length n = 151
dimension k = 11
alphabet length q = 2

minimum distance d = 67

generator matrix:
0000000000000000111111111111110000000000111111111111111111110000000000001111111111111111110000000000001111111111111111110000000000000011111111111111111
0000000000000011000000111111110000001111000000000000111111110000111111110000000011111111110000001111110000000000111111110000001111111100000000111111111
0000000011111111000011000011110000010001000000011111000111110111000111110001111100000111110000110000000000001111000011110011110000001100111111000011111
0000111100001100111111001111110000111111000011100001111001110011011000110010011100111000010001110111110011110111001100010100110000011101000011000100111
0011011100000111111111000100010011011110000100100111001011110101100001110100101111011000110110011000110100111001010101111100000011110001011100011101110
0111100100010101001101010001100101110011001011100011011110001111000010011000000101001011111110010001010011110011000110000101011100000111100101011100111
1101001100111101110001111001101011111101001011001001010010011011001100101011011011110001111010000111010101000110110000110100110101111000011001100000001
1111100101010101110100010000001000010101110001000111111100110111010000000010101010111110100001011110010001001011100100111100110000111111101000101010011
0000000001010000010001110110111010000110110001100110000001100111011001110110110101111000100011111000101100010001001001110101011100101101101101100011001
0010001110011110100000111111010001000100111001001110101010000000110010010000001101001110110111110111110101011111001010100101011001001000110111000111110
0011100011011001100101001011001010111010010001101110000111100011111000010011001110001100011010101010100001101011000110101010001001011001011100100000101

projective group of automorphisms generated by:
10011100111
00010111100
10101100101
11011100011
00001110111
10001001001
01101010111
00110110100
11000100111
01100000101
00101110010