length n = 163
dimension k = 9
alphabet length q = 2

minimum distance d = 76

generator matrix:
0000000110000001110000001110000001110000011110000011110000011110000111110000111110010000011110000011110000111110000011110000111110001111110001111110011111110110111
0000011000000110010001110000000110010001100110011100010001100110011001110011001110100011100010111100000111000110011100010111000110110011111110001111100111111011011
0001100000001010100110000010011010000110100010100101100010101010101010110111010011001100100101000001111001011011100100101001011011110100110111110011111001111101101
0010100000010101000010010101100010001010101001100000111100010011100101011101100010100011101000000110110011111000111000011010101011110111001010110111111010111011011
0100000010110010000010101000100100100101011000101011000111001000111110001010110100100011110001001001011100101011011000011100011101011011011011011010111111011011011
0000001101011000001000010010001101000011010101010001011011010001110011000110101101001101000100010110100101110101100101000110110011101001111101100111001111111101101
1010000000101000011001000101010000101100110001011000101001101001011010011101010100010100011010110110001011100100001011100111101001011110101100111101111110100110111
0001010001100001000101001001001000011011000010110110001110000101110100101110001010011000011011101001001110010010010011101011010100111101100111011101110101110110111
1100000001000100101100100000110001001100001101001110000100110101001101101001111001001110000101111000001110001101100110001101100101101110011111101001111111001101101

projective group of automorphisms generated by:
000010000
000001000
000000010
001000000
000000001
100000000
000100000
010000000
000000100

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001