length n = 216
dimension k = 8
alphabet length q = 2

minimum distance d = 106

generator matrix:
000000010000000000001111000000000000000000000000000000111111111111111111000000000000000000111111111111111111000000000000000011111111111111110000000000000000001111111111111111111111111111110001111100011111111101111111
000000100000000001110001000000000000000000111111111111000000000000111111000000000111111111000000000111111111000000111111111100000000001111110000001111111111110000000000001111111111111111111110001111100011111110111111
000001000000001110000010000000000111111111000000000111000000011111000001000111111000000111000111111000000111001111000011111100000011110000110111110000011111110001111111110000000001111111111110010111101100111111011111
000010000000110010010000000011111000001111000001111001000001100001000010011001111001111011001000011000011001110011001100001100111100110011001011110111100111110110000111110000111110000011110011111001111111001111101111
000100000011000100100000011100011001110001001110001010000110000010000100101110011110011101010001100001100010110101010100110011001101010101001101111011111001111010111000110111000110011100010101111010111111010111110111
001000001100001001000000101101100110010010110010010100011000000100001000110111100111100110100110000110000100111001100111000011110001100110001110111101111110011101011011001011011001100100101001111011011111100111111011
010000000101010000000100110110101010100100010100100000101010101000010000111010101010101000111010101010101000011110111001010101010110001000011111011110101010101111101101011101101010101001001110100111110101111011111101
100000001010100000001000111011010101001000101001000000110101010000100000111101010101010000111101010101010000101110111010101010101010001000101111101111010101001111110110101110110101010010001111000111111010111011111110

projective group of automorphisms generated by:
00001000
00100000
00000010
10000000
00000100
00010000
01000000
00000001

00100000
00001000
00010000
00000001
00000010
01000000
00000100
10000000