◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Chirotope Generation – A Step Towards Multi-Conformational 3D-QSPR

Ralf Gugisch

Lehrstuhl II für Mathematik University of Bayreuth

TOPMOL 2006,

September 25–30 2006, Cluj-Napoca, Romania

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

1 3D-QSPR and Conformational Analysis

Chirotopes and Conformer Generation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The problem with 3D-QSPR

A chemical compound ...

The problem with 3D-QSPR

A chemical compound ...

cyclohexane

Orientation Functions

Chirotopes and Conformer Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

Orientation Functions

Chirotopes and Conformer Generation

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

The problem with 3D-QSPR

A chemical compound ...

... may appear in different *conformations*

chair form

twisted form

Orientation Functions

Chirotopes and Conformer Generation

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

The problem with 3D-QSPR

A chemical compound ...

... may appear in different *conformations*

... having different geometric indices (e.g. topographic Wiener index):

Orientation Functions

Chirotopes and Conformer Generation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The problem with 3D-QSPR

A chemical compound ...

... may appear in different *conformations*

... having different geometric indices (e.g. topographic Wiener index):

34.44 34.15

The problem with 3D-QSPR

A chemical compound ...

... may appear in different *conformations*

... having different geometric indices (e.g. topographic Wiener index):

34.44 34.15

It is not clear which conformation is responsible for the property.

うして ふぼう ふほう ふほう しょうくの

The problem with 3D-QSPR

• Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space
- Classification of the conformation space

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space
- Classification of the conformation space
 - by "watersheds"

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space
- Classification of the conformation space
 - by "watersheds"
 - by stereoisomers (determined by stereo centers)

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space
- Classification of the conformation space
 - by "watersheds"
 - by stereoisomers (determined by stereo centers)
 - by configurations of each butane substructure (gauche⁺ / gauche⁻ or anti)

- Idea: Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
 - reasonably sized
 - reasonably distributed over the conformation space
- Classification of the conformation space
 - by "watersheds"
 - by stereoisomers (determined by stereo centers)
 - by configurations of each butane substructure (gauche⁺ / gauche⁻ or anti)
 - by orientation functions (i.e. chirotopes)

Chirotopes and Conformer Generation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The orientation function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The orientation function

The orientation function

The orientation function

• The "right-hand rule":

In molecules:

The orientation function

The orientation function

The orientation function

• The "right-hand rule":

• In molecules:

~2²⁰ +

The orientation function

• The "right-hand rule":

• In molecules:

~2²³⁴ +

The orientation function

• The "right-hand rule":

The orientation function

• The "right-hand rule":

The orientation function

C

b

•a

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The orientation function

C

b

●_a

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The orientation function

The orientation function

C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The orientation function

• The "right-hand rule":

b
The orientation function

• The "right-hand rule":

The orientation function χ (in combination with the molecular graph) describes a molecule on an intermediate level between constitution and conformation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Canonical forms for orientation functions

• Canonical forms are important for orientation functions (as they are for the molecular graphs).

- Canonical forms are important for orientation functions (as they are for the molecular graphs).
- We are able to calculate the canonical form.

Partially defined orientation functions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへで

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Partially defined orientation functions

 Partially defined orientation functions give the possibility to classify the conformations in a graduated application-specific manner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Conformer generation

Conformer generation

Our Strategy for conformer generation:

Conformer generation

Our Strategy for conformer generation:

• Generate orientation functions.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conformer generation

Our Strategy for conformer generation:

- Generate orientation functions.
- Try to find a conformer for each of these mappings.

Conformer generation

Our Strategy for conformer generation:

- Generate orientation functions.
- Try to find a conformer for each of these mappings.

Question:

Which mappings $n^4 \rightarrow \{0, \pm 1\}$ are orientation functions?

(ロ)、(型)、(E)、(E)、 E、 の(の)

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

・ロト ・西ト ・ヨト ・ヨト ・ りゃぐ

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

 $\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0$.

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0$$
.

• χ is alternating:

$$\chi(\mathbf{a}_{\pi^{-1}(\mathbf{0})},\ldots,\mathbf{a}_{\pi^{-1}(\mathbf{3})}) = \operatorname{sgn}(\pi) \cdot \chi(\mathbf{a}_0,\ldots,\mathbf{a}_3).$$

Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

$$\chi(\boldsymbol{a}_{\pi^{-1}(0)},\ldots,\boldsymbol{a}_{\pi^{-1}(3)}) = \operatorname{sgn}(\pi) \cdot \chi(\boldsymbol{a}_0,\ldots,\boldsymbol{a}_3).$$

• χ fulfills the binary Grassmann-Plücker relations:
Chirotope

A chirotope (of rank 4) over *n* points (*the atoms*) is a mapping

$$\chi: n^4 \rightarrow \{0, \pm 1\}$$

with:

• χ is not trivial:

$$\exists \, \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .$$

• χ is alternating:

$$\chi(\mathbf{a}_{\pi^{-1}(\mathbf{0})},\ldots,\mathbf{a}_{\pi^{-1}(\mathbf{3})}) = \operatorname{sgn}(\pi) \cdot \chi(\mathbf{a}_0,\ldots,\mathbf{a}_3).$$

• χ fulfills the binary Grassmann-Plücker relations:

$$\chi(\vec{a}) \cdot \chi(\vec{b}) = 1 \Longrightarrow$$

$$\exists i \in n : \chi(b_i, a_1, \dots, a_3) \cdot \chi(b_0, \dots, a_0, \dots, b_3) = 1.$$
(GP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Radon partitions

Radon partitions

Radon partitions

Radon partitions

• A chemical unfeasable conformation:

Question:

Is it possible to recognize the infeasibility from the orientation function only?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

• The chirotope determines all radon partitions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

- The chirotope determines all radon partitions.
- This way, we can recognize (some) chemical unfeasable configurations, e.g.

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Radon partitions

• A chemical unfeasable conformation:

• We did not need coordinates nor angles for this test.

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Radon partitions

- We did not need coordinates nor angles for this test.
- \Rightarrow Efficient test during conformer generation.

• Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

• Which sets of atom quadrupels could be interesting for partially defined orientation functions?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

- Which sets of atom quadrupels could be interesting for partially defined orientation functions?
- Which further rules could be formulated with radon partitions?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

- Which sets of atom quadrupels could be interesting for partially defined orientation functions?
- Which further rules could be formulated with radon partitions?

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The molecular graph has 12 automorphisms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to butane substructures:

-23A	234230	1250	1450 3450
+++	+++++	++++	+++
+++	++++	++++	++-
+++	+++++	++++	+
+++	+++++	++++	-++
+++	+++++	++++	+
+++	+++++	++++	
+	+++++	++	+
+++	++++	++	
-	++	+	
+++	+++	+	+
+ + +	+++++	+	
+++	+++++	÷ – + +	+++
+++	+++++		++-
+++	+++++	+-+-	++-
_			

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to butane substructures:

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

23th 2263 250 100 200 300
#1111111#1#11111#111#111#111#1
HIIIIIIHHIIIIIHHIIIIIH
À

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for:
- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

23A	224220	-250	1450 3450
+++	+++++	+++	++-
++++	+++++	+++	+ +
+++	+-+++		

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

23A	224220	1250	1450 3450
+++-	+++++	++++	++-←
++++	-+++	++	+++
+++	+-+++		

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

234	224236	1250	1450 3450
+++	+++++	++++	
++++	+++++	++++	+++
+++	+-+++		

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

234	224220	1250	1450 3450
+++	+++++	+++-	+++-
++++	+ + + + +	+++-	+ + +
+++	+-+++		

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form
 - chair form

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get <u>386</u> chirotopes.
- Excluding unfeasable radon partitions: 162

23A	224236	1250	1450 3450
+++	+++++	++++	+ + -
++++	+++++	+ +	+ + +
++++	+-+++		

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4
 - boat form (a "sattle point")
 - twist form
 - chair form
 - twist form (enantiomere)