length n = 167
dimension k = 9
alphabet length q = 3

minimum distance d = 94

generator matrix:
00000000000000000000000000000000000000001111111111111111111111111111111100000000111111111111111111111111111100001111111111111111111111111111111111111111111111111111111
00000000000000000000111111111111111111110000000000000000000011111122222201111111000000011111111111111122222211110000111111111111111122222222222211111111122111111222222
00000000011111111111000000000001111122220000000000011111222200000200001210111122011112200001111111112200112211221122001111111112222200111112222211111111212111222111222
00111111100000002222000000022221111100000000111122200002000100002000010211011212211110211110000111221102110212121122110011122221111222111120012211111112112122112112122
11001112200002220002001112200120000200010022000200211111000000020000201012111102101121211110112002011110012211221212111202201121111211011201222211111121112212112121212
11020020201120120010110021201000002001200202111100000020002100200002010011211012110211201121111020110112100212122112121120211110112212102121102211111211112211122212112
02201110010211000102110201001020020021001110002001200200120002000012000011102112112011210212110111011012102021122112211211121101021212120121220111112111112112212212211
20110201021100102010021110020100200000211110020021002000102020000010200011120112121101221101021111100112012021121212122111110212110212211021221011121111112121122122211
11112001212011022100202000220002000020002002200020020000020011111100000021111110111111012011201200101012112211111111212122012011201012111121222211211111112221211112212

projective group of automorphisms generated by:
000000001
000000010
000000100
100000000
001000000
010000000
000010000
000001000
000100000

100000000
000010000
000000010
010000000
000000100
000000001
000001000
000100000
001000000