length n = 147
dimension k = 11
alphabet length q = 2

minimum distance d = 64

generator matrix:
000000000000000000000000000000000111111111111111111111111111111000000000000000000000000011111111111111111111111111111111111111000000000001111111111
000000000000000000111111111111111000000000000000111111111111111000000000000001111111111100000000000000000001111111111111111111000000111110000011111
000000001111111111000000000111111000000011111111000111111111111000011111111110000011111100000001111111111110000000000011111111001111011110001100011
000001110001111111000011111000111001111100011111001000001111111011100011111110000100011100001110000011111110000111111100011111110011000110111101100
001111110110011111001100111111011010011100100001010001110011111101101101111110111101101100110010001100001110111000011100101111010101001010010110101
010000011111101111110101111111101110101100000011011010111100001000100000000110001100100100010100110111110110111001101111100011010101001011101001010
000010101010000001010000000000001100000101001101111000001101111111110010111111011011111001000101010000111011001011110111100100011010010100011010110
100101101010100110010111111011100101001101111110001010001111111000010010001111110011010000100101011001000001000000011000101000100110001100101011001
010010000000001010010111111001001100100111010010101101010110111001010011011111001010100101101100100111011011001010000001001001110011111001000001100
000001001001110011111111001101101111000000000100100000110111110110110101111000000101101101001101101010110101011001100000000001100110110010101000110
001000100101010000111101011011001110011001000100111101011100010101110011110011011100110011110100101111111010010100110001110110010101001010010110101

projective group of automorphisms generated by:
01110010011
10100111011
10010011010
11100100111
00100101100
10000011101
00110010111
01100111011
00111101000
00101011101
10100101011