length n = 160
dimension k = 9
alphabet length q = 2

minimum distance d = 74

generator matrix:
0000001110000001110000001110000001110000011110000111110000111110000111110000111110000111110001111110000111110000111110001111110011111110001111110011111110110111
0000110010000110010000110010000010110001100110011001110011001110111000110011001110011001110110011110111000110111000110110011110101111111110001111100111111011011
0001010100011010000001010100000110010010101010111010010101010111011011001111000011101000111110100111001011011001011011010101111100111110111110010111011111101101
0110001000001100100110001000111000000111010001101000111011110000100111010111000110110110010111101011011001101010101101101110011111001111010110111111100110110111
0011100001100000011010010001001100001110000011001111001101100011101000111000111101011011001011011101100011101110001011111000111111110011011011011111001111011011
0100100100101001000011000011000110001010100101110011001101001100100111101101110001001110011011110010111110000101101101011011011110110111100111101101111010110111
1101000001000010101101000001011000001100110000101101101110100101011101000010011111110010101101001110110101011101110001111101001111011010111101101111111001101101
1010000010110100001000101000110001001001011001110100010110111001110000111111100000111101001110111001010110010110110010111110101111101101101101011011111101011011
1000011001010001000100100100100001100101001101010110101010011011011110001100111001100101101101110101101100101011010101100111101011111101111010101110110111101101

projective group of automorphisms generated by:
000000010
000000001
100000000
000010000
001000000
010000000
000001000
000000100
000100000

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001