length n = 170
dimension k = 9
alphabet length q = 2

minimum distance d = 80

generator matrix:
00000010000000000000000000011111111111111100000000000000000111111000000010000000000000000000001111111111111110000000000000001111111111111111111101111110111111011111111111
00000100000000000111111111100000000001111100000000000011111000001000000100000000000011111111110000000000111110000011111111110000000000111111111110111111011111101111111111
00001000000111111000000111100000011110000100000000111100001000010000001000000011111100000011110000001111000010111100001111110000111111000000111111011111101111110111111111
00000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111111111111111111111111111100000000000000111111100011
00010000111000111000111000100011100010001000000111000100010000100000010000011100011100011100010001110001000101011101110001110111000111000111000111101111110111111011111111
00000000000000000000000000000000000000000011111111111111111111111000000001111111111111111111111111111111111110000000000000000000000000000000000011111111111111111111101101
00100001011011001011001001001100100100010000011001001000100001000000100000101101100101100100100110010010001001101110110110011011011001011001001011110111111011111101111111
01000001101101010101010010010101001000100000101010010001000010000001000000110110101010101001001010100100010001110111011010101101101010101010010011111011111101111110111111
10000001110110100110100100011010010001000000110100100010000100000010000000111011010011010010001101001000100001111011101101001110110100110100100011111101111110111111011111

projective group of automorphisms generated by:
000010000
000000100
001000000
000100000
100000000
000001000
000000001
000000010
010000000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

010000000
000000001
000000100
000100000
000000010
000001000
100000000
001000000
000010000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001