length n = 164
dimension k = 9
alphabet length q = 3

minimum distance d = 90

generator matrix:
00000000100000000111111111111111111111111111100000000000000000000000011111111111111111111111111111111111111111111111101111111100011111111111111111111111111111111111
00000001001111111000000011111111111111122222200000011111111111111111100000000000000000011111111111111111111222222222210111111111100011111111122222222222211111111122
00000010010111122011112200001111111112200112211111100000011111111222200000011111111222200000000111111111222000011122211011111112212201112222200111112222211111111212
00000100011011212211110211110000111221102110211112211112200001112001200000011111122112211111122000000112001112200100211101111121212210221122222112220011111111112112
00001000012111102101121211110112002011110012211121200000011121121121211112200011201010211112211000112000010112201002011110111112221212022211211020221211211111121112
00010000011211012110211201121111020110112100211211211121200001211001211121211200010102000120101112121000110010211022011111011121222121220212112201121102211111211112
00100000011102112112011210212110111011012102012111211211211210000120011211212100010102012001010000211121011102001102211111101122122122211221021122101220111112111112
01000000011120112121101221101021111100112012021111212111212110000120012111200012101010200210101121000211101010210120211111110122121222122120112212012121011121111112
10000000021111110111111012011201200101012112200000021111221112111121221111221121111112221001010211000000100102010020011111111011111122202002221221212112111211111112

projective group of automorphisms generated by:
000000001
000000010
000000100
100000000
001000000
010000000
000010000
000001000
000100000

100000000
000010000
000000010
010000000
000000100
000000001
000001000
000100000
001000000