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Definition

Under conformer generation, we understand the generation of a
reasonably distributed sample of the conformation space.
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The orientation function x (in combination with the molecular
graph) describes a molecule on an intermediate level between
constitution and conformation.
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Conformer generation

Our Strategy for conformer generation:

@ Generate mappings, which potentially are orientation
functions.

@ Try to find a conformer for each of these mappings.

As potential orientation functions, we consider chirotopes. J
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A chirotope (of rank 4) over n points (the atoms) is a mapping
x:n*— {0,£1}

with:

@ Y is not trivial:
Jacn*:x(3)#£0.

@ X is alternating:
X(az-1(0ys - - - » 3r-1(3)) = sen(m) - x(ao, - - -, a3) -

@  fulfills the binary Grassmann-Pliicker relations:

:X(b,,al,...,33)-X(bo,...,?o,...,b:),):1. (GP)

i-th position
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Canonical forms of chirotopes

e Canonical forms are important for chirotopes (as they are for
the molecular graphs).

@ We are able to calculate the canonical form.




Chirotopes

Radon partitions

@ A chemical unfeasable conformation:



Chirotopes

Radon partitions

@ A chemical unfeasable conformation:



Chirotopes

(%2}
c
.0
=t
-
-
()
o
c
(©)
S
(T
o

@ A chemical unfeasable conformation:

FH++++++++——++++

X:



Chirotopes

Radon partitions

@ A chemical unfeasable conformation:

4

Is it possible to recognize the infeasibility from the orientation
function only?
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Radon partitions (2)

@ A radon partition is a pair (A,B) of subsets of all atoms, such

that their convex hulls intersect:
b

@ The chirotope determines all radon partitions.

@ This way, we can recognize (some) chemical unfeasable
configurations, e.g.
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Radon partitions

@ A chemical unfeasable conformation:

@ We did not need coordinates nor angles for this test.

e = Efficient test during conformer generation.
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Partially defined chirotopes
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o Partially defined chirotopes give the possibility to classify the
conformations in a graduated application-specific manner. J
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@ The molecular graph has 12 automorphisms.
@ We assume, that no 4 atoms are in a plane. 3 5

@ We get 386 chirotopes.
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Conformer generation: The example cyclohexane

@ The molecular graph has 12 automorphisms.

@ We assume, that no 4 atoms are in a plane.
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Conformer generation: The example cyclohexane

The molecular graph has 12 automorphisms.
We assume, that no 4 atoms are in a plane.
We get 386 chirotopes.

Excluding unfeasable radon partitions: 162

Restricting to quadrupels corresponding to a
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Conformer generation: The example cyclohexane

@ The molecular graph has 12 automorphisms. 5 g 6

@ We assume, that no 4 atoms are in a plane. 3 A

@ We get 386 chirotopes.

@ Excluding unfeasable radon partitions: 162
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Conformer generation: The example cyclohexane

The molecular graph has 12 automorphisms. 5 6
We assume, that no 4 atoms are in a plane. 5
We get 386 chirotopes.

Excluding unfeasable radon partitions: 162

Restricting to quadrupels corresponding to a
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Conformer generation: The example cyclohexane

@ The molecular graph has 12 automorphisms. 5 g 6

@ We assume, that no 4 atoms are in a plane. 3 A

@ We get 386 chirotopes.
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Conformer generation: The example cyclohexane

@ The molecular graph has 12 automorphisms.

@ We assume, that no 4 atoms are in a plane.

@ We get 386 chirotopes.

@ Excluding unfeasable radon partitions: 162

@ Restricting to quadrupels corresponding to a
gauche/anti-situation: 13

@ Conformation as local minima of an energy
function were found for:

o boat form (a “sattle point”)
o twist form
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@ The molecular graph has 12 automorphisms.
@ We assume, that no 4 atoms are in a plane. '
@ We get 386 chirotopes.

@ Excluding unfeasable radon partitions: 162
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Conformer generation: The example cyclohexane

@ The molecular graph has 12 automorphisms.
@ We assume, that no 4 atoms are in a plane.

@ We get 386 chirotopes.

@ Excluding unfeasable radon partitions: 162

@ Restricting to quadrupels corresponding to a
gauche/anti-situation: 13

@ Conformation as local minima of an energy
function were found for:

boat form (a “sattle point”)

twist form

chair form
twist form (enantiomere)
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