length n = 169
dimension k = 9
alphabet length q = 2

minimum distance d = 80

generator matrix:
0000000000000000000011111111111111100000000100000000000000011111111111111111111000000001000000000000000111111000000000000000000001111111111111110111111011111101111111111
0000000000111111111100000000001111100000001000000111111111100000000001111111111000000010000000000011111000001000000000011111111110000000000111111011111101111110111111111
0000111111000000111100000011110000100000010001111000011111100001111110000001111000000100000000111100001000010000011111100000011110000001111000011101111110111111011111111
0000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111111111111111111111111111111111110011
0111000111000111000100011100010001000000100010111011100011101110001110001110001000001000000111000100010000100011100011100011100010001110001000101110111111011111101111111
0000000000000000000000000000000000011111111111111111111111111111111111111111111000000000000000000000000000000111111111111111111111111111111111110000000000000011111110011
1011011001011001001001100100100010000001000011011101101100110110110010110010010000010000011001001000100001000101101100101100100100110010010001001111011111101111110111111
1101101010101010010010101001000100000010000011101110110101011011010101010100100000100000101010010001000010000110110101010101001001010100100010001111101111110111111011111
1110110100110100100011010010001000000100000011110111011010011101101001101001000001000000110100100010000100000111011010011010010001101001000100001111110111111011111101111

projective group of automorphisms generated by:
000010000
000000100
001000000
000100000
100000000
000001000
000000001
000000010
010000000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

010000000
000000001
000000100
000100000
000000010
000001000
100000000
001000000
000010000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001