{g1, f2}, g3 = max{g2, f3}, . . . .

We have 0 ≤
L
g1 ≤ g2 ≤ g3 ≤ . . . ≤

L
F , the gk are Lebesgue integrable, supk fk =

supk gk, and

sup
k

∫
Rn

gk(x) |dnx| ≤
∫
Rn

F (x) |dnx| <∞ .

By the Monotone Convergence Theorem 11.24, supk fk is then defined almost
everywhere and Lebesgue integrable. �

11.26. Dominated Convergence Theorem. Let fk : Rn → R, k = 1, 2, . . . ,
be Lebesgue integrable and assume that there is a Lebesgue integrable function
F : Rn → R such that |fk| ≤

L
F for all k. If the sequence (fk) converges almost

everywhere to a function f , then f is Lebesgue integrable with integral∫
Rn

f(x) |dnx| = lim
k→∞

∫
Rn

fk(x) |dnx| .

Proof. Let gk = inf{fj : j ≥ k} and hk = sup{fj : j ≥ k}. By the preceding
proposition, gk and hk are Lebesgue integrable, and we have that

sup
k
gk =

L
f =

L
inf
k
hk and gk ≤

L
fk ≤

L
hk .
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This already shows that f is Lebesgue integrable, again by the preceding proposi-
tion. It also implies that (using Thm. 11.24; note that (gk) is increasing and (hk)
is decreasing)∫

Rn

f(x) |dnx| =
∫
Rn

inf
k
hk(x) |dnx| = lim

k→∞

∫
Rn

hk(x) |dnx| ≥ lim sup
k→∞

∫
Rn

fk(x) |dnx|

and similarly∫
Rn

f(x) |dnx| =
∫
Rn

sup
k
gk(x) |dnx| = lim

k→∞

∫
Rn

gk(x) |dnx| ≤ lim inf
k→∞

∫
Rn

fk(x) |dnx|

These two statements together show that lim
k→∞

∫
fk exists and is equal to

∫
f . �

The Dominated Convergence Theorem is very strong, since it only requires a
minimal amount of assumptions (compare with the version for Riemann integrals!).
As an example of its many applications, we can prove the following result on
integrals depending on a parameter.

11.27. Theorem. Let I ⊂ R be an open interval, a ∈ I, and let f : I × Rn → R
be a function such that for every t ∈ I, ft : x 7→ f(t, x) is Lebesgue integrable with
|ft| ≤

L
F for some fixed Lebesgue integrable function F : Rn → R. Assume that

I 3 t 7→ f(t, x) is continuous at a for all x ∈ Rn except on a set of measure zero.
Then

lim
t→a

∫
Rn

f(t, x) |dnx| =
∫
Rn

f(a, x) |dnx| ,

i.e., the function I → R, t 7→
∫
ft, is continuous at a.

Proof. Take any sequence (tk) such that tk → a. Then we can apply Thm. 11.26
to the sequence of functions (ftk)k≥1. Since fa =

L
lim
k→∞

ftk , we obtain that

lim
k→∞

∫
Rn

f(tk, x) |dnx| =
∫
Rn

f(a, x) |dnx| .

Since this holds for all sequences as above, this proves the claim. �

We can extend this to differentiability instead of continuity. ‘Almost all’ means
‘all except on a set of measure zero’.

11.28. Theorem. Let I ⊂ R be an open interval, let f : I × Rn → R be a
function such that for almost all x ∈ Rn, ∂f

∂t
(t, x) exists. Assume that for all

f ∈ I, x 7→ f(t, x) is Lebesgue integrable and that there is a Lebesgue integrable
function F : Rn → R such that∣∣∣f(s, x)− f(t, x)

s− t

∣∣∣ ≤ F (x) for almost all x ∈ Rn

whenever s, t ∈ I, s 6= t. Then

g : I −→ R , t 7−→
∫
Rn

f(t, x) |dnx|
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is differentiable on I, and

g′(t) =

∫
Rn

∂f

∂t
(t, x) |dnx| .

Proof. Fix t ∈ I and apply the previous theorem to

f̃(s, x) =

{
f(s,x)−f(t,x)

s−t if s 6= t
∂f
∂t

(t, x) if s = t.

�

11.29. Are There Non-Measurable Sets? The Monotone Convergence Theo-
rem 11.24 implies that a countable union of measurable sets is again measurable
(Exercise). Pavable sets like open balls are measurable. Since every open set is a
countable union of open balls, all open sets are measurable. The complement of
a measurable set is measurable, and sets of measure zero are measurable. So any
set that can be constructed from sets of measure zero and open (or closed) sets
by taking complements or countable unions (or intersections) will be measurable.
It is hard to image a set that cannot be obtained in this way. So it is a natural
question to ask if there are any subsets of R (say) that are not measurable.

It turns out that this is tied up with fundamental questions in Set Theory. It is not
possible to construct a non-measurable set in an explicit way. However, if we allow
ourselves to use the Axiom of Choice, then non-measurable sets can be constructed.
Here is a standard example. For each coset a + Q ⊂ R, pick a representative
in [0, 1], and let X be the set whose elements are these representatives. Let M be
the set of rational numbers in [−1, 1], then we have

[0, 1] ⊂ Y =
∐
r∈M

(X + r) ⊂ [−1, 2]

(the set Y is the disjoint union of the sets X + r). If X were measurable, then we
would have 0 ≤ meas(X) ≤ 1 and meas(X+r) = meas(X). Since M is countable,
the set Y above would be measurable, with measure ≤ 3 and ≥ 1. So X cannot
have measure zero (otherwise meas(Y ) = 0), but likewise, X cannot have positive
measure (otherwise meas(Y ) =∞), and we get a contradiction.

On the other hand, adding the axiom that all sets are measurable does not lead
to a contradiction in Set Theory without the Axiom of Choice. So we have a
choice here as to which assumptions we would like to make. It should be said that
the Axiom of Choice is very important in some areas of mathematics (Functional
Analysis, for example — one of its basic results, the Hahn-Banach Theorem, is
in fact equivalent to the Axiom of Choice), so the general attitude today is to
accept it, and with it accept its somewhat counter-intuitive consequences like the
Banach-Tarski Paradox. It says that you can partition the unit ball in R3 into
a finite number (e.g., seven) pieces, that after moving them around by euclidean
motions will form two disjoint unit balls. Of course, this implies that at least some
of the sets cannot be measurable.

There are two more ‘big theorems’ on the Lebesgue integral: Fubini’s Theorem
and the change-of-variables formula. Both follow from their counterparts that
hold for Riemann integrals.
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11.30. Fubini’s Theorem. Let f : Rn+m = Rn×Rm → R be Lebesgue integrable.
Then fy : x 7→ f(x, y) is Lebesgue integrable for almost all y, the function

Rm −→ R , y 7−→
∫
Rn

f(x, y) |dnx|

(which is defined almost everywhere) is Lebesgue integrable, and we have∫
Rn+m

f(x, y) |dn+m(x, y)| =
∫
Rm

(∫
Rn

f(x, y) |dnx|
)
|dmy| .

Conversely, if f : Rn+m → R is measurable such that fy : x 7→ f(x, y) is Lebesgue
integrable for almost all y, and y 7→

∫
Rn |f(x, y)| |dnx| is Lebesgue integrable, then

f is Lebesgue integrable, and the relation above holds.

Proof. Note that the second statement follows from the first: if f is measurable,
then [f ]R and therefore also |[f ]R| are Lebesgue integrable for every R > 0. From
the first statement, we find∫

Rn+m

∣∣[f ]R(x, y)
∣∣ |dn+m(x, y)| =

∫
Rm

(∫
Rn

∣∣[f ]R(x, y)
∣∣ |dnx|) |dmy|

≤
∫
Rm

(∫
Rn

|f(x, y)| |dnx|
)
|dmy| <∞ .

By the Monotone Convergence Theorem 11.24, applied to the sequence
(
|[f ]k|

)
, it

follows that |f |, and hence f , are Lebesgue integrable. The relation between the
integrals then also follows from the first part of the theorem.

So it suffices to prove the first part. Write f =
L

∞∑
k=1

fk with Riemann integrable

functions fk such that
∑

k

∫
|fk| < ∞. We know that for each fk, the function

x 7→ fk(x, y) is Riemann integrable for all y outside a set Xk of volume zero, that
y 7→

∫
Rn fk(x, y) |dnx| for y /∈ Xk, y 7→ 0 for y ∈ Xk is Riemann integrable, and

that ∫
Rn+m

fk(x, y) |dn+m(x, y)| =
∫
Rm

(∫
Rn

fk(x, y) |dnx|
)
|dmy| .

This gives ∫
Rn+m

f(x, y) |dn+m(x, y)| =
∞∑
k=1

∫
Rm

(∫
Rn

fk(x, y) |dnx|
)
|dmy| .

We have the following estimate (using Fubini for |fk|).
∞∑
k=1

∫
Rm

∣∣∣∫
Rn

fk(x, y) |dnx|
∣∣∣ |dmy| ≤ ∞∑

k=1

∫
Rm

(∫
Rn

|fk(x, y)| |dnx|
)
|dmy|

=
∞∑
k=1

∫
Rn+m

|fk(x, y)| |dn+m(x, y)| <∞ .

Thm. 11.23 then allows us to conclude that
∞∑
k=1

∫
Rm

(∫
Rn

fk(x, y) |dnx|
)
|dmy| =

∫
Rm

( ∞∑
k=1

∫
Rn

fk(x, y) |dnx|
)
|dmy| ,
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with the inner sum converging almost everywhere. Using g =
∑

k |fk| (which is
also Lebesgue integrable) instead of f , we see that

∞∑
k=1

∫
Rn

|fk(x, y)| |dnx|

converges for almost all y ∈ Rm. This shows that fy is Lebesgue integrable for
these almost all y. Another application of Thm. 11.23 then leads to∫

Rm

( ∞∑
k=1

∫
Rn

fk(x, y) |dnx|
)
|dmy| =

∫
Rm

(∫
Rn

∞∑
k=1

fk(x, y) |dnx|
)
|dmy|

=

∫
Rm

(∫
Rn

f(x, y) |dnx|
)
|dmy| ,

thus finishing the proof. �

Our next result is the Change-of-Variables Formula.

11.31. Theorem. Let U, V ⊂ Rn be open, Φ : U → V a C1-diffeomorphism, and
let f : V → R be a function. Then f is Lebesgue integrable on V if and only if
(f ◦ Φ)| detDΦ| is Lebesgue integrable on U , in which case we have∫

V

f(v) |dnv| =
∫
U

f
(
Φ(u)

)
| detDΦu| |dnu| .

Proof. We will reduce this to the corresponding statement for Riemann integrals,
which was proved for sets with compact closure and nice boundary. So we write
V as a countable disjoint union of dyadic cubes C ∈ Q, then f =

∑
C∈Q fχC .

Assume that f is Lebesgue integrable, hence we can write, as usual, f =
L

∑
k fk

with Riemann integrable fk such that
∑

k

∫
|fk| <∞. Then f =

L

∑
k,C fkχC , and

∞∑
k=1

∑
C∈Q

∫
Rn

|fk(x)χC(x)| |dnx| =
∞∑
k=1

∫
Rn

|fk(x)| |dnx| <∞ .

We know that each (fkχC ◦Φ)| detDΦ| is Riemann integrable, and the change-of-
variables formula holds for fkχC . Note that
∞∑
k=1

∑
C∈Q

∫
Rn

|(fkχC ◦ Φ)(x)| | detDΦx| |dnx| =
∞∑
k=1

∑
C∈Q

∫
Rn

|fk(x)χC(x)| |dnx| <∞ ,

so (f ◦Φ)| detDΦ| =
L

∑
k,C(fkχC ◦Φ)| detDΦ| is Lebesgue integrable, and we find

that ∫
V

f(v) |dnv| =
∞∑
k=1

∑
C∈Q

∫
C

fk(v) |dnv|

=
∞∑
k=1

∑
C∈Q

∫
Φ−1(C)

fk
(
Φ(u)

)
| detDΦu| |dnu|

=

∫
U

f
(
Φ(u)

)
| detDΦu| |dnu| .
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This proves the ‘only if’ part of the statement. The ‘if’ part follows by looking at
Φ−1 : V → U and using the chain rule. �

11.32. Example. The classical sample application of Fubini’s Theorem and the
Change-of-Variables Formula is the evaluation of the Gaussian integral

A =

∞∫
−∞

e−x
2

dx .

The function x 7→ e−x
2

has no ‘elementary’ antiderivative, so we cannot simply
use the improper Riemann integral to find the value.

The trick is to compute A2 instead, which can be done explicitly using Fubini and
polar coordinates:

A2 =
(∫
R

e−x
2 |dx|

)(∫
R

e−y
2 |dy|

)
=

∫
R2

e−x
2−y2 |d2(x, y)|

=

∫
]0,∞[×]0,2π[

e−r
2

r |d2(r, θ)| =
2π∫

0

( ∞∫
0

re−r
2

dr
)
dθ

= 2π lim
r→∞

(1− e−r2

2

)
= π .

So A =
√
π. (Strictly speaking, we have computed the integral over R2 minus the

nonnegative x-axis, but since we remove a set of measure zero, this has no effect
on the value.)

More on Measurable Functions. We will now prove a characterization of mea-
surable functions in terms of measurable sets. First note the following.

11.33. Lemma. If (fk) is a sequence of measurable functions that converges al-
most everywhere to a bounded function f , then f is measurable.

Proof. Let R > 0 such that |f | ≤ 2R, then [fk]R → [f ]R almost everywhere. By
the Dominated Convergence Theorem 11.26 (note that |[fk|R| ≤ RχBR(0)), [f ]R is
integrable. �

As we will see later, the hypothesis that f is bounded is unnecessary.

11.34. Proposition. Let f be a measurable function, a ∈ R. Then the set Ma =
f−1(]a,∞[) is measurable.

Proof. We can write

χMa = lim
k→∞

min{1, kmax{f − a, 0}} .

By the preceding lemma, χMa is measurable. �

11.35. Definition. The σ-algebra of Borel sets on Rn is the smallest set of subsets
of Rn that contains all open sets and is closed under taking complements and
countable unions.

Note that every Borel set is measurable, but not every measurable set is Borel (not
even in R — Exercise!). This can be used to construct a continuous function f
and a measurable function g such that g ◦ f is not measurable.
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11.36. Corollary. Let f be measurable and B ⊂ R a Borel set. Then f−1(B) is
measurable.

Proof. Any Borel of R set can be obtained from open sets (in fact, from intervals
]a,∞[ by complements and countable unions. The claim follows from the preceding
proposition and the fact that complements and countable unions of measurable
sets are measurable. �

There is a converse to Prop. 11.34. We can combine both statements into the
following.

11.37. Proposition. A function f : Rn → R is measurable if and only if for every
a ∈ R, the set f−1(]a,∞[) is measurable.

Proof. We only need to show the ‘if’ part. It suffices to consider f ≥ 0. (The
condition on the right hand side implies the same condition for |f |.) So assume
that f ≥ 0 and f−1(]a,∞[) is measurable for all a ∈ R. Then f−1([a, b[) is also
measurable for all a < b. Let R > 0. Then

[f ]R = lim
n→∞

bRnc∑
k=0

k

n
χBR(0)∩f−1([ k

n
, k+1

n [)

is a bounded limit of integrable functions, hence integrable. �

11.38. Corollary. If f is almost everywhere the point-wise limit of a sequence
(fk) of measurable functions, then f is measurable.

Proof. Let a ∈ R. Outside a set of measure zero, we have

f(x) > a ⇐⇒ ∃b > a ∃K ∀k ≥ K : fk(x) > b

⇐⇒ x ∈
∞⋃
n=1

∞⋃
K=1

∞⋂
k=K

f−1
k

(]
a+

1

n
,∞
[)
,

and so f−1(]a,∞[) is measurable. By the preceding proposition, this implies that
f is measurable. �

12. Lp Spaces

The theory of the Lebesgue integral is indispensable for the introduction of Lp

spaces, which are very important function spaces used in Real and Functional
Analysis. We first recall the following definition.

12.1. Definition. A norm on a real vector space V is a function ‖ · ‖ : V → R≥0

with the following properties.

(1) For all x ∈ V , ‖x‖ = 0 if and only if x = 0.

(2) For all x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(3) For all λ ∈ R, x ∈ V , ‖λx‖ = |λ| ‖x‖.

This implies that d(x, y) = ‖x − y‖ is a metric on V , hence V can be considered
as a metric space. A pair (V, ‖ · ‖), where ‖ · ‖ is a norm on V , is called a normed
space.
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12.2. Definition. A Banach space is a normed space that is complete as a metric
space. (This means that every Cauchy sequence has a limit.)

We will now define the Lp spaces with their norms. Our goal will then be to show

that they are Banach spaces.

12.3. Definition. Let X ⊂ Rn be a measurable set, not of measure zero. Let
Z(X) be the set of all functions f on X such that f =

L
0. If 1 ≤ p <∞, we set

Lp(X) =
{
f : X → R measurable

∣∣∣ ∫
X

|f |p <∞
} /

Z(X) ,

and for f ∈ Lp(X), we set

‖f‖p =
(∫
X

|f(x)|p |dx|
)1/p

.

(Note that the integral does not depend on the representative function.) It is easy
to see that Lp(X) is a vector space.

In addition, we define

L∞(X) = {f : X → R measurable | |f | ≤
L
M for some M > 0}

/
Z(X) ,

and for f ∈ L∞(X), we set

‖f‖∞ = inf{M ∈ R : |f | ≤
L
M} .

Note that for all 1 ≤ p ≤ ∞, we then have that

‖f‖p = 0 ⇐⇒ f = 0 and ‖λf‖p = |λ| ‖f‖p .
“f = 0” refers to the quotient space; it means “f =

L
0” for any representative

function.

In order to see that we have really defined a norm, we need to prove the triangle
inequality.

12.4. Minkowski’s Inequality. Let 1 ≤ p ≤ ∞, f, g ∈ Lp(X). Then we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. This is clear when p =∞, or when f or g are zero. So we can assume that
1 ≤ p <∞ and that ‖f‖p = α > 0 and ‖g‖p = β > 0. Then we can write

|f | = αf0 , |g| = βg0

with f0, g0 ≥ 0 and ‖f0‖p = ‖g0‖p = 1. Set λ = α/(α + β). We obtain

|f + g|p ≤
(
|f |+ |g|

)p
= (αf0 + βg0)p = (α + β)p

(
λf0 + (1− λ)g0

)p
≤ (α + β)p

(
λfp0 + (1− λ)gp0

)
.

In the last inequality, we have used the fact that the function t 7→ tp is convex
(here we need that p ≥ 1). If we now integrate, we find

‖f + g‖pp ≤ (α + β)p
(
λ‖f0‖p + (1− λ)‖g0‖p

)
=
(
‖f‖p + ‖g‖p

)p
,

since ‖f0‖p = ‖g0‖p = 1. �

We conclude that (Lp(X), ‖ · ‖p) is a normed space for all 1 ≤ p ≤ ∞.

There is another important inequality that relates norms for different p.
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12.5. Hölder’s Inequality. Let 1 ≤ p, q ≤ ∞ such that
1

p
+

1

q
= 1.

Let f ∈ Lp(X), g ∈ Lq(X). Then fg ∈ L1(X), and

‖fg‖1 =

∫
X

|f(x)g(x)| |dx| ≤ ‖f‖p ‖g‖q .

Note that for p = 1, q = ∞, this specializes to the standard estimate for an
integral, and for p = q = 2, it specializes to the Cauchy-Schwarz inequality.

Proof. The case p = 1, q =∞ is easy, so we can assume that 1 < p, q <∞. Also,
we can assume that f, g ≥ 0. Set h = gq−1 = gq/p; then g = hp/q = hp−1. For
t ≥ 0, we have

ptfg = ptfhp−1 ≤ (h+ tf)p − hp ;

the latter comes from the standard inequality (1 + x)p ≥ 1 + px, valid for x ≥ −1
and p ≥ 1. Integrating, we find (using Minkowski’s inequality)

pt‖fg‖1 ≤ ‖h+ tf‖pp − ‖h‖pp ≤
(
‖h‖p + t‖f‖p

)p − ‖h‖pp .
We have equality at t = 0. Dividing by pt, and letting t↘ 0, we get

‖fg‖1 ≤ ‖f‖p ‖h‖p−1
p = ‖f‖p ‖g‖q .

For this last equality, note that

‖h‖p−1
p =

(∫
X

hp
)(p−1)/p

=
(∫
X

gq
)1/q

= ‖g‖q .

�

The importance of this inequality comes from the fact that it tells us that every
g ∈ Lq(X) provides us with a continuous linear functional on Lp(X) via

Lp(X) 3 f 7−→
∫
X

f(x)g(g) |dx| ∈ R .

Note that a linear functional (or linear form) φ on a normed space V is continuous
if and only if it is bounded, i.e., if there is M ≥ 0 such that |φ(v)| ≤M ‖v‖ for all
v ∈ V . The bound here is given by ‖g‖q, according to Hölder’s inequality.

12.6. Theorem (Fischer-Riesz). Lp(X) is a Banach space.

Proof. We have seen that (Lp(X), ‖ · ‖p) is a normed vector space. We have to

show that it is complete. So let (fn) be a Cauchy sequence in Lp(X). It suffices

to show that there is a convergent subsequence. We pick a subsequence (fnk
) such

that ‖fnk+1
− fnk

‖p ≤ 2−k for all k.

If p = ∞, this means that |fnk+1
− fnk

| ≤
L

2−k for all k, hence (fnk
) converges

point-wise almost everywhere to a function f , and |f | ≤
L
‖fn1‖∞ +

∑
k 2−k < ∞,

so f ∈ L∞(X). Also, ‖f − fnk
‖∞ ≤ 2 · 2−k, so (fnk

) converges to f in the metric
of L∞(X).

Now assume that 1 ≤ p <∞. We have

|fnk
| ≤
L
gk = |fn1|+ |fn2 − fn1 |+ · · ·+ |fnk

− fnk−1
| ,
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and by Minkowski’s inequality,

‖gk‖p ≤ ‖fn1‖p + ‖fn2 − fn1‖p + · · ·+ ‖fnk
− fnk−1

‖p ≤ ‖fn1‖p + 1 .

The sequence of functions (gk) is increasing, and
∫
X
gpk is bounded, hence by the

Monotone Convergence Theorem 11.24, (gk) converges point-wise almost every-
where to a limit function g, and gp is integrable on X. We therefore see that
|fnk
|p ≤

L
gp, so by the Dominated Convergence Theorem 11.26, the sequence (fnk

)

converges point-wise almost everywhere to a function f such that |f |p is inte-
grable on X, so f ∈ Lp(X). The sequence |f − fnk

|p then converges point-wise to

zero almost everywhere and is bounded by the integrable function 2pgp, so by the
Dominated Convergence Theorem again,

‖f − fnk
‖p =

∫
X

∣∣f(x)− fnk
(x)
∣∣p |dx| → 0 as k →∞.

This means that fnk
converges to f in the metric of Lp(X), which was to be

shown. �

12.7. Hilbert Space. In particular, L2(X) is a Hilbert space. This is a Banach

space such that the norm comes from an inner product: ‖x‖ =
√
〈x, x〉. In the

case of L2(X), the inner product is

〈f, g〉 =

∫
X

f(x)g(x) |dx| .

Note that Hölder’s inequality tells us that this makes sense, i.e., fg is integrable
on X when f, g ∈ L2(X).

Recall that a family (fj) is said to be orthonormal if 〈fi, fj〉 = 0 whenever i 6= j and
‖fj‖2 = 1 for all j. By Zorn’s Lemma, there are maximal orthonormal families.
It can be shown that L2(X) is separable, i.e., it has a countable dense subset.

This implies that every orthonormal family must be countable (otherwise it would
provide an uncountable discrete subset), so we can write it as (fn)n∈N. If the
family is maximal, it is then true that

f =
∞∑
n=1

〈f, fn〉fn

for all f ∈ L2(X), in the sense of convergence in the metric of L2(X) :

lim
n→∞

∥∥∥f − n∑
k=1

fk

∥∥∥
2

= 0 .

Note that we have
∑

n〈f, fn〉2 = ‖f‖2
2 < ∞. Conversely, if (an) is a square-

summable sequence of real numbers, i.e.,
∑

n a
2
n < ∞, then

∑
n anfn converges.

In this way, we obtain an isomorphism between L2(X) and the Hilbert space `2 of
square-summable sequences.

For example, when X is the unit interval [0, 1], then the constant function 1,
together with

√
2 sin 2πnx and

√
2 cos 2πnx for n ≥ 1 are a maximal orthonormal

family, and the expression for f given above is nothing else than its Fourier series.
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Let F : L2(X)→ R be a bounded (i.e., continuous) linear functional (so |F (f)| ≤
M‖f‖2 for some M ≥ 0). Then we have

F (f) = F
(∑

n

〈f, fn〉fn
)

=
∑
n

〈f, fn〉F (fn) =
〈
f,
∑
n

F (fn)fn

〉
.

For any n, we have

n∑
k=1

F (fk)
2 = F

( n∑
k=1

F (fk)fk

)
≤M

∥∥∥ n∑
k=1

F (fk)fk

∥∥∥
2

= M

√√√√ n∑
k=1

F (fk)2 ,

so
∞∑
n=1

F (fn)2 ≤M2 <∞. This implies that

g =
∑
n

F (fn)fn

exists in L2(X), and F (f) = 〈f, g〉 for all f ∈ L2(X):

Every bounded linear functional on L2(X) is obtained as inner product with some

fixed element g ∈ L2(X).

This is a special case of the following more general result.

12.8. Riesz Representation Theorem. Let 1 ≤ p <∞, and let F : Lp(X)→ R
be a bounded linear functional. Then there is a unique g ∈ Lq(X) such that

F (f) =
∫
X
f(x)g(x) |dx| for all f ∈ Lp(X).

The proof is beyond the scope of this course. See the Real Analysis and Functional
Analysis graduate courses.

Note that p =∞ is excluded: there are more bounded linear functionals on L∞(X)
than those coming from integrable functions. Here is a sketch. One version of the
Hahn-Banach Theorem (which relies on the axiom of choice) says that a bounded
linear functional on a closed subspace of a Banach space can be extended to a
bounded linear functional on the whole space. Let X = [−1, 1] (for concreteness).
The space C(X) of continuous functions on X, together with the maximum norm,
is a Banach space (Exercise!), which can be identified with a closed subspace
of L∞(X). On C(X), there is the bounded linear functional f 7→ f(0), which we
then can extend to a bounded linear functional on L∞(X). If this were represented
by a function g ∈ L1(X), then we would need to have

1∫
−1

f(x)g(x) dx = f(0) for all f ∈ C(X).

But such a function g cannot exist (Exercise — use that continuous functions are
dense in L1(X)).
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