length n = 173
dimension k = 9
alphabet length q = 2

minimum distance d = 80

generator matrix:
00000011100000011100000011100000111100000011100000011100000111100001111100000111100001111100000111100001111100000111100001111100100100001111100111111100001111100111111101111
00001100100001100100011100000011001100001100100011100000111000100110011100001011100110011100011001100110011101111000001110001101001001110001101011111111110000111001111110111
00010101000110001000101100000101010100110001001100100001011001001011100100010101101010101101100010101010101110111000010110010110010010110110010101111111110001011010111111011
01110000000010110001010000101110100000000110100101000101100010101100111011110000011011010010001100111101000101001001101010111010010010010011111110011100110110111111001111011
00100110001101000001000001101001110011010000010001001011000100111011001000110100110011100110110010011000110101000011111001011001001011101000111101101100011110101111011110111
10010010010001010010100100010101100001001100001010010010101001010110101001110100001111100010101001011100101010110100011100100100100101011101011110101111101001011110110101111
01001001010100100010000011010010011011001000011000000110001110010111010010001011010100111011010001010011011010000110110101101010010011011010011011110101001111010111111011011
10101000001010000110100010011100001000100011010000110010010011011000110111101000011101001001001110010111100010010110010011100101001001100110111111011011001011011111110010111
11000000111000001001011000011010000110110000000110001001110100011101000111001010011100010101110100001111010001101001001111010000100110101101011111110010110100111101101101111

projective group of automorphisms generated by:
000000100
000000001
010000000
000010000
100000000
001000000
000000010
000001000
000100000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001