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Goal of this talk
I Classification of all binary MRD-codes up to size 4× 4.
I The full picture:

I No restriction to quadratic sizes.
I No restriction to linear codes.

I Summary of already known cases.
In part using interconnections to
I translation planes
I (partial) spreads

I Settle the remaining cases
by theoretical insight combined with (heavy) computation.



Outline

Introduction and preliminaries

The classification



Definitions
I Rank distance on Fm×n

q is d(A,B) = rk(A− B).
I Without restriction: m ≤ n.
I (Fm×n

q ,d) is a metric space.
I C ⊆ Fm×n

q is a rank-metric code.
I C Fq-subspace of Fm×n

q =⇒ C linear.
I minimum distance

d(C) = min{d(A,B) | A,B ∈ C,A 6= B} ≤ m.
I Singleton bound: #C ≤ qn(m−d+1).
I Singleton bound sharp =⇒ C MRD-code.

(MRD = maximum rank distance)



MRD-Codes
I Singleton bound sharp =⇒ C MRD-code.
I For distance d = 1, full space Fm×n

q is trivial MRD-code.
 will assume d ≥ 2 (so 2 ≤ d ≤ m ≤ n).

I MRD-codes do always exist!
I Gabidulin codes (Delsarte 1978, Gabidulin 1985,

Roth 1991)
I generalized Gabidulin codes (Kshevetskiy, Gabidulin 2005)
I generalized twisted Gabidulin codes (Sheekey 2016)

I  Research problem: Classification of all MRD-codes.
I Needed: A notion of equivalence.



Equivalence
I Definition (state what we want!)

C,C′ ⊆ Fm×n
q are equivalent if

∃ isometry φ of (Fm×n
q ,d) with φ(C) = C′.

Automorphism group

Aut(C) = {φ isometry of (Fm×n
q ,d) | φ(C) = C}

I Natural question:

What is the isometry group Aut(Fm×n
q ,d)

of the metric space (Fm×n
q ,d),

i.e. set of all distance-preserving bijections?



Isometry group of (Fm×n
q ,d)

I Theorem (Hua 1951 (q even), Wan 1996 (q odd))

For m ≥ 2 and n ≥ 2, Aut(Fm×n
q ,d) consists of

A 7→ Sσ(A)T + R

and for m = n (square case) additionally

A 7→ Sσ(A>)T + R

where S ∈ GL(m,q), T ∈ GL(n,q), R ∈ Fm×n
q , σ ∈ Aut(Fq).

I Automorphisms of the first type will be called inner.
I Automorphisms with σ = id will be called linear.

Note: In our case q = 2 we have Aut(F2) = {id},
so all automorphisms are linear.



Subspace lattice
I Let V be a v -dimensional Fq vector space.
I Grassmannian

[V
k

]
q := set of all k -dim. subspaces of V .

I Gaussian binomial coefficient

#

[
V
k

]
q

=

[
v
k

]
q

=
(qv − 1)(qv−1 − 1) · . . . · (qv−k+1 − 1)

(q − 1)(q2 − 1) · . . . · (qk − 1)

I Subspaces of V form a modular lattice (wrt. ⊆).

Projective geometry
I projective geometry

PG(v − 1,q) = PG(V ) := subspace lattice of V
I Elements of

[V
1

]
q are points.

I Elements of
[V

2

]
q are lines.

I Elements of
[V

3

]
q are planes.

I Elements of
[V

4

]
q are solids.



Spreads
A set S ⊆

[V
k

]
q is called

I a (k − 1)-spread
if each point is contained in exactly 1 element of S.

I a partial (k − 1)-spread
if each point is contained in at most 1 element of S.

In this case, the points not contained in any element of S
are called holes.



Geometrization: Lifted subspace codes
I Lifted subspace of A ∈ Fm×n

q is

Λ(A) = 〈(Im A)〉 ∈
[
Fm+n

q

m

]
q
,

where
I Im is m ×m unit matrix
I 〈· · · 〉 denotes the row space.

I All Λ(A) have trivial intersection with the special subspace

S = 〈em+1, . . . ,em+n〉 ∈
[
Fm+n

q

n

]
q
.

where ei is the i-th unit vector.
I Lifted subspace code of C ⊆ Fm×n

q is

Λ(C) = {Λ(A) | A ∈ C}.



Lemma
Let C ⊆

[Fm+n
q
m

]
q and t = m − d + 1. Then

(i) C is lifted m × n MRD-code of distance d ⇐⇒
(ii) U ∩ S = {0} for all U ∈ C and

every T ∈
[Fm+n

q
t

]
q

with T ∩ S = {0}
is contained in a unique element of C.

Lemma
Let m,n ≥ 2 and C,C′ m × n MRD-codes of distance d.
(a) C and C′ are inner-isomorphic

⇐⇒ Λ(C) ∼= Λ(C′) by a collineation in PΓL(Fm+n
q ).

(b) AutInn(C) ∼= AutPΓL(Λ(C)).

Conclusion
Instead of classifying MRD codes,
we can classify lifted MRD codes

(and benefit from the projective geometric setting).
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Let N(m,n,d) (NInn(m,n,d)) be the number of all (inner)
isomorphism types of m × n MRD-codes of distance d .
We want to fill the following tables:

NInn(m,n,2) n = 2 n = 3 n = 4
m = 2 ?(?) ? ?
m = 3 ?(?) ?
m = 4 ?(?)

NInn(m,n,3) n = 3 n = 4
m = 3 ?(?) ?
m = 4 ?(?)

NInn(m,n,4) n = 4
m = 4 ?(?)

I For m 6= n, N(m,n,d) = NInn(m,n,d).
I For m = n, N(m,n,d) ≤ NInn(m,n,d) is given in

parentheses.



The case d = m
I Here t = m − d + 1 = 1.
I =⇒ Λ(C) perfectly covers the points outside S.
I =⇒ Λ(C) is a partial (m − 1)-spread in PG(m + n − 1,q),

and S is the set of holes.



The subcase d = m = n
I Here, Λ(C) ∪ {S} is a (m − 1)-spread in PG(2m − 1,q).
I Attention:

MRD-code←→ spread + choice of special subspace
=⇒ Single type of a spread S may correspond to more
than 1 inner isomorphism type of MRD-codes, depending
on the number of orbits of Aut(S) on S (S-orbits).

I Known: (m − 1)-spreads in PG(2m − 1,q)
←→ translation planes of order qm.

I Known: Translation planes of order 4 and 8 unique,
i.e. only the Desarguesian planes, which have a single
S-orbit.
=⇒ NInn(2,2,2) = NInn(3,3,3) = 1 (only Gabidulin codes)



The case d = m = n = 4
I Dempwolff, Reifart 1983: Classification of translation

planes of order 16 into 8 types.

plane S-orbits #MRD-cds
Desarguesian plane 17 1
semifield plane with kernel F4 16 + 1 2
semifield plane with kernel F2 16 + 1 2
Hall plane 12 + 5 2
derived semifield plane 12 + 3 + 2 3
Dempwolff plane 15 + 1 + 1 3
Johnson-Walker plane 14 + 3 2
Lorimer-Rahilly plane 14 + 3 2

17

I =⇒ NInn(4,4,4) = 17
I 11 self-transpose codes (meaning C ∼=Inn C>)

and 3 transpose pairs of codes
=⇒ N(4,4,4) = 11 + 3 = 14



Table update 1

NInn(m,n,2) n = 2 n = 3 n = 4
m = 2 1(1) ? ?
m = 3 ?(?) ?
m = 4 ?(?)

NInn(m,n,3) n = 3 n = 4
m = 3 1(1) ?
m = 4 ?(?)

NInn(m,n,4) n = 4
m = 4 17(14)



The case m = 2, n = 3, d = 2
I Lifted MRD-code is partial line spread of size 8 in PG(4,2).
I Classification by Gordon, Shaw and Soicher 2004:

9 isomorphism types of such partial line spreads.
I To belong to a lifted MRD-code, the holes must form a

plane (which is the special subspace).
I Only 1 type of such partial spread.
I =⇒ NInn(2,3,2) = 1.

The case m = 3, n = 4, d = 3
I Done similarly in Honold, K., Kurz 2019.
I  NInn(3,4,3) = 37.



The case m = 2, n = 4, d = 2
I Lifted MRD-code is partial line spread S of size 16 in

PG(5,2), such that the set of holes is a solid.
I A solid can be partitioned into 5 lines

=⇒ S can be extended to a spread in PG(5,2).
I Classification of Mateva and Topalova 2009:

131044 isomorphism types of such spreads.
I Now:

I For each such spread, remove all quintuples of lines
forming a solid.

I Sieve out isomorphic copies by “NetCan” (Feulner 2014).
I  NInn(2,4,2) = 44.



Table update 2

NInn(m,n,2) n = 2 n = 3 n = 4
m = 2 1(1) 1 44
m = 3 ?(?) ?
m = 4 ?(?)

NInn(m,n,3) n = 3 n = 4
m = 3 1(1) 37
m = 4 ?(?)

NInn(m,n,4) n = 4
m = 4 17(14)

The remaining cases
I Observation

For n and d fixed, all cases with minimum m are done.
I Plan: Recursively use (m − 1,n,d) to do (m,n,d).



Reduction to m − 1
I Let C be a binary m × n MRD-Code of distance d .
I Let C′ be the subcode consisting of all codewords with the

same (fixed) last row.
I After removing the last row, C′ is a binary (m − 1)× n

MRD-code of distance d .

Resulting classification strategy
We reverse the above process.
I Loop over representatives C′ of (m − 1)× n MRD-codes of

distance d .
I Append a zero row to all codewords of C′.
I Compute all extensions of C′ to an m × n MRD-code of

distance d .
I Can be stated as an “exact cover-problem”.
I Very efficient solver “dlx” by Donald Knuth based on the

“dancing links” strategy.
I In the end: Sieve out isomorphic copies.



Resulting classification strategy, cont.
Strategy applied to the remaining cases:
I 3× 3, d = 2: success, within a few seconds CPU time.
 NInn(3,3,2) = 1

I 4× 4, d = 3: success, withing a few hours CPU time.
 NInn(4,4,3) = 1.

Surprising result
The only binary, not necessarily linear 4× 4 MRD-code of
distance 3 is the Gabidulin code!

I 4× 4, d = 2: success, within few days CPU time.
However, it is based on the still missing last case:

I No chance for 3× 4, d = 2.



Table update 3

NInn(m,n,2) n = 2 n = 3 n = 4
m = 2 1(1) 1 44
m = 3 1(1) ?
m = 4 ?

NInn(m,n,3) n = 3 n = 4
m = 3 1(1) 37
m = 4 1(1)

NInn(m,n,4) n = 4
m = 4 17(14)



The hardest case 3× 4, d = 2
I #C = 28 = 256. Each of the 16 possible last rows

determines a 2× 4 MRD-code of size 16 (44 types).
I (remote remark:

It is the setting of the binary q-analog of the Fano plane.)
I Look for a suitable intermediate classification goal. . .
I . . .small enough such that it can be computed and the

number of resulting cases is not too high;
I . . .large enough such that the completions to full

MRD-codes can be computed.
I Use the configuration of 32 matrices by fixing two last

lines. (two combined 2× 4 MRD-codes)
I  5.748.056 cases where the extensions to size 256 need

to be computed.
I Took 254 CPU years on a computing cluster at the LRZ

(Leibniz-Rechenzentrum) Munich.
I  NInn(3,4,2) = 33



The last case 4× 4, d = 2
I #C = 212 = 4096
I As discussed:

Can be computed from 3× 4, d = 2 within a few days.
I  NInn(4,4,2) = 9

№ # AutInn(C) linear? transpose
1 3686400 yes self
2 442368 yes self
3 184320 no self
4 86016 no № 5
5 86016 no № 4
6 76800 no self
7 73728 yes self
8 27648 no self
9 18432 no self

I  N(4,4,2) = 8



Final table update

NInn(m,n,2) n = 2 n = 3 n = 4
m = 2 1(1) 1 44
m = 3 1(1) 33
m = 4 9(8)

NInn(m,n,3) n = 3 n = 4
m = 3 1(1) 37
m = 4 1(1)

NInn(m,n,4) n = 4
m = 4 17(14)

Thank you!
Slides can be found at
https://www.mathe2.uni-bayreuth.de/michaelk/

https://www.mathe2.uni-bayreuth.de/michaelk/
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