
Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

On the Generation of
Isomorphism Classes of Mappings

Ralf Gugisch

Lehrstuhl II für Mathematik
Universität Bayreuth

Kolloquium über Kombinatorik,
16.–18. November 2006,

Magdeburg



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Outline

1 Motivation: Chirotopes in chemistry

2 Generation of mappings

3 Generation of chirotopes



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Outline

1 Motivation: Chirotopes in chemistry

2 Generation of mappings

3 Generation of chirotopes



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...
cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...

cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...
cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...
cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...
cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

A chemical motivation

A chemical compound ...
cyclohexane

... may appear in different conformations

chair form twisted form

How do we get an overview over the conformation space?



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34

+



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34

+



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35

++



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35

++



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35
12

45

++0



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35
12

45
13

45

++0 −



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35
12

45
13

45
23

45

++0 −−



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

++0 −−++0 −++0 +++



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Affine point configurations (Order types)

12
34
12

35
12

45
13

45
23

45
12

36
12

46
13

46
23

46
12

56
13

56
23

56
14

56
24

56
34

56

χ = ++0 −−++0 −++0 +++



Motivation: Chirotopes in chemistry Generation of mappings Generation of chirotopes

Generation of abstract order types

Catalogues of abstract order types were generated:

In dimension 2, nondegenerate configurations:

Aichholzer, Aurenhammer, Krasser (2003)

In dimension 3 (among others), also degenerate cases:

L. Finschi, K. Fukuda (2001/2003).

n: 4 5 6 7 8 9

isom. classes: 1 5 55 5 083 10 775 236 —

It is not practical to store full catalogues for larger n’s.

Generate chirotopes on purpose with individual parameters
and restrictions!
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The general situation

Let A := {1, . . . , n}.
Let D be a set of words (tuples) over A.

We consider mappings from D into a set R.

Let G be a group acting on A. (Hence G ≤ Sn.)

Consider the induced action of G on the set of mappings
D → R.

The orbits define isomorphism classes of mappings.

Problem:

Generate a transversal of these isomorphism classes of mappings.
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Examples

Digraphs are mappings with D = n2 and R = {0, 1}.
Graphs are symmetric mappings with D = n2 and R = {0, 1}.
Hypergraphs are symmetric mappings with D = 2n.

Matroids may be coded as symmetric mappings with D = nk ,
R = {0, 1}.
Oriented matroids in the form of chirotopes are alternating
mappings with D = nk and R = {0,±1}.

...
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Generation of isomorphism classes

Let Di := {x ∈ D | x is a word over {1, . . . , i}}
Let fi := f |Di

, for f : D → R.

Let Gi := G ∩ Si .

Let ni be maximal, s.t. xi is a word over {1, . . . , i}.

Thus, on level ni the restricted mapping fi is complete.

Idea: On level ni , test, if fi is canonic.
Problem: Do the canonic fi ’s have canonic ancestors on level ni−1?
Solution: Do not select the canonic elements, but another
transversal.
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Homomorphism principle (Laue, 1993)

Let G act on X and T be a G -transversal of X . Let further
ϕ : Y → X be a G -homomorphism (i.e. ϕ(g · x) = g · ϕ(x)).

We obtain a G -transversal of Y as the union of Gx -transversals of
ϕ−1(y), where the union is over all x ∈ T .

Application: The mapping ϕ : fi 7→ fi−1 is a Gi−1-homomorphism.

1. fi is canonic w.r.t. the stabilizer group (Gi−1)fi−1
.
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Theorem (McKay 1998, Schmalz 1993)

Let G act on X and T be a G -transversal of X . Let further
ϕ : X → Y be a G -homomorphism and ψ : Y → X a mapping
with: ϕ ◦ ψ(y) = y and ψ(g · y) ∈ g · Gy · ψ(y) .

We obtain a G -transversal of Y by taking ϕ(x) for all x ∈ T with:

ψ ◦ ϕ(x) ∈ Gϕ(x) · x

Application: Take the marked mappings as X , the unmarked ones
as Y , ϕ : X → Y removes the mark, and ψ : Y → X be the

mapping which marks the label c1(fi ) := (g
(Gi )
fi

)−1 · 1, which gets 1
in the Gi -canonic representant of fi

2. Select fi iff c1(fi ) ∈ (Gi )fi · i .
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Canonicity test during generation

Algorithm:

On level ni of backtrack-tree, i = 2, . . . , n, proceed with fi iff
1. fi is canonic w.r.t. the stabilizer group (Gi−1)fi−1

.

2. c1(fi ) ∈ (Gi )fi · i , where c1(fi ) = (g
(Gi )
fi

)−1 · 1.

It remains a transversal of isomorphism classes of mappings.
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The generator of chirotopes

http://www.mathe2.uni-bayreuth.de:/ralfg/origen.php

Computation times for full catalogues of reorientation classes:

n: 3 4 5 6 7 8 9 10

rank 4: 1 3 12 206 181 472 — —
Finschi (2001): 10.0s 250m
origen (2006): 2.3s 17m

factor: 1:4 1:15

rank 3: 1 2 4 17 143 4 890 461 053 95 052 532
Finschi (2001): 3.0s 130s 220m ≈ 1700h
origen (2006): 0.6s 13s 13m 33h

factor: 1:5 1:10 1:17 1:52

Individual generations for specific molecules:

molecule: C6H6 C7H7 C8H8 C9H9 C10H10

origen (2006): 13 18 30 46 78
time: 0.2s 4.9s 62s

Thank You!
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