length n = 155
dimension k = 11
alphabet length q = 2

minimum distance d = 70

generator matrix:
00000000000000000000000001111111111111111111111111100000000000000000000000001111111111111111111111111100000000000000000000000001111111111111111111111111100
00000000000001111111111110000000000000011111111111100000000000001111111111110000000000000011111111111100000000000001111111111110000000000000011111111111100
00000000011110001111111110000000111111100000001111100000000111110000000111110000000111111100000001111100000011111110000000011110000111111111100001111111111
00000011100010110011111110000011001111100111110001100001111001110011111000110000001000111100000110011100011100011110000011100010111000001111101110001111111
00001101100110000000011110000101000111111000110111100110011010000100011001010000111001011100011001111111100101101110001111100110111111110011110010110000100
00111110101000010100001110111100010000101001000000100010100000001001101011010000111011101111101111100100111000010110110000101110001011110001111111011111011
11110101010011110101110111011001010011100110001010111000101010010001111011100011010111100100101000111011100100100000110001100000011100110010100100100111100
01010100000100010101100011011100101100100010000000011100111010100110110010110000011010101100110010001100001101111011000111111011001001010010001100101001100
10101011101111101110111010001010011101100010011011000101000011001000100111100100011010100101101110000101110010010000110001011111010001010110111110111000000
00110010111110000010010010001111101111111101100111101100010001000111000111101001000100011110101000011010101011100011011100000111101000011010100100111011000
00111010000001010010011000011100110100110000001100011101101001100000001110100011011101101000100111000011011010111000001101001011101111000000100111000111111

projective group of automorphisms generated by:
00000000110
10111101101
11000100000
11000111010
10010011001
01111100010
00001101001
01000100001
00110010000
11001100011
11000110100