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Notation
» prime power g
v-dim. F4-vector space V

v

v

Grassmannian mq: set of all k-dim. subspaces of V.
Gaussian Binomial coefficient

v

1 (g =)@ =) ... (g 1)
[kL--#mq- @ D@1 (¢ 1)

Example

How many 2-dimensional subspaces has F3?
Answer (v =4,k =2,q=2):

4]  (*-1)(*-1) 15.7
[2}2_(21—1)(22—1)_ 1.3 =3



Definition
DcC [,‘(/]q is t-(v. k, \)4 design (g-analog of a design)

if
every T € mq is contained in exactly A blocks (elements of D).

Connection to network coding

» Of particular interest: Case A = 1 (Steiner System)
» Steiner Systems and perfect constant dimension codes are
the same:

t-(v, k, 1)q Steiner System

perfect (v,2- (k — t + 1); k)4 constant dimension code



Existence of Steiner systems
» t =1 (Spreads):
1-(v, k, 1)4 Steiner System exists <= k divides v
» Braun, Etzion, (")stergérd, Vardy, Wassermann 2013:
2-(13,3, 1), exists!
» No further Steiner system known.

» Smallest open case:
2-(7,3,1)q (g-analog of the Fano plane)
Existence open for any prime power g.



Lemma
Let Dbe a t-(v,k,\)g designand i € {0,...,t}.
Then D is also an i-(v, k, \j)q design with
v—i
/\i _ [f—l] O\

(5=
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Q

In particular, #D = ).

Example
For a 2-(7,3, 1), design (2-analog of the Fano plane):

=1, A =21, Xg=381

Corollary: Integrality conditions
If a t-(v, k, \)q design exists, then g, A\1,..., A\t € Z.



Example

» Famous classical Steiner system: 5-(24, 8, 1) Witt design

» |s there a g-analog of the Witt design,
i.e. a 5-(24,8, 1), design (q some prime power)?

B, (@=1@-1(e*-1)

_ $22(9)%21(9)P20(9)®11(9) P10(q)®7(9)
®6(q)

where ¢, the n-th cyclotomic polynomial.

y = Bla (@ = 1)(@ - 1@ 1)

» Known: If a/b is not the power of a prime, then
gcd(Py(x), Pp(x)) =1 forall x € Z.
= )2 ¢ Z for all prime powers q.

» Integrality conditions:
There is no g-analog of the Witt design!



Intersection numbers

» Mendelsohn 1971, Alltop 1975:
Intersection numbers for t-designs

» Useful tool for construction, classification and
non-existence proofs of classical designs.

» Goal: Generalize intersection numbers to g-analogs of
designs.

Definition
» In the following: D a t-(v, k, A)q design,
S a subspace of V, s = dim(S)
» The i-th intersection number of Siin D is

aj=ai(S)=#{Be D|dm(BnS) =i}.
» The intersection vector of Sin D is

(20(8), a1(8), - -, a(S))



Theorem (g-analog of Mendelsohn equations 1971)
Forie {0,...,t}
S -
Z [j] aj = [S] Aj
= U g
Proof.
Double count

X—{(/,B)e qum/gBms}

> [ﬂq possibilities for /.
For each I, \; blocks B with | < B.
= #X = [ﬂ q)\,'.

> For fixed block B, there are [*™(E79)] , suitable /.
- #X = Zf:i [ﬂ qaf'



Theorem (g-analog of Kéhler equations 1988)
Forie {0,...,t}

o el

qj‘:i
1 t+1—i (t+1—i) s j j—i—1
— 2 .

j=t+1
(Parameterization of ag, a1 ..., a1 by a1, o, ..., k)
History

» For classical designs by Kéhler in 1988,
long and complicated induction proof.

» Simpler proof by de Vroedt in 1991.

» Can be simplified further!
ldea: Apply Gauss reduction to the Mendelsohn equations.



Proof

» Read Mendelsohn equations as linear equation system on
the intersection vector:

90 B B B e ([P
o [ B o T e 0| o] [ B
o 0 B o ) B | fee| | B
0 o oo [ ) e \Ln
» Has the form

(Pg| A)-x=b

where P, = ([j’] q>ij is upper g-Pascal matrix.

> Known: Py invertible with P;" = ((—1)/~/q(z )] q)”.



Proof (cont.)

» Left multiplication of
(Pg|A)-x=Db
with P, yields
(Il P;1A) - x= P, 'b.

» Rows evaluate to the Kéhler equations.
Use the g-binomial identity

t

Sy

j=0 q

= (-1)q (”')[n;qq.

to compute Py ' Aand P, 'b.



Corollary

Intersection vector is uniquely determined
for dim(S) < tand dim(S) > v —t.



In the following

Determine the "intersection structure” of a 2-(7, 3, 1)» design
(2-analog of the Fano plane).

Parameters:

v=7, k=3, t=2 A=1, g=2

o =381, M =21, l=1.



Example

» Kohler equations for s = 4:

Qo = 136—80[3
ay =210 + 14a3
[6%] :35—7Ck3

> a3 € {0, 1}
Otherwise, S contains two blocks B, Bo.
By the dimension formula

dim(B1 N Bg) = dlm(B1) + dlm(Bg) - dlm(B1 + Bg)
——
<S
>3+3—-4=2. Contradiction.

» — Two possible intersection vectors:
(136,210,35,0) and (128,224, 28,1).



Example (cont.)

» Distribution of the 4-dim subspaces S
to the two intersection numbers?
(total: [;], = 11811 subspaces S)

» Double counting:
(136,210, 35, 0) occurs 6096 times,
(128,224,28, 1) occurs 5715 times.



» Similarly, compute the intersection vectors for all possible
values of s.

intersection vector frequency
0,0,0,381) 1
0,0,336,45) 127
0,256,120,5 2667

(

(

( )
(128,224,28,1) 5715
(136,210,35,0) 6096
(240,140,0,1) 381
(248,126,7,0) 11430
( )

( )

(

O - NWWPHrPOoOoO N

320,60, 1,0 2667
360,21,0,0 127
381,0,0,0) 1

» How do the different S relate to each other?



Theorem
The “intersection structure” of a 2-analog of the Fano plane is

s=5 (0,256,120, 5)2667

15
7

s=4 (128,224 28,1)5715 (136,210 35,0)60%

S

s=3 (240, 140, 0,1)381 (248,126, 7 0)11430

-
/
~




Intersection vectors for arbitrary q

Comment

Applying this method to 2-(9,3,1)4 or 2-(13,3, 1),
we don’t end up with a unique intersection vector distribution.

s intersection vector frequency
7 (0, 0, 0, dd7) 1

6 (O, 0, q*d3ds, Dodydg) D7

5 (0, ol P04, y) d3dgd7

4 (g, o3, G2 o3, 1) D4 Pgd7
4 (3PP —g*+1), qd1db3dy, d3d,, 0) g dgd;

3 (q*Ps004, GPd3P,, 0, 1) dgd7

3 (P -g+1), q(g®+qg—1)b3, 3, 0) GO D4 PgP7
2 (g%, GPdr04, 1, 0) D3dgd7

1 (gPdr0,40, b3dg, 0, 0) 7

0 (Pgd7, 0, 0, 0) 1



Theorem

If there exists a 2-(7,3,1)4 design,

then there exist designs with the parameters
> 2+7,3,9%)q
» 27,3, + 32+ q+1)q
» 247,3,0* + ¥+ q% + q)q

Comment
A 2-(7,3,16), design does exist.



Open problems

» Use the Kdhler equations for a nonexistence proof.

» Use the intersection structure
to show the nonexistence / construct a 2-(7,3,1)2.
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