▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへ⊙

Conformational Analysis via Chirotope Generation

Ralf Gugisch

Lehrstuhl II für Mathematik University of Bayreuth

MATH/CHEM/COMP 2006, June 19–24 2006, Dubrovnik

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Conformational analysis

A chemical structure ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Conformational analysis

A chemical structure ...

cyclohexane

A chemical structure ...

... may appear in different *conformations*.

A chemical structure ...

... may appear in different conformations.

chair form

twisted form

A chemical structure ...

... may appear in different conformations.

Under *conformer generation*, we understand the generation of a reasonably distributed sample of the conformation space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The orientation function

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

The orientation function

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

• In molecules:

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

b

●a/

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

b

●a/

~2²³⁴ +

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

●^b

●_a

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

~2²³⁴ +

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

•

●_a

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

•

●_a

•

●_a/

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

•

●_a/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The orientation function

•

●_a/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The orientation function

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

b

 \bullet_a

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

The orientation function

• The "right-hand rule":

b

The orientation function

• The "right-hand rule":

The orientation function χ (in combination with the molecular graph) describes a molecule on an intermediate level between constitution and conformation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Conformer generation

Conformer generation

Our Strategy for conformer generation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conformer generation

Our Strategy for conformer generation:

• Generate mappings, which potentially are orientation functions.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conformer generation

Our Strategy for conformer generation:

- Generate mappings, which potentially are orientation functions.
- Try to find a conformer for each of these mappings.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conformer generation

Our Strategy for conformer generation:

- Generate mappings, which potentially are orientation functions.
- Try to find a conformer for each of these mappings.

As potential orientation functions, we consider chirotopes.

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

 $\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0$$
.

• χ is alternating:

$$\chi(\mathbf{a}_{\pi^{-1}(\mathbf{0})},\ldots,\mathbf{a}_{\pi^{-1}(\mathbf{3})}) = \operatorname{sgn}(\pi) \cdot \chi(\mathbf{a}_0,\ldots,\mathbf{a}_3).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

$$\chi(\mathbf{a}_{\pi^{-1}(\mathbf{0})},\ldots,\mathbf{a}_{\pi^{-1}(\mathbf{3})}) = \operatorname{sgn}(\pi) \cdot \chi(\mathbf{a}_0,\ldots,\mathbf{a}_3).$$

• χ fulfills the binary Grassmann-Plücker relations:
Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

$$\chi(\mathbf{a}_{\pi^{-1}(\mathbf{0})},\ldots,\mathbf{a}_{\pi^{-1}(\mathbf{3})}) = \operatorname{sgn}(\pi) \cdot \chi(\mathbf{a}_0,\ldots,\mathbf{a}_3).$$

• χ fulfills the binary Grassmann-Plücker relations:

$$\chi(\vec{a}) \cdot \chi(\vec{b}) = 1 \Longrightarrow$$

$$\exists i \in n : \chi(b_i, a_1, \dots, a_3) \cdot \chi(b_0, \dots, a_0, \dots, b_3) = 1.$$
(GP)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Canonical forms of chirotopes

• Canonical forms are important for chirotopes (as they are for the molecular graphs).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- Canonical forms are important for chirotopes (as they are for the molecular graphs).
- We are able to calculate the canonical form.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Radon partitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Radon partitions

Radon partitions

Radon partitions

• A chemical unfeasable conformation:

Question:

Is it possible to recognize the infeasibility from the orientation function only?

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

• The chirotope determines all radon partitions.

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

- The chirotope determines all radon partitions.
- This way, we can recognize (some) chemical unfeasable configurations, e.g.

Radon partitions

Radon partitions

Radon partitions

• A chemical unfeasable conformation:

• We did not need coordinates nor angles for this test.

Radon partitions

- We did not need coordinates nor angles for this test.
- \Rightarrow Efficient test during conformer generation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partially defined chirotopes

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Partially defined chirotopes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partially defined chirotopes

• Partially defined chirotopes give the possibility to classify the conformations in a graduated application-specific manner.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

• The molecular graph has 12 automorphisms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation:

~2 ² /2	2352	-22	143345	
++++	+++++	++++	+++	
+++	+++++	++++	+	
++++	+++++	++++	-++ +	- 1
+++	+++++	++++		- 1
++++	+++++	+	+	1
+++	++++	++-+	-++	1
++++	+++++	++-+	+ +	1
+++	+++++	++	<u> </u>	1
++++	+++++	+ - + + + + + + + + + + + + + + + + + +	+++	1
++++	+++++	+-+	++-	1
	:			1
	•			

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation:

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for:

イロト 不得 ト イヨト イヨト

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for: 4

23A	224226	1250	14503450
++++	++++	+++++++++++++++++++++++++++++++++++++++	+ + -
++++	-+	+++	+++

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")

23A	224220	1250	1450 3450
++++	+++++	+++	+ - ←
++++	+ - + + + +	+++	+ +
_		_	

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form

23A	234236	1250	1450 3450
++++	+++++	+++-	++-
+++	-+++	+	+++
+++	+ - + + +	_	

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form
 - chair form

23A	224236	1250	1450 3450
+++	+++++	+++	+ + -
+++	-+	+++	+++ ←
-			

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to a gauche/anti-situation: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form
 - chair form
 - twist form (enantiomere)

23A	224220	1250	1450 3450
+++	++++	+	++-
+++	+ -+ +++	++	+++
+++	+-+++	_	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Thank You!