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» finite field I of characteristic p.
> [4-linear code C: Fq-subspace of Fg.
» n: length of C.
> (Hamming) weight w(c) of ¢ € Fg:
# non-zero positions of c.

Divisible codes
» Introduced by Harold Ward in 1981.
» Linear code C A-divisible : <= A | w(c) forallc € C.
» Only interesting case: A power of p.
» Inthistalk: A=qg" (r € Np).
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Why divisible codes?

» Many good codes are divisible.
» Connection to duality:

Binary type |l self-dual codes are 4-divisible.
4-divisible binary codes are self-orthogonal.
Self-orthogonal binary codes are 2-divisible.
Self-orthogonal ternary codes are 3-divisible.

» Conjecture (Ward 2001):
C Griesmer code over Fg, p" | minimum distance of C
— C p'*'/g-divisible.

True for g = p (Ward 1998), g = 4 (Ward 2001)
» Applications in finite geometry, subspace codes, etc.
In this talk: Upper bounds for partial spreads.
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» Our Goal:
Classification of the effective lengths of q"-divisible codes.

effective length: # non-zero coordinates of C.
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» Fq-vector space V of dimension v.

» Subspace lattice of V: projective geometry PG( V)

» 1-subspaces: points, (v — 1)-subspaces: hyperplanes
>

{V} = #(k-subspaces of V)

k
{ v1qv11)(vk+1_1) |fOSk§V,

(@ =1)(gk—1-1)--(q-1)
otherwise.
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Linear codes and points

» Fg-linear code C of effective length n

«— multiset P of n points in PG(V).
(read columns of generator matrix

as homogeneous coordinates)
» codeword ¢ of C

«— hyperplane H in PG(V)
> w(c) =n—#(PnNH).
» C A-divisible

< #(PNH)=#P (mod A) for all hyperplanes H.
In this case: Call P A-divisible.

» ~ Classify the sizes of g"-divisible multisets of points!
(will be called realizable sizes)

Advantages of geometric setting

» Basis-free approach to coding theory.
» Geometry provides intuition.
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Lemma
Let Vy C V, [Fg-vector spaces and P multiset of points in V.
Then:

P q"-divisible in Vy < P q"-divisible in V»

Lemma
Let U be F 4-vector space of dimension k > 1.
Let P be the set of points in U.

Then P is g*—'-divisible.
Proof.

Choose ambient space V = U. For each hyperplane H
k-1 2 k-2
#(PNH)= ; =1+q9+q°+...+q
q

_ _ k _
=(149+¢°+...+9¢)+q ' = H = #P (mod g&° 1)
g
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q

4+ q

(ie{0,....r})
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Lemma
The following sizes are realizable:

. C[r—i+1 L .
s(r,/)::q’[r ﬁ] — g +q" .+ q (i€{0,....r})
q

Proof.
Set of points of a (r — i + 1)-subspace
. TR . —j+1
is g"~'-divisible of size ["7}" ]q.
—> q'-fold repetition o
is (q' - g"~')-divisible of size g’ - ["fﬂq. O
Lemma
The following sizes are realizable:

n=ays(r,0)+ ais(r,1)+...+ars(r,r) (ao,as,...,ar € Np)

Proof.
Take unions of the above multisets. ]
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» The numbers

R A A A L s
q

have the property
q'[s(r,i)  but gt gs(ri).

» — We can build positional number system upon base
numbers

S(r) = (s(r,0),s(r,1),...s(r,r))
» Each n € Z has unique S(r)-adic expansion
n=ays(r,0)+ ays(r,1)+ ...+ ars(r,r) (%)

with ag,...,a,.1 €{0,...,g—1}
and leading coefficient a, € Z.

(Reason: Equation (x) mod g, g%, g° . .. yields unique
dp, a1, 4dp, .. )



Example
> Letq=3,r=3. — S(3) = (40,39, 36,27).



Example

» Letq=3,r=3. = S(8) = (40,39, 36,27).
» S(3)-adic expansion of n = 1377
Find ag, a1, a> € {0,1,2} and a3 € Z with

a)-40+a;1-39+a,-36+a3-27 =137. (%)



Example

» Letq=3,r=3. = S(8) = (40,39, 36,27).
» S(3)-adic expansion of n = 1377
Find ag, a1, a> € {0,1,2} and a3 € Z with

a)-40+a;1-39+a,-36+a3-27 =137. (%)
» Modulo 3:

a-1+a;-0+a-0+a3-0=2 (mod 3) - ag=2
=0




Example
> Letq=3,r=3. — S(3) = (40,39, 36,27).

» S(3)-adic expansion of n = 1377
Find ag, a1, a> € {0,1,2} and a3 € Z with

a)-40+a;1-39+a,-36+a3-27 =137. (%)
» Modulo 3:

a-1+a;-0+a-0+a3-0=2 (mod 3) - ag=2

=0
> a9 =2in (%):

a;-39+ap-36+a;-27 =137 —2-40 (%)
=57



Example

» Letq=3,r=3. = S(8) = (40,39, 36,27).
» S(3)-adic expansion of n = 1377
Find ag, a1, a> € {0,1,2} and a3 € Z with

a)-40+a;1-39+a,-36+a3-27 =137. (%)
» Modulo 3:

a-1+a;-0+a-0+a3-0=2 (mod 3) - ag=2

=0
> a9 =2in (%):

a;-39+ap-36+a;-27 =137 —2-40 (%)
=57

» Modulo 9:

a-3+a-0+a3-0=3 (mod9) = a4 =1
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Example (cont.)
» ... Finday,a> € {0,1,2} and a3 € Z with

ai-39+a-36+ az-27 =57. (%)
> ay =11in (xx):

a-36+a3-27=57—-1-39 (%)
~——
» Modulo 27: =18

a-9+a3-0=18 (mod27) = a=2
PN (sxk:x):

a3-27=18-2-36 — a3 = -2
=54

» — S(3)-adic expansion of n =137 is

137 =2.40+1-39+2-36 + (—2) - 27
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Theorem 1
Letne Z and r € Ny. Then:

There exists a g"-divisible Fg-linear code of effective length n
=

The leading coefficient of the S(r)-adic expansion of nis > 0.
Example (cont.)

» g=3,r=3
» S(3)-adic expansion of n = 137 is

1837 =2-40+1-39+2-36+(—2)-27.
» Leading coefficient is —2.

» Theorem 1 — There is no 27-divisible ternary code of
effective length 137.
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Lemma
Let P be non-empty and q"-divisible.
Then for all hyperplanes H, P N H is g~ -divisible.

Proof of Theorem 1 (Idea)

» Let P be non-empty and g"-divisible.
Have to show:
Leading coefficient of S(r)-adic expansion of #P is > 0.

» On average, a hyperplane contains

1
#P
g+ L
1 1q
elements of P.
> — Exists hyperplane H with #(P N H) < %7
» Apply Lemma to this H, use induction on r.
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Definition
> Let V be IF4 vector space of dimension v.
> Let S be a set of k-subspaces of V.

» Sis partial (k — 1)-spread
if each point in V is covered by at most 1 element of S.

Research Problem
Find maximum possible size Ay(v, k) of partial spread.
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History
Writev=tk+r,re{0,...,k—1},t>2.
> 1964 Segre:
All points can be covered <= k | v (settles r = 0).
In this case, S spread, Aq(V, k) = &—.

gk—1
» 1975 Beutelspacher:
qv _ qk+r
Aqg(v. k) = W+1 (%)

Bound sharp for r = 1.
» 1979 Drake, Freeman: Improved upper bound on Aq(v, k).
» 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:
Computer construction for A>(8,3) = 34.
Settles all cases with g = 2, r = 2, k = 3 recursively.
Here, bound (x) is not sharp!

» 2016 Kurz: Bound (x) sharpforg=2,r =2, k > 4.

> 2017 Nastase, Sissokho: (x) sharp whenever k > [{] .
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Nastase and Sissokho as a corollary from Theorem 1

» Let S be partial (k — 1)-spread.
> Set P of holes (points not covered by S) is g*~'-divisible!

qvf k+r

> Assume #S = qkﬂ1 + 2.

_ #P:[kJrr] _Zm
1 q 1 q
k-2

S(k —1)-adicex. = (g—1)s(k —1,i)
i=0

+<q-(H —k+1)—1>s(k—1,k—1)
1(7

> Theorem 1: Leading coefficient g - ([/] ;s k+1)-1=0.
«— k< [q]q.

> ~ 2017 result of Nastase and Sissokho follows as
corollary from Theorem 1.
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Projective divisible codes

» For partial spreads: P is a proper set (not only a multiset).
Can we make use of this extra information?

» Sets of points «<— projective linear codes.

» Classification of the lengths
of projective q"-divisible linear codes
apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code

of length n

e« n¢{1,2,3,4,5,6,7,8,9,10,11,12,13,14}
U {17,18,19,20,21, 22, 23, 24, 25, 26, 27, 28,29}
U {33, 34,35, 36,37, 38,39, 40, 41, 42, 43, 44}
U {52, 53,54, 55, 56,57, 58,59}
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» Use first 4 MacWilliams-identities.
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No projective 8-divisible code of length 52

» Use first 4 MacWilliams-identities.
» Would be the size of the hole set

of a partial 3-spread in F}' of size 133.
— 129 < Ap(11,4) < 132,

No projective 8-divisible code of length 59

» Hardest single case.

» Cannot have weights 56 and 48
(residuals would be proj. 4-divisible of length 3 and 11)

» If it has weight 40:

Residual is projective 4-divisible of length 19.
3 isomorphism types.

» 2 excluded by theoretical argument.
» 1 excluded computationally.
» Otherwise, must have weight 32.
Excluded computationally.



Thank you!



