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Linear codes
I finite field Fq of characteristic p.
I Fq-linear code C: Fq-subspace of Fn

q.
I n: length of C.
I (Hamming) weight w(c) of c ∈ Fn

q:
# non-zero positions of c.

Divisible codes
I Introduced by Harold Ward in 1981.
I Linear code C ∆-divisible :⇐⇒ ∆ | w(c) for all c ∈ C.
I Only interesting case: ∆ power of p.
I In this talk: ∆ = qr (r ∈ N0).
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Why divisible codes?

I Many good codes are divisible.
I Connection to duality:

Binary type II self-dual codes are 4-divisible.
4-divisible binary codes are self-orthogonal.
Self-orthogonal binary codes are 2-divisible.
Self-orthogonal ternary codes are 3-divisible.

I Conjecture (Ward 2001):

C Griesmer code over Fq, pr | minimum distance of C
=⇒ C pr+1/q-divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)
I Applications in finite geometry, subspace codes, etc.

In this talk: Upper bounds for partial spreads.
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I Divisible code bound (Ward 1992):
Bound on the dimensions of divisible codes.

I Our Goal:
Classification of the effective lengths of qr -divisible codes.

effective length: # non-zero coordinates of C.
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Projective geometry

I Fq-vector space V of dimension v .
I Subspace lattice of V : projective geometry PG(V )

I 1-subspaces: points, (v − 1)-subspaces: hyperplanes
I [

v
k

]
q

:= #(k -subspaces of V )

=

{
(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1) if 0 ≤ k ≤ v ;

0 otherwise.
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Linear codes and points

I Fq-linear code C of effective length n
←→ multiset P of n points in PG(V ).

(read columns of generator matrix
as homogeneous coordinates)

I codeword c of C
←→ hyperplane H in PG(V )

I w(c) = n −#(P ∩ H).
I C ∆-divisible

⇐⇒ #(P ∩ H) ≡ #P (mod ∆) for all hyperplanes H.
In this case: Call P ∆-divisible.

I  Classify the sizes of qr -divisible multisets of points!
(will be called realizable sizes)

Advantages of geometric setting

I Basis-free approach to coding theory.
I Geometry provides intuition.
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Lemma
Let V1 ⊆ V2 Fq-vector spaces and P multiset of points in V1.
Then:

P qr -divisible in V1 ⇐⇒ P qr -divisible in V2

Lemma
Let U be Fq-vector space of dimension k ≥ 1.
Let P be the set of points in U.
Then P is qk−1-divisible.

Proof.
Choose ambient space V = U. For each hyperplane H

#(P ∩ H) =

[
k − 1

1

]
q

= 1 + q + q2 + . . . + qk−2

≡ (1+q +q2 + . . .+qk−2)+qk−1 =

[
k
1

]
q

= #P (mod qk−1)
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Lemma
The following sizes are realizable:

s(r , i) := qi ·
[
r − i + 1

1

]
q

= qi + qi+1 + . . .+ qr (i ∈ {0, . . . , r})

Proof.
Set of points of a (r − i + 1)-subspace

is qr−i -divisible of size
[r−i+1

1

]
q.

=⇒ qi -fold repetition
is (qi · qr−i )-divisible of size qi ·

[r−i+1
1

]
q.

Lemma
The following sizes are realizable:

n = a0s(r ,0) + a1s(r ,1) + . . . + ar s(r , r) (a0,a1, . . . ,ar ∈ N0)

Proof.
Take unions of the above multisets.
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I The numbers

s(r , i) = qi ·
[
r − i + 1

1

]
q

= qi+qi+1+. . .+qr (i ∈ {0, . . . , r})

have the property

qi | s(r , i) but qi+1 - s(r , i).

I =⇒ We can build positional number system upon base
numbers

S(r) = (s(r ,0), s(r ,1), . . . s(r , r))

I Each n ∈ Z has unique S(r)-adic expansion

n = a0s(r ,0) + a1s(r ,1) + . . . + ar s(r , r) (∗)

with a0, . . . ,ar−1 ∈ {0, . . . ,q − 1}
and leading coefficient ar ∈ Z.
(Reason: Equation (∗) mod q,q2,q3 . . . yields unique
a0,a1,a2, . . .)



I The numbers

s(r , i) = qi ·
[
r − i + 1

1

]
q

= qi+qi+1+. . .+qr (i ∈ {0, . . . , r})

have the property

qi | s(r , i) but qi+1 - s(r , i).

I =⇒ We can build positional number system upon base
numbers

S(r) = (s(r ,0), s(r ,1), . . . s(r , r))

I Each n ∈ Z has unique S(r)-adic expansion

n = a0s(r ,0) + a1s(r ,1) + . . . + ar s(r , r) (∗)

with a0, . . . ,ar−1 ∈ {0, . . . ,q − 1}
and leading coefficient ar ∈ Z.
(Reason: Equation (∗) mod q,q2,q3 . . . yields unique
a0,a1,a2, . . .)



I The numbers

s(r , i) = qi ·
[
r − i + 1

1

]
q

= qi+qi+1+. . .+qr (i ∈ {0, . . . , r})

have the property

qi | s(r , i) but qi+1 - s(r , i).

I =⇒ We can build positional number system upon base
numbers

S(r) = (s(r ,0), s(r ,1), . . . s(r , r))

I Each n ∈ Z has unique S(r)-adic expansion

n = a0s(r ,0) + a1s(r ,1) + . . . + ar s(r , r) (∗)

with a0, . . . ,ar−1 ∈ {0, . . . ,q − 1}
and leading coefficient ar ∈ Z.
(Reason: Equation (∗) mod q,q2,q3 . . . yields unique
a0,a1,a2, . . .)



Example
I Let q = 3, r = 3. =⇒ S(3) = (40,39,36,27).
I S(3)-adic expansion of n = 137?

Find a0,a1,a2 ∈ {0,1,2} and a3 ∈ Z with

a0 · 40 + a1 · 39 + a2 · 36 + a3 · 27 = 137. (∗)

I Modulo 3:

a0·1+a1 · 0 + a2 · 0 + a3 · 0︸ ︷︷ ︸
=0

≡ 2 (mod 3) =⇒ a0 = 2

I a0 = 2 in (∗):

a1 · 39 + a2 · 36 + a3 · 27 = 137− 2 · 40︸ ︷︷ ︸
=57

(∗∗)

I Modulo 9:

a1 · 3 + a2 · 0 + a3 · 0 ≡ 3 (mod 9) =⇒ a1 = 1
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Example (cont.)
I . . . Find a1,a2 ∈ {0,1,2} and a3 ∈ Z with

a1 · 39 + a2 · 36 + a3 · 27 = 57. (∗∗)

I a1 = 1 in (∗∗):
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137 = 2 · 40 + 1 · 39 + 2 · 36 + (−2) · 27
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Theorem 1
Let n ∈ Z and r ∈ N0. Then:
There exists a qr -divisible Fq-linear code of effective length n

⇐⇒

The leading coefficient of the S(r)-adic expansion of n is ≥ 0.

Example (cont.)

I q = 3, r = 3
I S(3)-adic expansion of n = 137 is

137 = 2 · 40 + 1 · 39 + 2 · 36 + (−2) · 27.
I Leading coefficient is −2.
I Theorem 1 =⇒ There is no 27-divisible ternary code of

effective length 137.
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Lemma
Let P be non-empty and qr -divisible.
Then for all hyperplanes H, P ∩ H is qr−1-divisible.

Proof of Theorem 1 (Idea)

I Let P be non-empty and qr -divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is ≥ 0.

I On average, a hyperplane contains

#P · 1
q + 1

[v−1
1 ]q

elements of P.
I =⇒ Exists hyperplane H with #(P ∩ H) < #P

q .
I Apply Lemma to this H, use induction on r .



Lemma
Let P be non-empty and qr -divisible.
Then for all hyperplanes H, P ∩ H is qr−1-divisible.

Proof of Theorem 1 (Idea)

I Let P be non-empty and qr -divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is ≥ 0.

I On average, a hyperplane contains

#P · 1
q + 1

[v−1
1 ]q

elements of P.
I =⇒ Exists hyperplane H with #(P ∩ H) < #P

q .
I Apply Lemma to this H, use induction on r .



Lemma
Let P be non-empty and qr -divisible.
Then for all hyperplanes H, P ∩ H is qr−1-divisible.

Proof of Theorem 1 (Idea)

I Let P be non-empty and qr -divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is ≥ 0.

I On average, a hyperplane contains

#P · 1
q + 1

[v−1
1 ]q

elements of P.
I =⇒ Exists hyperplane H with #(P ∩ H) < #P

q .
I Apply Lemma to this H, use induction on r .



Lemma
Let P be non-empty and qr -divisible.
Then for all hyperplanes H, P ∩ H is qr−1-divisible.

Proof of Theorem 1 (Idea)

I Let P be non-empty and qr -divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is ≥ 0.

I On average, a hyperplane contains

#P · 1
q + 1

[v−1
1 ]q

elements of P.
I =⇒ Exists hyperplane H with #(P ∩ H) < #P

q .
I Apply Lemma to this H, use induction on r .



Lemma
Let P be non-empty and qr -divisible.
Then for all hyperplanes H, P ∩ H is qr−1-divisible.

Proof of Theorem 1 (Idea)

I Let P be non-empty and qr -divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is ≥ 0.

I On average, a hyperplane contains

#P · 1
q + 1

[v−1
1 ]q

elements of P.
I =⇒ Exists hyperplane H with #(P ∩ H) < #P

q .
I Apply Lemma to this H, use induction on r .



Definition
I Let V be Fq vector space of dimension v .
I Let S be a set of k -subspaces of V .
I S is partial (k − 1)-spread

if each point in V is covered by at most 1 element of S.

Research Problem
Find maximum possible size Aq(v , k) of partial spread.
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History
Write v = tk + r , r ∈ {0, . . . , k − 1}, t ≥ 2.
I 1964 Segre:

All points can be covered ⇐⇒ k | v (settles r = 0).
In this case, S spread, Aq(v , k) = qv−1

qk−1 .
I 1975 Beutelspacher:

Aq(v , k) ≥ qv − qk+r

qk − 1
+ 1 (∗)

Bound sharp for r = 1.
I 1979 Drake, Freeman: Improved upper bound on Aq(v , k).
I 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:

Computer construction for A2(8,3) = 34.
Settles all cases with q = 2, r = 2, k = 3 recursively.
Here, bound (∗) is not sharp!

I 2016 Kurz: Bound (∗) sharp for q = 2, r = 2, k ≥ 4.
I 2017 Năstase, Sissokho: (∗) sharp whenever k >

[r
1

]
q.
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Năstase and Sissokho as a corollary from Theorem 1
I Let S be partial (k − 1)-spread.
I Set P of holes (points not covered by S) is qk−1-divisible!
I Assume #S = qv−qk+r

qk−1 + 2.

=⇒ #P =

[
k + r

1

]
q
− 2
[
k
1

]
q

S(k − 1)-adic ex. =
k−2∑
i=0

(q − 1)s(k − 1, i)

+

(
q · (

[
r
1

]
q
− k + 1)− 1

)
s(k − 1, k − 1)

I Theorem 1: Leading coefficient q · (
[r

1

]
q− k + 1)− 1 ≥ 0.

⇐⇒ k ≤
[r

1

]
q.

I  2017 result of Năstase and Sissokho follows as
corollary from Theorem 1!.
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Projective divisible codes

I For partial spreads: P is a proper set (not only a multiset).
Can we make use of this extra information?

I Sets of points←→ projective linear codes.
I Classification of the lengths

of projective qr -divisible linear codes
apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code
of length n

⇐⇒ n /∈ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
∪ {17,18,19,20,21,22,23,24,25,26,27,28,29}
∪ {33,34,35,36,37,38,39,40,41,42,43,44}
∪ {52,53,54,55,56,57,58,59}
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No projective 8-divisible code of length 52

I Use first 4 MacWilliams-identities.
I Would be the size of the hole set

of a partial 3-spread in F11
2 of size 133.

=⇒ 129 ≤ A2(11,4) ≤ 132.

No projective 8-divisible code of length 59

I Hardest single case.
I Cannot have weights 56 and 48

(residuals would be proj. 4-divisible of length 3 and 11)
I If it has weight 40:

Residual is projective 4-divisible of length 19.
3 isomorphism types.
I 2 excluded by theoretical argument.
I 1 excluded computationally.

I Otherwise, must have weight 32.
Excluded computationally.
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Thank you!


