length n = 175
dimension k = 9
alphabet length q = 2

minimum distance d = 82

generator matrix:
0000000110000011110000001110000001110000011110000011110000001110000011110000011110000011110000111110000111110000111110000111110000011110001111110001111110011111110011111110111
0000011000001100110001110000000110010011100010011100010000110010001100110001100110001100110011001110001011110011001110011001110111100000110011110110011110101111111100111111011
0000100010110100010110000010001010100100101100100101100011010000111100000110100010010101010101010110011001110111010011111000011000001111010101111010101111100111110111011111101
0001100000011011000010010100110010000101010101000110101100000011000011011010001101110000011101100011111000011100100110100111101000100111111000111110110011111001111111001111011
0110000000101001101000100011011000001010000110101010010100010100000101111001001011100110001110100101111100001001101010001011110011011001111101001111100101111010111111110011101
0010000101100110000010101000010101001100001010110011001001100001111000000111010000101011000110111001100110101110011001111100000001011010111110011101010111111111001011110111011
1000001001010010101100010001000100101001110001011000100101001001010011001100010101001001101010011010100111101010110101100110101110100001100111011011011101011111011101111101101
1001000001101000010101000101100001000110110001001101000010100100101100100101101001011010001011110001110110000111101001011001011100100101101110101101111001111110101111101100111
0100010001010101001001001000101000011011001001110000011010001001110010001010110000110100101101001101011001011101010101110110000111010001011011100111101011110101111110111010111

projective group of automorphisms generated by:
000100000
000010000
000000010
000000100
100000000
001000000
000000001
010000000
000001000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001