length n = 208
dimension k = 8
alphabet length q = 2

minimum distance d = 102

generator matrix:
0000000000000000000000000000001111111111111111110000000000000000001111111111111111110000011100000000000000001111111111111111000000000000000000111111111111111111111111111111000011111111111100011111000111111111
0000000000000000001111111111110000000000001111110000000001111111110000000001111111110011100000000011111111110000000000111111000000111111111111000000000000111111111111111111011100011111111111100011111000111111
0000000001111111110000000001110000000111110000010001111110000001110001111110000001110101100000111100001111110000001111000011011111000001111111000111111111000000000111111111101111100011111111100101111011001111
0000111110000011110000011110010000011000010000100110011110011110110010000110000110011000001111001100110000110011110011001100101111011110011111011000011111000011111000001111111101101100111100111110011111110011
0111000110011100010011100010100001100000100001001011100111100111010100011000011000101000010111010101010011001100110101010100110111101111100111101011100011011100011001110001111110110111001101011110101111110101
1011011001100100101100100101000110000001000010001101111001111001101001100001100001001000011011100110011100001111000110011000111011110111111001110101101100101101100110010010111111011011110010011110110111111001
1101101010101001000101001000001010101010000100001110101010101010001110101010101010000110100001111011100101010101011000100001111101111010101010111110110101110110101010100100110111111101010111101001111101011110
1110110101010010001010010000001101010100001000001111010101010100001111010101010100000111000010111011101010101010101000100010111110111101010100111111011010111011010101001000111011111110101011110001111110101110

projective group of automorphisms generated by:
00001000
00100000
00000010
10000000
00000100
00010000
01000000
00000001

00100000
00001000
00010000
00000001
00000010
01000000
00000100
10000000