length n = 165
dimension k = 9
alphabet length q = 2

minimum distance d = 78

generator matrix:
000000100000000000000011111100000000000000000000111111111111111000000100000000000000000000111111111111111000000000000000111111111111111111110111111011111101111111111
000001000000000001111100000100000000001111111111000000000011111000001000000000001111111111000000000011111000001111111111000000000011111111111011111101111110111111111
000010000000011110000100001000001111110000001111000000111100001000010000001111110000001111000000111100001011110000111111000011111100000011111101111110111111011111111
000100000011100010001000010001110001110001110001000111000100010000100001110001110001110001000111000100010101110111000111011100011100011100011110111111011111101111111
000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111111111111111111111111110000000000000011111110011
001000001100100100010000100010110110010110010010011001001000100001000010110110010110010010011001001000100110111011011001101101100101100100101111011111101111110111111
010000010101001000100001000011011010101010100100101010010001000010000011011010101010100100101010010001000111011101101010110110101010101001001111101111110111111011111
111111111111111111111111111111111111111111111111111111111111111000000011111111111111111111111111111111111111111111111111111111111111111111111111111111111100000001101
100000011010010001000010000011101101001101001000110100100010000100000011101101001101001000110100100010000111101110110100111011010011010010001111110111111011111101111

projective group of automorphisms generated by:
000100000
001000000
100000000
000000100
000010000
000001000
010000000
000000010
000000001

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

000000001
010000000
000100000
001000000
000010000
000000100
000001000
000000010
100000000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001