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Application in
Chemical Conformation Analyis:

The Example Cyclohexane

• The molecular graph has as automorphism group the dihedral group
D6 with 12 elements.

•Assuming that any 4 atoms are affinely independent, we prescribe the
domain D := n4.

•Generating all isomorphism classes of uniform chirotopes on 6 points
with D6 as acting group results in 386 solutions.
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•We prescribe a list of forbidden circuits reflecting some mathematical
and chemical knowledge.

– positive circuits are not affinely realizable.

– this situation can be avoided by excluding the circuit
(+a, +b, +c,−d,−e):

– this situation can be avoided by excluding the circuit
(+a, +b, +c, +d,−e):

By excluding forbidden circuits, we reduce the number of solutions to
162.

• Chemical molecules are mutable. We specify a set of relevant atom-
quadrupels, whose orientations remain invariant under chemical intra-
molecular motions, and obtain 13 partially defined chirotopes.
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•Only for 7 of these, we found a realization.

• Thereof, 4 orientation patterns lead to a chemical stable conformation.

• Repeating the generation up to negation leads to 3 orientation patterns,
reflecting the fact, that two of the found conformations are mirror im-
ages of each other.
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Oriented Matroids, Chirotopes and Affine Point Configurations
One occurence of oriented matroids is in connection with affine con-
figurations of a set of points in euclidian d-dimensional space. To any
sequence of d + 1 affinely independent points is assigned an orientation
(positive or negative). For example, one can decide if four points in space
are positively oriented by the common “right-hand rule”.

By this concept we can assign to any sequence of n points an orientation
function χ : nd+1 → {0,±1}, where a function value of 0 means, that
the corresponding d+1-tuple of points lies in a hyperplane. Obviously,
χ is alternating. We can write the function as sequence of its function
values at the ordered d+1-tuples. (We use the reverse lexical order for
listing the tuples.) As example, here is an orientation function of 6 points
in space:
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χ = ++0 −−++0 −++0 +++

Orientation functions fulfill an oriented version of the base exchange ax-
iom, the so called binary Grassmann-Plücker relations:

For any ~a,~b ∈ nd+1, the following holds:

χ(~a) · χ(~b) = 1 =⇒
∃i ∈ {0, . . . , d} : χ(bi, a1, . . . , ad) · χ(b0, . . . , a0, . . .

↑
ith position

, bd) = 1 . (GP)

In general, alternating, non-trivial (i.e. not constantly zero) functions
χ : nk → {0,±1} fulfilling (GP) are called chirotopes of rank k. Thus,
the orientation function of a sequence of points in d-dimensional euk-
lidean space is a chirotope of rank d + 1.

Note, that not each chirotope is an orientation function. We call chi-
rotopes being the orientation function of an affine point configuration
affinely realizable. The decision, if a chirotope is affinely realizable and
of finding a realization is a problem of its own, shown to be NP-hard.

A chirotope implies a huge amount of further structure which is em-
braced in the concept of oriented matroids.

One such induced structure consists of the (oriented) circuits: A pair
(C+, C−) of two disjunct subsets of n is called a circuit, if there exists
an ordered k+1-tuple (c0, . . . , ck) ⊇ C+∪C−, such that for i = 0, . . . , k:

χ(c0, . . . , ci−1, ci+1, . . . , ck) =


+ε · (−1)i , if ci ∈ C+

−ε · (−1)i , if ci ∈ C−

0 , else.

(with ε ∈ ±1). Thus, all circuits of an oriented matroid can be obtained
from the chirotope by checking all ordered k+1-tuples.

We write circuits as signed sets, i.e. we attach the appropriate sign to the
elements of C+ resp. C−. For example,

{+1,−3, +4,−6} and {+2,−3, +4, +5,−6}

are two circuits of the chirotope given above.

In an affine point configuration, two disjunct subsets of points whose
convex hulls intersect are called a radon partition. The circuits of the
assigned chirotope are exactly the minimal radon partitions.

{+a,−b, +c, +d,−e}
Note, that an affinely realizable chirotope cannot have positive circuits,
i.e. circuits (C+, C−) with C− = ∅.

From each oriented matroid, we get an unoriented matroid, the so called
underlying matroid, by taking the domain of the chirotope. The oriented
matroid is called uniform, if the underlying matroid is uniform, i.e. if the
chirotope has no zero function values.
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1. Introduction

We developed a generator for oriented matroids with prescribed under-
lying matroid. The oriented matroids are represented as chirotopes. (For
some background information on oriented matroids, see the frame be-
low.) The generation process and -output can be controlled via a variety
of possible restrictions:

• The domain D ⊆ nk of the chirotope (i.e. the underlying matroid) is
given as user input.
•Known orientations (besides the zeros) can be prescribed, too.
• There is the possibility to specify a list of forbidden circuits.
•You can specify a subset R ⊆ nk of relevant k-tuples, such that only

partially defined chirotopes on R are generated. A partially defined
chirotope χ↓R can be interpreted as the class of all chirotopes coincid-
ing with χ↓R on R. Actually, the program generates a transversal of
these classes.
•Different kinds of isomorphisms for oriented matroids can be com-

bined arbitrarily: relabeling, negation and reorientation.
• For relabeling isomorphy, the acting group can be restricted to a sub-

group G of the symmetric group.
•A group of relabeling automorphisms A can be prescribed, such that

each generated solution has A as subgroup of its automorphism group.

2. The generator

The generator is implemented as backtrack algorithm:
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Principally, we generate all alternating functions χ : nk → {0,±1} with
prescribed domain D ⊆ nk, but by pruning branches of the tree due to
several further tests on each level, we ensure, that only chirotopes with
the requested properties are reached at the last level.

On level i of the backtrack algorithm, the function value χ(~a(i)) for the
ith ordered k-tuple ~a(i) = (a

(i)
1 , . . . , a

(i)
k ) ∈ nk is specified (using the re-

verse lexical order on k-tuples). Then, the following tests are performed:

• If the value χ(~a) is known due to the generation input, then χ(~a) is set
accordingly, else, the two choices χ(~a) = +1 and χ(~a) = −1 are tried
both during the backtracking.

• If a group of automorphisms is prescribed, we calculate the orbits on
the k-tuples in advance. Then, after the first function value of an orbit
is specified, the remaining values ensue.

•When generating up to negation, we can restrict the first otherwise
freely choosable orientation to +1. This way, we generate exactly one
candidate for each negation class.

• Similarly in the case when we generate up to reorientation: We fix up
to n orientations to +1. The choosen k-tuples are the first ones affected
by an reorientation of the points 1 ≤ i ≤ n, respectively.

• Ensure, that we generate chirotopes only: For all ordered k+2-tuples
(x, y, a

(i)
1 , . . . , a

(i)
k ), test the corresponding three-term Grassmann-

Plücker relations. This way, each candidate χ reaching the last level
fulfills all three-term Grassmann-Plücker relations and thus is a chiro-
tope.

• In order to check the list of forbidden circuits, we calculate for each
ordered k+1-tuple (x, a

(i)
1 , . . . , a

(i)
k ) the corresponding circuit.

•Whenever a sub-chirotope on n′ ≤ n points is complete, test if the
shortened chirotope χ↓n′k is canonic up to relabeling (and reorienta-
tion and/or negation, if appropriate).

We use the minimal lexicographic representation of a chirotope as
canonic form, taking advantage of the principle of orderly generation.
This allows to skip (huge!) branches of the backtrack tree whenever we
recognize, that a candidate χ is not minimal.

On the other hand, the minimization is much more difficult than other
canonization methods using iterated classification. The problem gets
apparent, when the operating relabelling group gets big. The drastic in-
fluence of the size of the acting group on the generation time can best be
shown by an example. Below, we show the computation times for ori-
entations of some underlying matroids of rank 3 over 8 points. Compare
the group sizes |G| of the automorphism group of the underlying matroid
with the relative generation time per found structure:

underlying matroid orien-
tations

time in
seconds

time per
structure |G|

++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 135 66 0.4889 40 320

0+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 589 5 0.0084 720
0000++++++++++++++++++++++++++++++++++++++++++++++++++++ 66 0.8 0.0121 576
0++++++++++++++++++0++++++++++++++++++++++++++++++++++++ 273 1 0.0036 72

0++++++0++++++++++++++++++++++++++++++++++++++++++++++++ 953 1 0.0010 48
0++++++0+++++++++++++++++++++++++++++++++++++++++++++++0 85 0.5 0.0058 48
0++++++0++++++++++++++++++++++0+++++++++++++++++++++++++ 128 0.4 0.0031 48

0++++++0++++++++++++++++++++++++++0+++++++++++++++++++++ 582 0.3 0.0005 8
... ...

altogether: 4890 oriented matroids of rank 3 over 8 points

Another approach using canonization via iterated classification and the
homomorphism principle is in development.

3. Comparison

Our generator is with reservations comparable to the generator of L. Fin-
schi [1], when generating without any restrictions. The reservations are,
because Finschi generates all oriented matroids of rank k on n points, in
contrast to our approach of generating all orientations of an underlying
matroid, only. But as the generation of uniform structures consumes by
far the most time, we can compare to the generation of these.

In the following table, we list for given rank k and number n of points the
number of structures up to reorientation, negation and relabelling, both
of uniform oriented matroids as generated by us – as well as of all ori-
ented matroids, as given in [1]. The generation times are given beneath
the corresponding numbers. (Beware, that the different generators ran on
different computers.)

k\n 2 3 4 5 6 7 8 9 10
2 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1s(0s) 4s(0s)
3 1(1) 1(2) 1(4) 4(17) 11(143) 135(4890) 4 382(461 054) 312 356(95 052 532)

3s(3s) 1.1m(2.2m) 0.9h(3.6h) 4.2t( 72t)
4 1(1) 1(3) 1(12) 11(206) 2628(181 472)

8s(10s) 1h(4.1h)
5 1(1) 1(4) 1(25) 135(6029)

2s(2s) 16.9m(48.3m)
6 1(1) 1(5) 1(50) 4382(508 321)

55s(26s) 3.3t(∼10t)
7 1(1) 1(6) 1(91)

1s(0s) 19.7m(9.9m)
8 1(1) 1(7) 1(164)

14s(0s) 11.5h(4.8h)
9 1(1) 1(8)

3s(0s) 2.8m(0s)
10 1(1)

27s(0s)
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