length n = 146
dimension k = 11
alphabet length q = 2

minimum distance d = 64

generator matrix:
00000000011111111111100000000000001111111100000000000001111111100000000000011111111100011110000000011111111111110000000011111111111110000111000111
00001111100000000111100000011111110011111100001111111110000111100000011111100011111100100110000111100000000011110000111100001111111110011001111111
00110001100000011001100001100011111100111100010000111110001000101111100011100100011101101010111000100000011100010001011100010000001110101011000000
01110010000001101000100110100100000101001101110001011110010011100000100011101101100101101010001001000001101101110010000101110000110111010100000111
00010010000010110011111010100000110010010010110111101110010000110001001101110101101111011001011110100010111110001101101110000001011111100110000000
01010010100100100110001101101101011100110000011010010000111000100110110111100000100010110011011110101111110010001101101110000111111000110010000111
10110100101100010100000111101100100010100010110101011110010101110011101100011111010100111000100111000101100100100001101110111011001010011110111000
00111110011111100001100001111100000000111100011111000001110000110000000011100111100001010011000000100000011111101110011100011111110001001010111111
01100011110010110000010000111101011101011101001011010110001001010100100000101010101010010100010011101000011010000100110101111101110101010100111111
00101101110010001010000001111010111101110100110010010010110100101101000111001000000111111110100000110101111110111110101100100011000001111111111111
11000011010111011101010100101111101000110110110110011100010111000100110000111110100010101101001111100100000010101111100111000100000001001010000111

projective group of automorphisms generated by:
11000110000
01000001100
11100111011
01100011010
10000001011
01110100011
00001111011
10000001111
11001000111
10011011101
00011001100