Chirotope Generation – A Step Towards Multi-Conformational 3D-QSPR

Ralf Gugisch

Lehrstuhl II für Mathematik University of Bayreuth

TOPMOL 2006,

September 25–30 2006, Cluj-Napoca, Romania

K □ ▶ K @ ▶ K 할 X K 할 X (할) 10 Q Q Q

1 [3D-QSPR and Conformational Analysis](#page-2-0)

3 [Chirotopes and Conformer Generation](#page-59-0)

K □ ▶ K @ ▶ K 할 X K 할 X (할) 10 Q Q Q

The problem with 3D-QSPR

A chemical compound ...

The problem with 3D-QSPR

A chemical compound ...

cyclohexane

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

[3D-QSPR and Conformational Analysis](#page-2-0) **[Orientation Functions](#page-20-0)** [Chirotopes and Conformer Generation](#page-59-0)

AD A REAKEN E YOUR

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

chair form twisted form

[3D-QSPR and Conformational Analysis](#page-2-0) **[Orientation Functions](#page-20-0)** [Chirotopes and Conformer Generation](#page-59-0)

AD A REAKEN E YOUR

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

... having different geometric indices (e.g. topographic Wiener index):

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

... having different geometric indices (e.g. topographic Wiener index):

34.44 34.15

The problem with 3D-QSPR

A chemical compound ...

... may appear in different conformations

... having different geometric indices (e.g. topographic Wiener index):

34.44 34.15

It is *not* clear which conformation is responsible for the property.

The problem with 3D-QSPR

• Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

- Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?

- Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?
	- reasonably sized

- **Idea:** Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space

- **Idea:** Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space
- Classification of the conformation space

- **Idea:** Geometric indices should be based on a set (a *mixture*) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space
- Classification of the conformation space
	- by "watersheds"

- Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)
- **Problem:** How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space
- Classification of the conformation space
	- by "watersheds"
	- by stereoisomers (determined by stereo centers)

- Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space
- Classification of the conformation space
	- by "watersheds"
	- by stereoisomers (determined by stereo centers)
	- by configurations of each butane substructure (gauche⁺ / gauche[−] or anti)

- Idea: Geometric indices should be based on a set (a mixture) of conformations (e.g. centroid method)
- Problem: How do we get a reasonable set of conformations?
	- reasonably sized
	- reasonably distributed over the conformation space
- Classification of the conformation space
	- by "watersheds"
	- by stereoisomers (determined by stereo centers)
	- by configurations of each butane substructure (gauche⁺ / gauche[−] or anti)
	- by orientation functions (i.e. chirotopes)

1 [3D-QSPR and Conformational Analysis](#page-2-0)

2 [Orientation Functions](#page-20-0)

3 [Chirotopes and Conformer Generation](#page-59-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

The orientation function

The orientation function

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

The orientation function

The orientation function

The "right-hand rule":

 \boldsymbol{h}

• In molecules:

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The orientation function

The "right-hand rule":

 \boldsymbol{h}

The orientation function

The "right-hand rule":

 \boldsymbol{h}

The orientation function

The "right-hand rule":

 $\mathcal{P}^{\mathcal{P}^{\mathbf{k}}}$ $+$

The orientation function

The "right-hand rule":

 $\mathcal{P}^{\mathcal{P}^{\mathbf{k}}}$ $+$

The orientation function

The "right-hand rule":

 $\sqrt{2}$ $\mathcal{L}^{\mathcal{P}}$

 $++$

The orientation function

The "right-hand rule":

 $\sqrt{2}$ $\mathcal{L}^{\mathcal{P}}$

 $++$

 $_b$

 $\mathbf{\bullet}_{a}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The orientation function

 $-b$

 $\mathbf{\bullet}_{a}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The orientation function

 $-b$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The orientation function

 $c_{\mathbb{C}}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

The orientation function

• The "right-hand rule":

 $++0$ $-++0$ $-++0$ $++$

 \boldsymbol{h}

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

The orientation function

The "right-hand rule":

• In molecules:

$$
\begin{array}{c}\n\sqrt{2}328888888888888888\\
\sqrt{2}323288888888888\\
\chi =++0--+-0-++0+++ \end{array}
$$
The orientation function

• The "right-hand rule":

The *orientation function* χ (in combination with the molecular graph) describes a molecule on an intermediate level between constitution and conformation.

Canonical forms for orientation functions

Canonical forms are important for orientation functions (as they are for the molecular graphs).

- Canonical forms are important for orientation functions (as they are for the molecular graphs).
- We are able to calculate the canonical form.

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Partially defined orientation functions

AD A REAKEN E VAN

Partially defined orientation functions

AD A REAKEN E VAN

Partially defined orientation functions

• Partially defined orientation functions give the possibility to classify the conformations in a graduated application-specific manner.

1 [3D-QSPR and Conformational Analysis](#page-2-0)

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q @

Conformer generation

Conformer generation

Our Strategy for conformer generation:

Conformer generation

Our Strategy for conformer generation:

• Generate orientation functions.

Conformer generation

Our Strategy for conformer generation:

- **Generate orientation functions**
- Try to find a conformer for each of these mappings.

Conformer generation

Our Strategy for conformer generation:

- **Generate orientation functions**
- Try to find a conformer for each of these mappings.

Question:

Which mappings $n^4 \to \{0, \pm 1\}$ are orientation functions?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

 $\exists \ \vec{a} \in n^4 : \chi(\vec{a}) \neq 0$.

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

$$
\exists \ \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .
$$

 \bullet χ is alternating:

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

$$
\exists \ \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .
$$

 \bullet χ is alternating:

$$
\chi(a_{\pi^{-1}(0)},\ldots,a_{\pi^{-1}(3)})=\mathrm{sgn}(\pi)\cdot\chi(a_0,\ldots,a_3)\,.
$$

Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

$$
\exists \ \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .
$$

 \bullet χ is alternating:

$$
\chi(a_{\pi^{-1}(0)},\ldots,a_{\pi^{-1}(3)})=\mathrm{sgn}(\pi)\cdot\chi(a_0,\ldots,a_3)\,.
$$

• χ fulfills the binary Grassmann-Plücker relations:
Chirotope

A chirotope (of rank 4) over n points (the atoms) is a mapping

$$
\chi: n^4 \to \{0, \pm 1\}
$$

with:

 \bullet x is not trivial:

$$
\exists \ \vec{a} \in n^4 : \chi(\vec{a}) \neq 0 \, .
$$

 \bullet χ is alternating:

$$
\chi(a_{\pi^{-1}(0)},\ldots,a_{\pi^{-1}(3)})=\mathrm{sgn}(\pi)\cdot\chi(a_0,\ldots,a_3)\,.
$$

• χ fulfills the binary Grassmann-Plücker relations:

$$
\chi(\vec{a}) \cdot \chi(\vec{b}) = 1 \Longrightarrow \exists i \in n : \chi(b_i, a_1, \ldots, a_3) \cdot \chi(b_0, \ldots, a_0, \ldots, b_3) = 1.
$$
 (GP)

AD A REAKEN E YOUR

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

Radon partitions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니다

Radon partitions

Radon partitions

Radon partitions

A chemical unfeasable conformation:

Question:

Is it possible to recognize the infeasibility from the orientation function only?

> (1) (1) Ξ QQ

Radon partitions (2)

• A radon partition is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

Radon partitions (2)

• A radon partition is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

Radon partitions (2)

 \bullet A radon partition is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

• The chirotope determines all radon partitions.

Radon partitions (2)

• A *radon partition* is a pair (A,B) of subsets of all atoms, such that their convex hulls intersect:

- The chirotope determines all radon partitions.
- This way, we can recognize (some) chemical unfeasable configurations, e.g.

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

Radon partitions

A chemical unfeasable conformation:

• We did not need coordinates nor angles for this test.

Radon partitions

- We did not need coordinates nor angles for this test.
- $\bullet \Rightarrow$ Efficient test during conformer generation.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Conclusions

Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.

KORK EX KEY KEY YOUR

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.

KORK EX KEY KEY YOUR

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

KORK EX KEY KEY YOUR

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

Which sets of atom quadrupels could be interesting for partially defined orientation functions?

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

- Which sets of atom quadrupels could be interesting for partially defined orientation functions?
- Which further rules could be formulated with radon partitions?

Conclusions

- Orientation functions are a coordinate free, adjustable, discrete tool for describing molecular conformations.
- We can compute chirotopes in computer.
- This is the first step towards a "conformation generator"

Questions:

- Which sets of atom quadrupels could be interesting for partially defined orientation functions?
- Which further rules could be formulated with radon partitions?

Thank You!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000 W

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The molecular graph has 12 automorphisms.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.

AD A REAKEN E YOUR

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

 Ω

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to butane substructures:

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162
- Restricting to quadrupels corresponding to butane substructures:

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

KORK ERKER ER AGA

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

KOD KAR KED KED E YOUN

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for:
- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

モニ マ イ ラ マ ス ラ マ ラ メ コ メ

 Ω

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: $\frac{4}{100}$

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

- Conformation as local minima of an energy function were found for:
	- boat form (a "sattle point")

モニット イランド・ミンド (量)

 Ω

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

AD A REAKEN E YOUR

- Restricting to quadrupels corresponding to butane substructures: 13
- Conformation as local minima of an energy function were found for: 4
	- boat form (a "sattle point")
	- **•** twist form

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

- Conformation as local minima of an energy function were found for: 4
	- boat form (a "sattle point")
	- **•** twist form
	- chair form

AD A REAKEN E YOUR

- The molecular graph has 12 automorphisms.
- We assume, that no 4 atoms are in a plane.
- We get 386 chirotopes.
- Excluding unfeasable radon partitions: 162

- Conformation as local minima of an energy function were found for:
	- boat form (a "sattle point")
	- **•** twist form
	- \bullet chair form
	- twist form (enantiomere)

KOD KAR KED KED E YOUN