length n = 168
dimension k = 9
alphabet length q = 2

minimum distance d = 80

generator matrix:
000000100000000000000000000111111111111111000000100000010000000100000001000000000000000111111111111111111110000000000000001111111111111111111100000011111111111111111111
000001000000000001111111111000000000011111000001000000100000001000000010000001111111111000000000011111111110000011111111110000000000111111111101111100000111111111111111
000010000001111110000001111000000111100001000010000001000000010000000100011110000111111000011111100000011110111100001111110000111111000000111110111101111000011111111111
000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000000000000000000000011
000100001110001110001110001000111000100010000100000010000000100000001000101110111000111011100011100011100011011101110001110111000111000111000111011110111011100011111111
000000000000000000000000000000000000000000111111111111110000000011111111000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111100101
001000010110110010110010010011001001000100001000000100000001000000010000110111011011001101101100101100100101101110110110011011011001011001001011101111011101101100111111
010000011011010101010100100101010010001000010000001000000010000000100000111011101101010110110101010101001001110111011010101101101010101010010011110111101110110101011111
100000011101101001101001000110100100010000100000010000000100000001000000111101110110100111011010011010010001111011101101001110110100110100100011111011110111011010011111

projective group of automorphisms generated by:
000010000
000000100
001000000
000100000
100000000
000001000
000000001
000000010
010000000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

010000000
000000001
000000100
000100000
000000010
000001000
100000000
001000000
000010000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001