length n = 174
dimension k = 9
alphabet length q = 3

minimum distance d = 99

generator matrix:
000000001000000000000000000000000000000000000000011111111111111111111111111111111000000000000000000000000111111111111111111111111111111111111111111111111011111111111111111111
000000010000000000000000000001111111111111111111100000000000000000000111111222222000000111111111111111111000000000000000000111111111111111111112222222222101111111111111222222
000000100000000000111111111110000000000011111222200000000000111112222000002000012111111000000111111112222000000111111112222000000001111111112220000111222110111111111222111222
000001000001111111000000022220000000222211111000000001111222000020001000020000102111122111122000011120012000000111111221122111111220000001120011122001002111011111122112112122
000010000110011122000022200020011122001200002000100220002002111110000000200002010111212000000111211211212111122000112010102111122110001120000101122010020111101111212112121212
000100000110200202011201200101100212010000020012002021111000000200021002000020100112112111212000012110012111212112000101020001201011121210001100102110220111110111211122212112
001000000022011100102110001021102010010200200210011100020012002001200020000120000121112112112112100001200112112121000101020120010100002111210111020011022111111011112212212211
010000000201102010211001020100211100201002000002111100200210020001020200000102000211112121112121100001200121112000121010102002101011210002111010102101202111111101121122122211
100000000111120012120110221002020002200020000200020022000200200000200111111000000000000211112211121111212211112211211111122210010102110000001001020100200111111110221211112212

projective group of automorphisms generated by:
000000001
000000010
000000100
100000000
001000000
010000000
000010000
000001000
000100000

100000000
000010000
000000010
010000000
000000100
000000001
000001000
000100000
001000000