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Two methods to obtain numbers of stereoisomers and of achiral 

stereoisomers of a given molecular structure are detailed on the example 

of di- and triinositols. The first method is manual exhaustive 

construction free of redundance of all stereoisomers, which is rendered 

feasible by symmetry considerations despite the large number of isomeric 

triinositols (82176). The second method is counting without constructing, 

made possible by use of a mathematical tool, the Cauchy-Frobenius lemma, 

which actually is a formalized manner of considering symmetry. The 

results are compared to those obtained by computer-aided stereoisomer 

generation using the program MOLGEN 3.5. It is demonstrated that in their 

results all three methods agree.    

                              INTRODUCTION

   Software for solving chemical problems should be tested on cases of 

intermediate complexity: For simple problems that are easily treated by 

hand a computer program is not needed, for very complex cases a solution 

may be produced by a program, but it cannot manually be checked for 

correctness. In cases of intermediate complexity only, a nontrivial 

computer result can be compared to a result obtained in a necessarily 

lengthy and error-prone manual procedure, thus demonstrating both the 

necessity of having a computer program and, in the best case, the 

correctness of a particular program for at least the particular case at 

hand.  

   A few years ago, T. Hudlicky et al. raised the question how many 

stereoisomers exist of O-linked diinositols and triinositols of 

structures 2 and 3.1 They gave an answer for 2 (990 stereoisomers), but 

did not explain how this number was arrived at. Later Hönig et al. 

derived 528 as the number of stereoisomers of 2 using their program 

ISOMERS.2 The same authors, when publishing a detailed compilation of 
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numbers of inositol oligomers, still left unanswered the question for the 

number of stereoisomers of 3.3 They gave, however, the number of all 

stereoisomeric linear triinositols, i.e. the sum of stereoisomer counts 

for 3 and its constitutional isomers 4 and 5. They also asked for the 

number of achiral stereoisomers among all stereoisomeric di- and 

triinositols, and treated this problem by inspection of many thousands of 

stereoisomers. 

    The chemist’s manual approach is often limited by the size of the 

problem at hand and by human deficiencies. In our opinion, mathematical 

methods and already existing computer programs for treating such 

stereochemical problems can be very helpful and deserve to be more 

recognized by chemists than is actually the case. Therefore in the 

present paper we compare methods to solve the exemplary problem of the 

oligo-inositol stereoisomers. First we construct (in principle) all 

stereoisomers of 2, 3, 4, and 5 free of redundance manually using 

symmetry considerations and a simple classification scheme, then we use a 

mathematical theorem known as the Cauchy-Frobenius lemma for counting the 

stereoisomers. In both cases we obtain not only the number of all 

stereoisomers, but also the numbers of achiral stereoisomers and thus of 

pairs of enantiomers. Finally we compare the results to those obtained by 

using the computer program MOLGEN 3.5 developed in Bayreuth,4 which is 

able to exhaustively construct stereoisomers as far as stereocenters and 

E/Z double bonds only are involved. 
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   Stereoisomerism in 1 - 5 may be considered to be due solely to 

tetrahedral stereocenters (chiral centers), the number of stereoisomers 

exclusively depends on the possibilities to distribute C-O single bonds 

above and below the average planes of the cyclohexane rings. Due to rapid 

interconversion of conformers, we are allowed to approximate each 

cyclohexane ring as a planar hexagon (Haworth projection). The numbers of 

stereoisomers in the present cases are not trivial since 1 - 5 exhibit 

high constitutional symmetry. Therefore many of the configurational 

patterns will turn out to be identical, so that the numbers of truly 

distinct patterns presumably are well below 2n, where n is the number of 

stereocenters.

                        RESULTS AND DISCUSSION

1. Manual construction of all stereoisomers.

1.1 Stereoisomeric inositols 1

   The inositol (1) stereoisomers are easily constructed manually, by 

systematically placing none, one, two and three substituent OH groups at 

one side of a regular hexagon, with all others on the opposite side. 

These isomers have been known for a long time:5 There are exactly 9 

stereoisomers called scyllo-, myo-, (+)-chiro-, (-)-chiro-, neo-, epi-, 

cis-, muco-, and allo-inositol, all shown in Figure 1 together with their 

point group symbols, in the order of appearence in reference 5.6 
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Figure 1. The nine inositols.

1.2. Stereoisomeric diinositols 2

   We dissect molecule 2 into two halves, each of which is a 

monosubstituted inositol. We construct all possible such building blocks 

and finally combine these in all possible ways.

   By replacing in turn each distinct OH group in an inositol (as 

determined by its symmetry) with an OX group, from each inositol between 

one and six isomeric monosubstituted inositols are obtained. Thus, in 

scyllo-inositol all six OH groups are homotopic7 and therefore 

substitutions lead to a single monosubstituted product. In contrast, in 

myo-inositol no two OH groups are homotopic (they are either enantiotopic 

or diastereotopic7) so that six distinct monosubstituted products are 

formed. Enantiomers are distinguished and counted individually by this 

procedure. 

   In Figure 2 all 32 general monosubstituted inositols are shown. The OH 

symbols are left out for clarity, OH groups are represented by vertical 

lines. 

   In this paper we assume X to represent an achiral substituent or a 

free valence. Then, of the 32 monosubstituted inositols, 8 are achiral 

(meso compounds: scyllo1, myo1, myo6, neo1, epi5, epi6, cis1, muco1) and 

24 are chiral, forming twelve pairs of enantiomers (myo2/myo3, myo4/myo5, 

(+)-chiro1/(-)-chiro1, (+)-chiro2/(-)-chiro2, (+)-chiro3/(-)-chiro3, 

neo2/neo3, epi1/epi2, epi3/epi4, muco2/muco3, allo1/allo2, allo3/allo4, 

allo5/allo6). Enantiomers are linked by a bracket in Figure 2. For 

isomers of nontrivial symmetry the point group symbols are also given. 

The numbering myo1, myo2, …, is ours and arbitrary. 

   Forming dimers from these 32 monomers, we obtain 32 homodimers and 32 

·31/2 = 496 heterodimers. Thus there is a total of 528 stereoisomers of 

formula 2.

   Dolhaine and Hönig further raised the question how many of the 

diinositols are achiral. In their first paper2 the answer given was 48 

achiral isomers, while in the later paper they found only 46 achiral 

isomers.3

   Our reasoning with respect to this problem is simple: Diinositols made 

up of two achiral halves (either identical or different) obviously are 
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achiral. Of the former kind there are 8 (scyllo1-scyllo1, …), while there 

are 8·7/2 = 28 of the latter kind (scyllo1-myo1, …). 
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Figure 2. All general monosubstituted inositols.

Further, a diinositol made of two chiral halves is achiral if these are 

enantiomeric. There are 12 diinositols of this kind (myo2-myo3, …). So 

there exist 48 achiral diinositols altogether. In fact in Table II of 

ref. 3 two achiral diinositols were not identified as such (epi5-epi6 and 

myo1-myo6 in our numbering, presumably).  

   The derivations given above are essentially the same as those given by 

the earlier authors.2 They are detailed here because in the following 

sections we require the list of the 32 monosubstituted inositols.

1.3. Stereoisomeric triinositols 3 - 5

1.3.1 Stereoisomers of 3 (1,2-disubstituted central unit)

   The procedure is similar to that for 2, though necessarily a bit more 

involved. In addition to all monosubstituted inositols (Figure 2) we now 

require all general 1,2-disubstituted inositols as the central building 

blocks in 3. The isomers shown in Figure 3 were constructed by replacing 

for each distinct CC bond in an inositol (as determined by its symmetry) 

the two OH groups attached to this bond with two OX groups. In this 

manner from each inositol between one and six products are obtained. The 

labeling myoa, myob, …, is ours and arbitrary.   

   Altogether there are 36 distinct general 1,2-disubstituted inositols.

While it is possible to write down, for each of the 36, all products of 

substituting each OX independently by one of the 32 monosubstituted 

inositols, and then to check for pairwise identities, this would 

obviously be a tedious procedure. Instead we partition the 36 into 

classes according to the topicity of the OX groups (which is determined 

by the symmetry of the molecule) and then treat one representative of 

each class: 

1) The substituents OX are enantiotopic in a mirror symmetric (Cs) and 

therefore achiral molecule. In this class are cisa, mucoc, alloa, allof. 

2) The substituents OX are diastereotopic in an unsymmetric (C1) and 

therefore chiral molecule. Here we have myoa/myob, (+)-chirob/(-)-chirob, 

neoa/neob, epia/epib, epie/epif, allob/alloc, myoc/myod, myoe/myof, (+)-

chiroc/(-)-chiroc, epic/epid, mucoa/mucob, allod/alloe.
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3) The substituents OX are homotopic in a C2 symmetric and therefore 

chiral molecule. In this category are scylloa/scyllob, (+)-chiroa/(-)-

chiroa, (+)-chirod/(-)-chirod, neoc/neod.
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Figure 3. All general 1,2-disubstituted inositols.

   We choose as representatives mucoc, (+)-chirob/(-)-chirob, and 

neoc/neod. In Figure 4, the isomers are listed that result from 

replacing, in each representative, the two substituents OX by two like 

substituents,8 either achiral (symbolized by achiral letter A), or chiral 

(symbolized by chiral letter R, and –R for its enantiomorph9). We are 

interested, of course, in substituents A, R representing monosubstituted 

inositols.

                           (Figure 4)

Figure 4. All inositols 1,2-disubstituted by two like achiral (A) or 

chiral (R) substituents. For the three classes see text.

   In Figure 5 all isomers are listed that are obtained by replacing, in 

each representative, the two substituents OX by two unlike substituents,8 

either both achiral (achiral symbols A and M), or one achiral and one 

chiral, or both chiral (chiral symbols F, G, and –F and  –G9). 

                            (Figure 5)

Figure 5. All inositols 1,2-disubstituted by two unlike achiral (A, M) or 

chiral (F, G) substituents. For the three classes see text.

   Finally, in Table 1, parts A and B, the results from Figures 4 and 5 

are gathered, respectively. Summation of all isomer counts results in a 

total number of 32896 stereoisomers for 3.

                             (Table 1)

1.3.2 Stereoisomers of 4 (1,3-disubstituted central unit) 

   The procedure is analogous to that for 3. In Figure 6 all general 1,3-

disubstituted inositols are listed. They were obtained by substituting OX 

for OH in all distinct 1,3-relations of two OH groups in all inositols, 

as determined by symmetry. We partition these 32 isomers into two classes 

according to the molecule’s symmetry and the topicity of the OX groups.

1) The substituents OX are enantiotopic in a mirror symmetric (Cs) and 

therefore achiral molecule. In this category are scylloc, myog, myol, 

neoe, epik, epil, cisb, mucod.
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2) The substituents OX are diastereotopic in an unsymmetric (C1) and 

therefore chiral molecule. These are myoj/myok, (+)-chirog/(-)-chirog, 

epig/epih, allog/alloh, myoh/myoi, (+)-chiroe/(-)-chiroe, (+)-

chirof/(-)-chirof, neof/neog, epii/epij, mucoe/mucof, alloi/alloj, 

allok/allol.

   Note that there are no 1,3-disubstituted inositols with the OX groups 

related by a C2 axis. Such isomers cannot exist since the central C atom 

bears one OH group which points either up or down.

                             (Figure 6)

Figure 6. All general 1,3-disubstituted inositols.

   Figures 7 and 8 show, for a representative from either class, scylloc 

and myoj/myok, all isomers bearing two like and two unlike substituents, 

respectively. Table 2 summarizes the results of Figures 7 and 8. There 

are 32768 stereoisomers of structure 4.10

                             (Figure 7) 

Figure 7. All inositols 1,3-disubstituted by two like achiral (A) or 

chiral (R) substituents. For the two classes see text.

                             (Figure 8) 

Figure 8. All inositols 1,3-disubstituted by two unlike achiral (A, M) or 

chiral (F, G) substituents. For the two classes see text.

                              (Table 2)

1.3.3 Stereoisomers of 5 (1,4-disubstituted central unit) 

   In Figure 9 all general 1,4-disubstituted inositols are listed. They 

were obtained by substituting OX for OH in all distinct 1,4-relations of 

two OH groups in all inositols, as determined by symmetry. We partition 

these 20 isomers into 4 classes according to the molecule’s symmetry and 

the topicity of the OX groups.

1) The substituents OX are enantiotopic or diastereotopic in a mirror 

symmetric (Cs) or centrosymmetric (Ci) achiral molecule: myom, alloo, 

neoi, epio.

2) The substituents OX are homotopic in a C2 and mirror symmetric (C2v or 

C2h) achiral molecule: cisc, mucog, scyllod, neoh.
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3) The substituents OX are homotopic in a C2 symmetric chiral molecule: 

mucoh/mucoi, (+)-chiroi/(-)-chiroi.

4) The substituents OX are diastereotopic in an unsymmetric (C1) chiral 

molecule: (+)-chiroh/(-)-chiroh, epim/epin, myon/myoo, allom/allon.
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Figure 9. All general 1,4-disubstituted inositols.

   Figures 10 and 11 show, for a representative from each class (alloo, 

mucog, mucoh/mucoi, epim/epin), all isomers bearing two like and two 

unlike substituents, respectively. Table 3 summarizes the results of 

Figures 10 and 11. There are 16512 stereoisomers of structure 5.

                             (Figure 10) 

Figure 10. All inositols 1,4-disubstituted by two like achiral (A) or 

chiral (R) substituents. For the four classes see text.

                             (Figure 11) 

Figure 11. All inositols 1,4-disubstituted by two unlike achiral (A, M) 

or chiral (F, G) substituents. For the four classes see text.

                              (Table 3) 

   The sum of stereoisomer counts for 3, 4, and 5, 82176, equals the 

number given by Dolhaine and Hönig for all stereoisomeric tri-inositols.3

1.3.4 Achiral stereoisomers of triinositols 3, 4, 5

   With respect to the question of how many triinositols are achiral, 

Dolhaine and Hönig remarked “The achiral isomers again have to be 

evaluated individually by carefully examining the symmetrical isomers as 

well as those with d-l – pairs.” These authors in a presumably lengthy 

manual procedure obtained 630 achiral triinositols.3 

   We derived the number of achiral stereoisomers of 3 - 5 by simple 

reasoning. For an achiral triinositol it is necessary that the central 

unit (considered in isolation, a disubstituted inositol) exhibits an 

element of improper rotation symmetry, Sn, in particular a mirror plane 

or a center of inversion. So we extract all such disubstituted central 

units from Figures 3, 6, and 9. We obtain 20 species, of which 4 are 1,2-

disubstituted, of Cs symmetry, bearing two enantiotopic OX groups (cisa, 

mucoc, alloa, allof), 8 are 1,3-disubstituted, of Cs symmetry, bearing 

enantiotopic OX groups (scylloc, myog, myol, neoe, epik, epil, cisb, 

mucod), and 8 are 1,4-disubstituted, of various symmetries, bearing pairs 

of OX groups of various topicity (Cs, enantiotopic OX groups: alloo; Ci, 

enantiotopic OX groups: neoi; Cs, diastereotopic OX groups: myom, epio; 
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C2v, homotopic OX groups: cisc, mucog; C2h, homotopic OX groups: scyllod, 

neoh).

   Of these each species of Cs symmetry bearing enantiotopic OX groups 

(e.g. mucoc or scylloc) is transformed into an achiral triinositol by 

replacing the OX groups with either two identical achiral monoinositols 

(8 possibilities, a1 or a4, Figures 4 and 7), or with two chiral 

enantiomeric monoinositols (2·12 = 24 possibilities, a2, a3, a5, a6), 

resulting in 32 achiral triinositols. So there are 4·32 = 128 achiral 

stereoisomers of 3, and 8·32 = 256 achiral stereoisomers of 4. 

   For an 1,4-disubstituted central unit of Cs or Ci symmetry with 

enantiotopic OX groups (alloo or neoi), exactly the same reasoning leads 

to 32 achiral triinositols (a7, a8, a9, Figure 10), resulting in a total 

of 64 achiral such stereoisomers. 

   From a Cs symmetric 1,4-disubstituted species with diastereotopic OX 

groups (e.g. myom) an achiral triinositol is obtained if both OX groups 

are replaced with (identical or different) achiral monosubstituted 

inositols (8·8 = 64 possibilities, a10, a11, a12). In this case, chiral 

monosubstituted inositols as terminal units are incompatible with the 

required Cs symmetry and therefore cannot lead to further achiral 

triinositols. So there is a total of 128 achiral triinositols with a 

myom or epio central unit.

                           (Formulae a10-a12)

   From a C2h or C2v species with homotopic OX groups (e.g. mucog) an 

achiral triinositol is obtained by replacing the OX groups with two 

achiral (identical or different) monosubstituted inositols (8 and 8·7/2 = 

28 possibilities, a13 and a15, Figures 10 and 11), or by using two chiral 

enantiomeric monosubstituted inositols (12 possibilities, a14). So we 

have 4·48 = 192 achiral triinositols with a scyllod, neoh, cisc, or 

mucog central unit. Altogether these are 384 achiral stereoisomers of 5. 

   From the numbers of achiral 3, 4, and 5 stereoisomers a total of 768 

achiral triinositols is obtained. The remarkable discrepancy between this 

number and the number 630 found by the earlier authors3 is easily 

explained by several erroneous entries in the “achirals” columns in Table 

III in reference 3.
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   In summary, among 9 monoinositols (1) 7 are achiral (78%), among 528 

diinositols (2) 48 are achiral (9.1%), and among 82176 triinositols (3-5) 

768 are achiral (0.93%). This is in accord with the general trend that 

the larger and complexer a system is, the more rarely is symmetry 

observed.

2. Results obtained using the Cauchy-Frobenius lemma

   The same numerical results as above should be obtained using a 

mathematical tool known as the Cauchy-Frobenius lemma (or Burnside’s 

lemma).11 This theorem was used for solving a large variety of 

combinatorial problems, including Pólya’s approach to questions such as 

how many distinct possibilities exist to attach certain numbers of 

substituents of certain types to a given molecular core.12 Our 

stereochemical problem is similar to such a so-called coloration problem: 

We could ask for the number of distinct possibilities to attach exactly 

one substituent (out of several possible types, say methyl and hydrogen) 

to each carbon atom of a benzene ring, or equivalently, to color the 

atoms of the aromatic ring black and blue (for carbon and nitrogen). Or 

we can ask for the number of distinct possibilities to attach a 

substituent in a specific manner (out of several such manners, say up or 

down) to each atom of a six-membered carbocycle. The difference between 

these two problems will become clear below. 

   Before considering the Cauchy-Frobenius lemma itself we have to 

understand an important concept used therein, the concept of 

automorphism. An automorphism is a permutation of atoms such that the 

neigborhood relations are maintained, i.e. a symmetry operation. For 

example, in a planar regular hexagon permutations g1, g2 and g3 (Figure 

12) are automorphisms, while permutation p4 is not an automorphism.

   Here g1 can be interpreted as a 60° rotation about the sixfold 

symmetry axis of the hexagon, while g2 may be interpreted as a 180° 

rotation about the same axis, or as an inversion at the hexagon’s center. 

Permutation g3 is a rotation about an axis passing through the midpoints 

of lines 1-2 and 4-5, or a reflection at a plane perpendicular to the 

hexagon plane and dissecting lines 1-2 and 4-5. An automorphism as such 

is independent of its geometric interpretation. In more complex
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Figure 12. Some permutations of vertices in the planar regular hexagon. 

structures, there may exist automorphisms that correspond to more complex 

symmetry operations not interpretable as simple rigid-body rotations or 

reflections.
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   Each permutation can be represented by a cycle notation, where a cycle 

is a pair of parentheses containing the labels of permuted atoms in the 

order in which they are moved. Thus, 

g1: (123456),          1 → 2, 2 → 3, … , 6 → 1; 

g2: (14)(25)(36),      1 → 4, 4 → 1, 2 → 5, 5 → 2, 3 → 6, 6 → 3; 

g3: (12)(36)(45),      1 → 2, 2 → 1, 3 → 6, 6 → 3, 4 → 5, 5 → 4;

p4: (1)(26)(3)(4)(5),  2 → 6, 6 → 2, all others unchanged.

   The symbol c(g) is used for the number of cycles in the cycle 

representation of g. Thus, c(g1) = 1, c(g2) = 3, c(g3) = 3, c(p4) = 5.

   The null permutation (“do nothing”), called the identity, id, 

(1)(2)(3)(4)(5)(6), is also an automorphism, c(id) = 6.

   The Cauchy-Frobenius lemma reads (we here take it for granted):

N= 1
∣G∣∑g∈G

∣X g∣

where N is the number we are looking for, G is the set of all 

automorphisms of the core structure (its automorphism group), and |Xg| is 

the number of fixed patterns of the automorphism g ∈ G. A fixed pattern 

of automorphism g is a substitution or coloring pattern that is not 

changed by g. Now, what is the number |Xg| of such patterns? Each cycle 

in the representation of g contains those atoms that are interchanged by 

g. For a substitution or coloring pattern not to be changed by g, all 

atoms within a cycle have to bear the same kind of substituent, or have 

to be “of the same color”. This applies to each cycle: Each cycle has to 

be “monochromatic”. So the number of fixed patterns of g is the number of 

possibilities to color c(g) cycles with m colors (in this paper always m 

= 2):

∣X g∣=m
c  g  .

We insert this into the above formula and obtain

N= 1
∣G∣∑g∈G

mc  g 
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   We are now able to tackle the first of the above problems, the 

question for the number of methyl-substituted benzenes. The automorphisms 

of a regular hexagon are the following, easily found manually as rigid-

body rotations:

id, (123456), (135)(246), (14)(25)(36), (153)(264), (165432), 

(12)(36)(45), (14)(23)(56), (16)(25)(34), 

(1)(26)(35)(4), (13)(2)(46)(5), (15)(24)(3)(6).

The five automorphisms listed after the identity are rotations about the 

sixfold axis, next in the list are the 180° rotations about the three 

axes in the hexagon plane dissecting opposite lines (also interpretable 

as reflections), finally followed by 180° rotations about the three axes 

in the hexagon plane passing through opposite vertices (also 

interpretable as reflections). 

   Now using the information on the automorphisms we obtain the number of 

methyl-substituted benzenes, 

      N = (1/12)·(1·26 + 2·21 + 2·22 + 1·23 + 3·23 + 3·24) = 13 .

In fact there are thirteen benzenes bearing H or methyl substituents, as 

shown in Figure 13, upper row.

Figure 13. Parallelism and difference between the vertex coloring for a 

planar hexagon (upper row) and the stereochemical problem in inositols 

(lower row). 
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2.1 Stereoisomeric inositols 1

   Let us now treat the stereochemical problem of attaching up and down 

substituents to a cyclohexane. Replacing each methyl (appearing in the 

former problem) quite formally with an up substituent and each non-methyl 

with a down substituent, we obtain the lower row in Figure 13. However, 

this treatment obviously is not appropriate for this problem, since now 

five species were constructed twice, as indicated by brackets in Figure 

13, where the picture on the right is obtained from the picture on the 

left by turning it upside-down. Thus a decisive difference between the 

two kinds of problems is that a substituent’s up or down property is 

affected by turning the molecule around, while an atom’s black or blue 

property is not. Another problem is that the seventh species in the lower 

row is chiral, so that both it and its enantiomer should be counted.

   As above, we interpret an automorphism g as a rotation or a coupling 

of rotations of the molecule or parts of it. If an atom (or equivalently 

its substituent) is turned upside-down by g, then we assign a minus sign 

to that atom’s label within the cycle representation of g. Conversely, a 

minus sign in a cycle says that an atom’s substituent turns from up to 

down or vice versa. If an automorphism has a fixed pattern at all, for 

each substituent turning from up to down there certainly is an equivalent 

substituent turning from down to up. In other words, counting fixed 

patterns by the Cauchy-Frobenius lemma, we have to consider those 

automorphisms only that have an even number of minus signs in each cycle:

N= 1
∣G∣ ∑

g∈G−

mc  g 

where the summation is over the set G- of automorphisms having an even 

number of minus signs in each cycle (zero is, of course, an even number).

   Thus, the automorphisms of the regular hexagon are to be listed as 

follows  

id, (123456), (135)(246), (14)(25)(36), (153)(264), (165432), 

(-1-2)(-3-6)(-4-5), (-1-4)(-2-3)(-5-6), (-1-6)(-2-5)(-3-4), 

(-1)(-2-6)(-3-5)(-4), (-1-3)(-2)(-4-6)(-5), (-1-5)(-2-4)(-3)(-6).

The last three of these do not meet the criterion and thus are not 

included in the summation for stereoisomers. So for inositol 1 we obtain 

the number of stereoisomers

18



          N = (1/12)·(1·26 + 2·21 + 2·22 + 1·23 + 3·23) = 9 , 

which as we know is the correct result.

   Since we are interested not only in the total number of stereoisomers 

(N), but also in the numbers of achiral stereoisomers (Na) and of pairs 

of enantiomers (Nc), in addition to 

                          N = Na + 2·Nc 

we need a second equation. We will obtain an expression for 

                          N’ = Na + Nc ,  

so that                   Na = 2·N’ – N .    

   We obtain N’ by identifying the individual enantiomers in a pair of 

enantiomers. To this end we construct a set of automorphisms G’ that is 

very similar to G. The elements of G’ are similar to the automorphisms in 

G, with the only difference that in G’ each automorphism of G is coupled 

to (immediately followed by) a reflection at a plane. Thereby all up 

substituents are turned down and vice versa, and correspondingly all plus 

and minus signs in the cycle representations are interchanged. Now we 

work with the union of G and G’, G ∪ G’.13 This union contains twice as 

many automorphisms as G, and in the summation we now include both those 

automorphisms in G that have an even number of minus signs in each cycle, 

and those in G’ that have an even number of minus signs in each cycle. 

The latter exactly correspond to those in G that have an even number of 

plus signs in each cycle. Thus the Cauchy-Frobenius lemma now reads

N '= 1
2∣G∣ ∑

g∈G∪G' −
mc  g  .

In practice, we only have to test each automorphism g ∈ G for an even 

number of minus signs in each cycle, and for an even number of plus signs 

in each cycle. For either criterion fulfilled, g is included once.

   In the case of the regular hexagon, the 2nd, 4th, 6th, as well as the 

last six automorphisms have an even number of plus signs in each cycle, 

thus

            N’ = (1/24)·(1·26 + 2·21 + 2·22 + 1·23 + 3·23 

                              + 2·21 + 1·23 + 3·23 + 3·24)  = 8 . 

Finally, the number of achiral stereoisomers is, as we expected,

Na = 2·8 – 9 = 7 .
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Figure 14. Atom numbering used in the text for the cores of mono-, di-, 

and triinositols.

2.2 Stereoisomeric diinositols 2

    Automorphisms that are rotations of the core of diinositol 2 or of 

parts of it (torsions) are found manually. The complete list is (see 

Figure 14 for atom labeling)

g1: id,                                             ←

g2: (1 7)(2 8)(3 9)(4 10)(5 11)(6 12), ← ⇐

g3: (-1)(-2 -6)(-3 -5)(-4)(-10)(-9 -11)(-8 –12)(-7), ⇐

g4: (-1 -7)(-2 –12)(-3 –11)(-4 –10)(-5 -9)(-6 –8), ← ⇐

g5: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12),

g6: (1)(2)(3)(4)(5)(6)(-7)(-8 –12)(-9 –11)(-10),

g7: (-1 7)(-2 12 –6 8)(-3 11 –5 9)(-4 10),

g8: (1 –7)(2 –8 6 –12)(3 –9 5 –11)(4 –10).

Here g2 through g4 are 180° solid-body rotations, g5 and g6 are 180° 

torsions of one or the other half of the molecule, and both g7 and g8 are 

a 180° torsion coupled to a 180° rotation. 
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   The automorphisms marked with a simple arrow fulfill the criterion for 

minus signs, so we obtain for the stereoisomers of 2 

                N = (1/8)·(212 + 26 + 26) = 528.

   The automorphisms marked with a double arrow fulfill the criterion for 

plus signs, so we obtain 

N’ = (1/16)·(212 + 26 + 26   + 26 + 28 + 26) = 288 .

The number of achiral stereoisomers is

Na = 2·288 – 528 = 48 .

2.3 Stereoisomeric triinositols 3 - 5

   The automorphisms of the core of 3 are (see Figure 14 for atom 

labeling)

g1: id,                                ←

g2: (-1 –13)(-2 –14)(-3 –15)(-4 –16)(-5 –17)(-6 –18)(–7 –12)(-8 –11)(-9 –

10),                                           ← ⇐

g3: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18),

g4: (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-16),

g5: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-

16)

g6: (1 -13)(2 -18 6 -14)(3 -17 5 -15)(4 -16)(-7 –12)(-8 –11)(-9 –10),

g7: (-1 13)(-2 14 -6 18)(-3 15 -5 17)(-4 16)(-7 –12)(-8 –11)(-9 –10),

g8: (1 13)(2 18)(3 17)(4 16)(5 15)(6 14)(-7 –12)(-8 –11)(-9 –10). ← ⇐

Here g2 is a solid-body 180° rotation, g3 and g4 are torsions of one or 

the other terminal hexagon, g5 is a torsion of both terminal hexagons, g6 

and g7 are torsions of one terminal hexagon coupled to a solid-body 180° 

rotation, and g8 is a torsion of both terminal hexagons coupled to a 180° 

rotation. For the number of all stereoisomers of 3 the automorphisms 

marked with a simple arrow are included in the summation,

                   N = (1/8)·(218 + 29 + 29) = 32896 .

For N’ the automorphisms marked with a double arrow are included 

additionally

           N’ = (1/16)·(218 + 29 + 29   + 29 + 29) = 16512 ,

and        Na = 2·16512 - 32896                  = 128 .

   The automorphisms of the core of 4 are

g1: id,                                                  ←
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g2: (-1 –13)(-2 –14)(-3 –15)(-4 –16)(-5 –17)(-6 –18)(-7)(-8 –12)(-9 –

11)(-10), ⇐

g3: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18),

g4: (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-16),

g5: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-

16),

g6: (1 -13)(2 -18 6 -14)(3 -17 5 -15)(4 -16)(-7)(-8 –12)(-9 –11)(-10),

g7: (-1 13)(-2 14 -6 18)(-3 15 -5 17)(-4 16)(-7)(-8 –12)(-9 –11)(-10),

g8: (1 13)(2 18)(3 17)(4 16)(5 15)(6 14)(-7)(-8 –12)(-9 –11)(-10). ⇐

These automorphisms are found and interpreted exactly as in the case of 

3. Here the identity only has an even number of minus signs in each 

cycle, whereas there are two automorphisms with an even number of plus 

signs in each cycle, so that the numbers of stereoisomers of 4 are 

              N = (1/ 8)· 218              = 32768 , 

              N’ = (1/16)·(218   + 210 + 210) = 16512 ,

              Na = 2·16512 - 32768          = 256 .

   The automorphisms of the core of 5 are

g1: id,                                      ←

g2: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18),

g3: (1)(2)(3)(4)(5)(6)(-7)(-8 –12)(-9 –11)(-10)(13)(14)(15)(16)(17)(18),

g4: (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-16),

g5: (-1)(-2 –6)(-3 –5)(-4)(7)(8)(9)(10)(11)(12)(-13)(-14 –18)(-15 –17)(-

16),

g6: (-1)(-2 –6)(-3 –5)(-4)(-7)(-8 –12)(-9 –11)(-10)(13)(14)(15)(16)(17) 

(18),

g7: (1)(2)(3)(4)(5)(6)(-7)(-8 –12)(-9 –11)(-10)(-13)(-14 –18)(-15 –17)(-

16),

g8: (-1)(-2 –6)(-3 –5)(-4)(-7)(-8 –12)(-9 –11)(-10)(-13)(-14 –18)(-15 –

17)(-16),                                                              ⇐

g9: (-1 –13)(-2 –14)(-3 –15)(-4 –16)(-5 –17)(-6 –18)(-7 –10)(-8 –9)(-11 –

12), ← ⇐

g10: (1 -13)(2 -18 6 -14)(3 -17 5 -15)(4 -16)(-7 –10)(-8 –9)(-11 –12),

g11: (-1 13)(-2 14 -6 18)(-3 15 -5 17)(-4 16)(-7 –10)(-8 –9)(-11 –12),

g12: (1 13)(2 18)(3 17)(4 16)(5 15)(6 14)(-7 –10)(-8 –9)(-11 –12), ← ⇐

g13: (-1 –13)(-2 –14)(-3 –15)(-4 –16)(-5 –17)(-6 –18)(7 10)(8 11)

(9 12), ← ⇐
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g14: (1 -13)(2 -18 6 -14)(3 -17 5 -15)(4 -16)(7 10)(8 11)(9 12),

g15: (-1 13)(-2 14 -6 18)(-3 15 -5 17)(-4 16)(7 10)(8 11)(9 12),

g16: (1 13)(2 18)(3 17)(4 16)(5 15)(6 14)(7 10)(8 11)(9 12). ← ⇐

Here g8, g9, g16 are 180° solid-body rotations about the three principal 

axes, g2 through g7 are 180° torsions of various parts of the molecule, 

g10 through g15 are torsions coupled to a rotation. For 5 the numbers of 

stereoisomers are

              N = (1/16)·(218 + 4·29)       = 16512 ,

              N’ = (1/32)·(218 + 4·29   + 4·29 + 212) = 8448 ,

              Na = 2·8448 - 16512       = 384 . 

3. Results obtained using MOLGEN 3.5

   In contrast to using the Cauchy-Frobenius lemma, treatment of 

stereochemistry in MOLGEN 3.5 crucially depends on the notion of 

stereocenter, well-known to every chemist. MOLGEN primarily is a program 

for constructing all constitutional isomers of a given molecular 

formula.4 So it works on the topological, not on the geometrical level. 

However, stereocenters and stereogenic double bonds in a given 

constitutional isomer can be identified on the topological level.14 

Therefore T. Wieland implemented in MOLGEN 3.5 a module that constructs 

and displays all stereoisomers for a given structure, as far as no 

stereogenic features beyond stereocenters and double bonds are involved. 

The method was described in detail elsewhere,4b,15 here it may suffice to 

state that it is based on group-theoretical methods that take into 

account both the distribution of ligands around a stereocenter and the 

overall symmetry of the molecule (the configuration symmetry group12,14). 

   For 1, its mono-, 1,2-, 1,3-, and 1,4-disubstituted derivatives, and 

for 2 – 5 MOLGEN 3.5 produces the same stereoisomer counts as were 

obtained above manually or using the Cauchy-Frobenius lemma. On the other 

hand, a differentiation between chiral and achiral stereoisomers is not 

implemented in this version of MOLGEN.
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Figure 4. All inositols 1,2-disubstituted by two like achiral (A) or 

chiral (R) substituents. For the three classes see text.
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Figure 5(Part 1). All inositols 1,2-disubstituted by two unlike achiral 

(A, M) or chiral (F, G) substituents. For the three classes see text.
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Figure 5(Part 2). All inositols 1,2-disubstituted by two unlike achiral 

(A, M) or chiral (F, G) substituents. For the three classes see text.
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Figure 6. All general 1,3-disubstituted inositols.
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Figure 8. All inositols 1,3-disubstituted by two unlike achiral (A, M) or 

chiral (F, G) substituents. For the two classes see text.
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Figure 10. All inositols 1,4-disubstituted by two like achiral (A) or 

chiral (R) substituents. For the four classes see text.
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Figure 11(Part1). All inositols 1,4-disubstituted by two unlike achiral 

(A, M) or chiral (F, G) substituents. For the four classes see text.
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Figure 11(Part2). All inositols 1,4-disubstituted by two unlike achiral 

(A, M) or chiral (F, G) substituents. For the four classes see text.
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Table 1. Stereoisomer numbers for tri-inositols with 1,2-disubstituted 

central moiety (3).

     Central     terminal          #Isomers per   #Combinationsb    total

     Moiety      moieties          combinationa                  #Isomers

A. Two like terminal moieties

     Class 1     achiral                  1           4 x  8           32

                  chiral                  4           4 x 12          192

     Class 2     achiral                  2          12 x  8          192

                  chiral                  8          12 x 12         1152

     Class 3     achiral                  2           4 x  8           64

                  chiral                  6           4 x 12          288

B. Two unlike terminal moieties

     Class 1     both achiral             2           4 x 28          224

                 one chiral               4           4 x 96         1536

                 both chiral              8           4 x 66         2112

     Class 2     both achiral             4          12 x 28         1344

                 one chiral               8          12 x 96         9216

                 both chiral             16          12 x 66        12672

     Class 3     both achiral             2           4 x 28          224

                 one chiral               4           4 x 96         1536

                 both chiral              8           4 x 66         2112

                                                            total   32896

afrom Figures 4, 5.
bthe first figure is the number of individual 1,2-disubstituted inositols 

or pairs of enantiomers in a class; the second figure is the number of 

distinct achiral monosubstituted inositols or distinct pairs of 

enantiomeric monosubstituted inositols (Part A), or the number of 

combinations of two different achiral monosubstituted inositols, or the 

number of combinations of an achiral and a chiral monosubstituted 

inositol, or the number of combinations of two different chiral 

monosubstituted inositols (Part B).
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Table 2. Stereoisomer numbers for tri-inositols with 1,3-disubstituted 

central moiety (4).

     Central     terminal          #Isomers per   #Combinationsb    total

     Moiety      moieties           combinationa                 #Isomers

A. Two like terminal moieties

     Class 1     achiral                  1           8 x  8           64

                  chiral                  4           8 x 12          384

     Class 2     achiral                  2          12 x  8          192

                  chiral                  8          12 x 12         1152

B. Two unlike terminal moieties

     Class 1     both achiral             2           8 x 28          448

                 one chiral               4           8 x 96         3072

                 both chiral              8           8 x 66         4224

     Class 2     both achiral             4          12 x 28         1344

                 one chiral               8          12 x 96         9216

                 both chiral             16          12 x 66        12672

                                                            total   32768

afrom Figures 7, 8.
bthe first figure is the number of individual 1,3-disubstituted inositols 

or pairs of enantiomers in a class; the second figure is the number of 

distinct achiral monosubstituted inositols or distinct pairs of 

enantiomeric monosubstituted inositols (Part A), or the number of 

combinations of two different achiral monosubstituted inositols, or the 

number of combinations of an achiral and a chiral monosubstituted 

inositol, or the number of combinations of two different chiral 

monosubstituted inositols (Part B).
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Table 3. Stereoisomer numbers for tri-inositols with 1,4-disubstituted 

central moiety (5).

     Central     terminal          #Isomers per   #Combinationsb    total

     Moiety      moieties           combinationa                 #Isomers

A. Two like terminal moieties

     Class 1     achiral                  1           4 x  8           32

                  chiral                  4           4 x 12          192

     Class 2     achiral                  1           4 x  8           32

                  chiral                  3           4 x 12          144

     Class 3     achiral                  2           2 x  8           32

                  chiral                  6           2 x 12          144

     Class 4     achiral                  2           4 x  8           64

                  chiral                  8           4 x 12          384

B. Two unlike terminal moieties

     Class 1     both achiral             2           4 x 28          224

                 one chiral               4           4 x 96         1536

                 both chiral              8           4 x 66         2112

     Class 2     both achiral             1           4 x 28          112

                 one chiral               2           4 x 96          768

                 both chiral              4           4 x 66         1056

     Class 3     both achiral             2           2 x 28          112

                 one chiral               4           2 x 96          768

                 both chiral              8           2 x 66         1056

     Class 4     both achiral             4           4 x 28          448

                 one chiral               8           4 x 96         3072

                 both chiral             16           4 x 66         4224

                                                            total   16512
afrom Figures 10, 11.
bthe first figure is the number of individual 1,4-disubstituted inositols 

or pairs of enantiomers in a class; the second figure is the number of 

distinct achiral monosubstituted inositols or distinct pairs of 

enantiomeric monosubstituted inositols (Part A), or the number of 

combinations of two different achiral monosubstituted inositols, or the 

number of combinations of an achiral and a chiral monosubstituted 
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inositol, or the number of combinations of two different chiral 

monosubstituted inositols (Part B).
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