length n = 167
dimension k = 9
alphabet length q = 2

minimum distance d = 79

generator matrix:
00000001000000001000000010000000000000000000000000000111111111111111111111111111100000001111111000000000000000000000111111111111111111111111111111111110111111101111111
00000010000000010000000100000000000001111111111111111000000000000000011111111111100011110000111000000111111111111111000000000000000111111111111111111111011111110111111
00000100000000100000001000000111111110000000011111111000000001111111100000000111101100110011001011111000001111111111000001111111111000000000011111111111101111111011111
00000000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110000000011111111
00001000000001000000010000111000111110001111100000111000111110000011100000111000110101010101010101111011110000111111011110000111111000011111100000011111110111111101111
00010000000010000000100001011011001111110001100011001011001110011100000011001001011001101001100110111101110111000111101110111000111011100011100011100011111011111110111
00100000000100000001000001111101010010110110001101010101010011100100101101010000001111001100001111011110111011011001110111011011001101101100101100100101111101111111011
01000000001000000010000001101111100101011010110100100110110100101001010110000010010110101010010111101111011101101010111011101101010110110101010101001001111110111111101
10000000010000000100000001110110111001101101011010000111101001010010011000100100011010010110100111110111101110110100111101110110100111011010011010010001111111011111110

projective group of automorphisms generated by:
100000000
000001000
000000010
000100000
010000000
000010000
000000100
000000001
001000000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

000000010
000001000
010000000
000100000
000010000
100000000
001000000
000000001
000000100

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001