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Introductory remarks
» Joint work with
Jonathan Mannaert and Alfred Wassermann.
> Despite title

“The degree of functions
in the Johnson and g-Johnson schemes”

No association schemes in this talk!
» Motivation (next slide) is geometric.

Indeed: Topic close to design theory.
Studied objects are “dual designs”.



Cameron-Liebler line classes

» Cameron, Liebler 1982:
“Special” set L of lines in PG(3, g).
» Defined by the following equivalent properties:
» Algebraic property:
xc € R-row space of the point-line incidence matrix.
» Geometric property:
Constant intersection with any line spread of PG(3, q).

In literature: Various directions of generalization
» Ambient space PG(n, q).
» lines — k-spaces.
> Allow g = 1 (set case).
» points — spaces of degree t.

Goal
Coherent theory of all above generalizations.



Subset and subspace lattices
> Fix g = 1 (set case) or prime power g > 2 (g-analog case).
» Fix n non-negative integer.

set of size n

> Let Vbea , ,
[F4-vector space of dimension n

subsets of V

> Let £(V) be the lattice of all
[F4-subspaces of V

#U

dim(U)

> Let [[] = {U e L£(V) | rk(U) = k}.
Set case: #[}] = () = [/], Binomial coefficient.
g-analog case: # /] = k] ; Gaussian coefficient.

> For U e L(V) let rk(U) = {

» Always: Use algebraic dimension!
(Except in established symbols like PG(n, q).



Algebraic property
» Algebraic property of Cameron-Liebler line classes:
xc € R-row space of the point-line incidence matrix.

» Straightforward generalization:

> Let W incidence matrix of t-spaces vs. k-spaces.
» Let V; be the R-row space of W().
> Function f : [}] — R has algebraic property A; if f € V;.

Baby example
> letg=1,V=1{1,2,3,4,56}(son=6), k=3,t=2.
> Let F = {{1,2,3},{4,5,6}} C [Y].
» Claim: Set F has algebraic property Ao,
i. e. its characteristic function x = : [¥] — R has prop. A,.



Baby example (cont.)
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Baby example (cont.)
» F={{1,2,3},{4,5,6}}.

» We found: F has property Az
and the vector of 2-weights of F is

R R o B S )
6—
AN
» Visualization. E/ Q2
A Sk

> Exercise.
JF does not have A;.



Geometric property
» Geometric property of Cameron-Liebler line classes:
Constant intersection with any line spread of PG(3, g)
» Generalization? — Not so clear.

» Observation:
line spread of PG(3, q)

= setof lines in PG(3, g) covering every point exactly once
= simple 1-(4,2,1), subspace design
> -~ use designs!

Definition: Simple design

Aset D C [/] is called a simple t-(n, k, \), design,

if every T € [V] is contained in exactly A elements of D.
» set case g = 1: combinatorial design

» g-analog case g > 2: subspace design



Example

> Letg—1,V —{1,2,3,4,56)} (s0n—6), k=3, t =2,
> Let
D:{{17273}7{17274}7{17376}7{17475}7{17576}7

{2,4,6},{2,5,6},{2,3,5},{3,4,5},{3,4,6}} C [g

» Check design condition for t = 2.
» T = {1,2} is contained in blocks {1,2,3} and {1,2,4}.

» T = {1,3} is contained in blocks {1,2,3} and {1,3,6}.
>

> T - {5, 6} is contained in blocks {1,5,6} and {2,5, 6}.
» — Dis simple 2-(6,3,2) design.

Example (Trivial simple designs)
> (is empty t-(v, k, 0)4 design.
> [}] is complete t-(v, k, Amax)q design

where \ma. = [0



Definition: Simple design (repeated)

Aset D C [/] is called a simple t-(n, k, \), design,

if every T € [V] is contained in exactly A elements of D.
» set case g = 1: combinatorial design

» g-analog case g > 2: subspace design

Reformulation in characteristic functions

» Let x+ be characteristic function

of pencil {K € [/] | T C K}.
> Forf,g:[}/] =R

fix standard inner product (f, g) = ZKe[{] f(K)9(K).
> Note that #(F N G) = (xr, xg) for F,G C [/].
» Dis simple t-(n, k, \), design

= (x7,xp) = Aforall T e [Y].

» ~~ generalization to real designs.



Generalized definition: Real design
A function f : [/] — Ris called a real t-(n, k, \), design,
if (xr,f) =Xforall T e [Y].
» f null design or trade if A = 0.
» f signed design if im(f) C Z.
» f design or possibly non-simple design if im(f) C N.
(Idea: simple design, but with possibly repeated blocks)
» f (characteristic function of) simple design
<= im(f) C{0,1} <= f Boolean.
Further reformulation

» Observation:
Functions x 1 (interpreted as vectors)
are the rows of incidence matrix W),

» Therefore:

f real t-(n, k, \)q design <= WIf = \1.
» In particular:

f real t-(n, k,0)q null design <= W(Kf =0

o a of +1N



Geometric property, basic version
» For A € R let U, :=set of real t-(n, k, \)4 design.
> Just seen: Uy = ker W),
» Set of functions with A; was V; = rowsp W),

= Vi=U;y

What did we get?
» Established a connection to designs.
» Concept known as Delsarte’s design orthogonality.

» Compared to prototype
“constant intersection with all spreads”:

Want similar property for A # 0!



Geometric property, version |l
> Fix A € R.
» Scaled complete design ﬁ -1isreal t-(n, k, \)q design.
> As solution of linear equation system W f = \1:
U, = ﬁ -1 + ker W),
=Up=V}-

> —

U= {s: m LR (f,0) = 2

)\max

H#fforall f e v,} and

4
V,:{f: [k} — R | (f,9) = )\)\ -#fforallo e UA} Vers. Il

max

(with #f = EKE[Z] f(K) = (f,1), motivated by #F = #xr)

» Still room for improvement:
» Not happy about “For all real ... designs”.
~ enough to look at basis of U,.
» Allow mixed values of \.



Example
> q=1,n=6,k=3,1=2~ \nax = [5 5] =4
» Baby example: F = {{1,2,3},{4,5,6}}, seen: xyr € Va.
» Geometric property —- For each 2-(6, 3, 2) design:

2

. =—.2=1.
. #XF 1

(xF,0) =

» — Each simple 2-(6, 3, 2) design D
contains exactly one of the blocks {1,2,3} and {4,5,6}.
~+ D is anti-complementary.

vy

Can also be shown using intersection numbers.



Geometric property, toolbox version
» U, :=setofallreal t-(v, k, \)q designs
with arbitrary value A € R.
» By scaled complete designs: U, = Uy + (1)r.

» Lemma (Toolbox version of geometric property).
Let A C U,. Then

As
)\max

— (AU{1})z = U,

Vt:{f:[x]—ﬂl%](f,&: .#fforanaeA}

Proof. Dimension argument. Use that W(*) has full rank.
(Set case: Gottlieb 1966, g-analog case: Kantor 1972)

> Question: Suitable sets A?



Lemma
Let A be

(a) the set of all signed t-(n, k,0)q null designs or
(b) the set of all possibly non-simple t-(n, k, \)q designs
Then U, = (AU {1})r.
Proof.
Part (a).
» entries of W) are in Q.
> — Uy = ker W) has rational basis.
» Multiply by common denominators ~ integral basis B.
» — BC Aand (BU{1})r = U..
Part (b).
» Start with B.

» Add suitable integral multiples of 1
~» non-negative integral set B'.

> — B CAand (B U{1})g=U..



We arrive at:

Theorem
Letf: [}] — R. The following are equivalent.
(i) Algebraic property: f € V4.
Geometric properties:
(i) There is a constant ¢ € R such that (f, ) = Asc
for all real t-(n, k, \s)q designs é§ with A\s € R.
(i) (f,0) =0
for all signed t-(n, k,0)q null designs 4 : [}/] — Z.
(iv) There is a constant ¢ € R such that (f,6) = A\sC
for all possibly non-simple t-(n, k, \s)q designs § : [}/] — N.

The constant in properties (ii) and (iv) necessarily equals
1
C = >\ma>< ’ #f'




Geometric property: Discussion

» Tempting: Is the following a suitable geometric property?
“There is a constant ¢ € R such that (f,§) = Ac for all
simple t-(n, k, x)q designs”

» By toolbox version: If and only if
({simple t-(n, k, x)q designs})r = U, (richness cond)

» Unfortunately: Not always true.
Counterexample. g =1,n=10, k=5, t = 4.
By integraliy conditions: All simple 4-(10,5, *)¢ are trivial.
= dim({simple 4-(10, 5, x); designs})g = 1, too small!

» Research problem. (probably hard!)

Classify the parameters (g, n, k, t) where the richness
condition holds.



The Degree
> Fixk €{0,...,n}and f: [[] = R.
» Lemma.
{1} =W ViC...C V=V.
Proof. W WUK) ~ WK for0 < i< j < k.

» Definition.
Degree deg(f) := smallest t such that f € V;.

Example

» Functions f of degree 0
are the scalar functions f = A1 with A € R.
» Baby example F = {{1,2,3},{4,5,6}}.
InV={1,2,3,4,5,6} we have deg(F) = deg(xr) = 2.
» Seen: yr € Vo.
> Exercise: xr ¢ Vi.
> InV ={1,23,4,56,7} we have deg(F) = 3.
— Ambient space V matters!



The Degree (cont.)
» Remember. Rows of W(%) are the t-pencils x7.
» ~~ Alternative characterization of degree.

deg(f) is smallest ¢
such that f is a linear combination of {-pencils x 7.

The (unique) coefficients are called t-weights wts(T) of f:

f=> wt(T)xr
Te[y]
Lemma
(a) deg(Af) < deg(f) with equality iff X # 0.
(b) deg(f + g) < max(deg(f),deg(9)).
(c) deg(fg) < deg(f) + deg(g).

Proof.
Parts (a), (b): easy. Part (c): Use weights & deg x7 < rk T.

O



Dualization
» Fix anti-isomorphism _L of the lattice £L( V).

» Set case: Set complement.
» g-analog case: Perp wrt non-degenerate bilinear form.

» Induces dual map of f: [}] — R:

- [nyk} R, U~ f(UY)

» Effect of dualization on the degree?



Theorem
(a) degf+ = degf.
(b) Foric{0,..., degf}, the i-weight distribution of f+ is

wtl) (9) = 3 v(n— k, i, k(I 0 J)) wtl (1)

le[7]
where
5z,k ifi =K,
K.i.z) = . k=i
v(k,i,2) (_1)/—2 — '1 — [klz] 17 otherw.
q=D=2+(%7) 57 [7]
Proof.

» Enough to look at pencils f = x.

» Set up linear equation system for the weights of -+,
assuming that wt(/) only depends on rk(/ N J).

» Equation system matrix is triangular with non-zero diagonal
= invertible = Part (a).

» Apply negation formula & g-Vandermonde formula for
Gaussian coefficients ~~ compute solution ~ Part (b).



Change of ambient space

Two elementary ways to shrink the ambient space V.
» VH  (Hel,",] hyperplane)
>» Vo V/P (Pe Y] point)

Implication on the degree?

We start with V — V/P.



Theorem
Llet1 <k<nandP e [‘1/] Then

f(K/P) ifPCK,

RE LRI :
o : RIS 5 rI, CD(f).Kb—){O P K

is an injective R-linear map with

im(®) ={g € R[] | suppg C [Z] lp} and

0 _ iff =0,
degV(D(f) — main case
min(degy,p(f) +1,n— k) otherwise.

Proof.
> Straightforward, except “degy ®(f) > degy p(f) +17.
» Lemma. In main case
Forallgeim®: P£LT — wty(T)=0.

Proof. Incidence matrices of certain attenuated geometries

are of full rank. (Guo, Li, Wang, 2014.)

=



Theorem
Lleti1<n—k<nandH e [nﬂ]. Then

K C N
W:R[g]%R[Z]j W(f): K f(K) I‘fK_ ,

0 ifK¢H
is an injective R-linear map with

im(V)={g € R[] |suppg C [{]} and

degy () {° iff =0,
e =
sV min(degy,(f) + 1, k) otherwise.

Proof.
Follows from the previous theorem by dualization.



Example (Basic sets)
> Start with “complete set” ["/] of degree 0.

N
&
R

» j-fold application of ® and j-fold application of W
%
~ basic set F(I,J) = {Ke [k] |ICKC J}.

» By theorems: deg F(/,J) = i + j (in the main case).



Example (Basic sets)
> Start with “complete set” ["/] of degree 0.

VY,
J )
—~—~->
io}
{o}

» j-fold application of ® and j-fold application of W
%
~ basic set F(I,J) = {Ke [k] |ICKC J}.

» By theorems: deg F(/,J) = i + j (in the main case).



Example (Basic sets (cont.))

» Basic sets F(/,J) include

pencils (j = 0) and dual pencils (i = 0).

In particular deg x; = k (in the main case).
» Geometric property of F(/,J)

—

design property of i-fold derived and j-fold residual design.



Sets and Boolean functions
» Of particular interest: Sets F C [/] of low degree.

» Via characteristic functions:
Sets correspond to Boolean functions [,‘f] — {0,1}.

Boolean degree 1 functions

> Set case:

Filmus, lhringer 2019:
Only basic functions.
— only pencils and dual pencils (since t = 1).

» g-analog case:
Boolean degree 1 function = Cameron-Liebler set of
(k — 1)-spaces in PG(n—1,q).
Non-basic examples do exist.
Classification: Hard research problem.



Computer classification

Goal.
For g = 1 and small n, k, classify all sets F of degree t = 2.

Strategy.
» Use “basic” geometric property:

degxr <t < xr € ker wW(tk),

~ Want to find all {0, 1}-vectors in ker W),

» Find integral basis of ker W),

> either: computationally

» or: Use literature like
Khosrovshahi, Ajoodani-Namini (1990):
A new basis for trades

» ~~ system of linear Diophantine equations.
Solve using SOLVEDIOPHANT (A. Wassermann)

> Filter out isomorphic copies.
(action of symmetric group &)

v



Results

n Kk size distribution >

6 3 24%°8%10%12%14°16%18 42
7 3 5210°15''20"'25530? 38
8 3 6811121415216 17 18 20221 22 23 24%25 2627 282... 50
9 3 714%21°28%35°42'149556%63°70%77 45
10 3 81620 24228%32%36%40244248252%56°60°64°68%72° . . . 57
8 4 10 15%20%30°35240°50°55%60 26
9 4 21235%56*70%913105° 18
10 4 28425627084 98%112%126 140 154?168 182 18
11 4 3678842120 126 162°1683204 210 2462252 294 18
12 4 45120%135 165 210 240°255°285 330 360 3752450 18

blue = sizes of basic sets

Goal. Explain divisibility pattern of the sizes!



Theorem (Divisibility theorem)
Letf: [[] — 7Z be a function of degree t. Then

ged ([120], [i]s - [Ri]) | #f.

=:a

Proof.
> Algebraic property = 3x : [V] — Rwith xT W) = T (1)
» Complete design: W) .1 = Ay - 1 2)

» Design theory:
parameters t-(n, k, Amin)q With Amin = *mT are admissible.
> = T signed t-(n, k, Amin)q design 6 = W5 = A\ -1 (3)
» Set case: Wilson, “The necessary conditions for t-designs

are sufficient for something” (1973).
» g-analog case: Ray-Chaudhuri, Singhi (1989).

» Left multiplication of (2) and (3) by x ', using (1)
= #f=Amax - #X and (f,0) = Amin - #X
> — #f=a- (f ) cZ.
~—

€L



Compare with the results
g=1,t=2 = a=gad((}). ("1 (:3))-

n Kk size distribution a
6 3 24%°8%10%12814°16%18 2
7 3 5210815''20"125530? 5
8 3 6811121415%16 17 18 20221 2223 24325 26*27282... 1
9 3 714%21528%35%42'149%56463%70277 7
10 3 81620 24228%32236°40%44248252256°60°64°682722 . . . 4
8 4 10 15%20°30°35240°50°55°60 5
9 4 21235°56*70*9131052 7
10 4 28425627084 983112%126 140 1542168 182 14
11 4 3678842120 126 162°168°204 210 2462252 294 6
12 4 45120%135 165 210 240°255°285 330 360 3752450 15

Perfect fit!



Parameter of Cameron-Liebler sets of k-spaces

» Consider g-analog case q > 2.
> For sets F of degree t = 1 define

parameter x = #F/[I~1] € Q
» Corollary of divisibility theorem:

g1

qeeani) — 1 X € 2,

restricting denominator of fraction x in canceled form.

Example

» k|n = xcZ.

Already known: Blokhuis, De Boeck, D’haeseleer (2019).
» nand k coprime — (1+qg+...+¢< ") -xcZ.
» k=4,n=2 (mod 4) = (1+¢q%)-xcZ.



The paired construction

» Construction for the set case g = 1 only.
> |dea. Disjoint union of two “opposite” basic sets.
» Let /,J C V be disjoint, not both empty. Define

P(1,J) = F(I,J5 w F(J, IF)
» Clear:
deg P(1,J) < min(#/ + #J,k) (trivial bound)

> Will see: There are cases with a strict “<”!



Example (1)
> V={1,...,6},k=3,1=0,J={4,5,6},
P(0,{4,5,6})
= F(0,{1,2,3}) W F({4,5,6},{1,2,3,4,5,6})
= {{1,2,3},{4,5,6}}

» This is the Baby example!
» Already seen: deg P(0,{1,2,3}) =2

4
SN
5 L I
\H 3/ &

» ... beating the trivial bound “< 3”!



Example (2)
> V={1,..., 7} k=38,1={1},J=1{6,7}.
P({1},{6,7})
F({1},{1,2,3,4,5})w F({6,7},{2,3,4,5,6,7})
= {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},
{2,6,7},{3,6, 7},{4,6,7},{5,6,7}}

> Vizualization of 2-weights:

L
=y
5 T

> — deg(P({1},{6,7}) = 2.
» ... again beating the trivial bound “< 3"



Theorem
Letq=1,1,J C Vdisjoint, i =#I,j=#J, k < J,
I<k<n—i,j<k<n-—j
In the cases
(@) i+j<kandi+jodd;
(b) i+j >k and k odd and n = 2k
we have
degP(I,J) < min(i+j, k) — 1.

Proof (Idea).

Part (a): Write xp(;5) @s an integer linear combination
of basic functions of degree /i +j — 1.

Part (b):
> Use P(X,Y)=P(XwW{x},Y)WP(X,Yu{x})
(where X, Y, {x} are pairwise disjoint)
» Moving elements from Jto / ~ deg P(/,J) < deg P(K,J")
> P(K,J) =P(K,0) = Back in Case (a).



Theorem

Letg=1,1,J C V disjoint, i = #1,j = #J, k < J,
i<k<n—ij<k<n-—j.

In the cases

(@) i+j<kandi+jodd;

(b) i+j > k and k odd and n = 2k

we have
deg P(I,J) < min(i +j,k) — 1.

Work in progress / Conjecture
Statement of Theorem is best possible.
» In fact always equality
degP(I,J) = min(i + j, k) — 1.

» In all cases not covered by (a) and (b),
the trivial bound is sharp:

deg P(1,J) = min(i + j, k).



Small sets of degree t
» Natural question.
Smallest size my(n, k, t) of a non-empty set of degree < t?
» From deg x7t = t we get

mg(n, k, t) < [:: ;] (*)

» Bound (x) is always sharp for t = 1.

» Set case: Filmus, Ihringer (2019).
» g-analog case: Blokhuis, De Boeck, D’haeseleer (2019).

> Forg=1,n=2k, t>2even,i=0andj=1t+1,
the paired construction beats bound (x)!
Corollary
Lett€{0,...,k—1} be even. Then

my (2K, k, 1) <2 <2k_kt_1).



Open problems
» Many!

» For fixed (g, n, k, t), characterize the sizes of degree t sets.

» Smallest,

» second smallest,
> gaps,

> etc.

» Further investigate and exploit relationship
degree t functions <— t-designs.
Which results can be translated?

» Maybe most important:
Better name for the studied objects.

» “dual designs”? — ambiguous.
» Something involving “Cameron-Liebler”?
> other ideas?



Thank you!

T~
Sor Kol

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/
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