length n = 144
dimension k = 11
alphabet length q = 2

minimum distance d = 64

generator matrix:
000000000000011111111000000000111111111111000000000000011111111000111100000000111111111111100000000111111111111100001110000000000001111111110111
000000000011100111111000000111000000111111000011111111100001111001001100001111000000000111100001111000011111111100110010000000011110000011111011
000011111100000000011000011000001111000011000100001111100010001011010101110001000000111000100010111000100000011101010110111111101110011101110000
001100001101100001100011101000110011011101011100010111100100111011010100010010000011011011100100001011100001101110101001000111110001101110110111
011100111100101000111000001001110111000100101101111011100100001110110010111101000101111100011011011100000010111111001101000001110001100100010000
001111010111011111111100100011011011111010000110100100001110001101100110111101011111100100011011011100001111110001100100011000100011110110000111
100101100000100001111111011110001101001110101101010111100101011001110001001110001011001001000011011101110110010100111101011000100110000100111100
000011111111111000011000011111110000000011000111110000011100001010100110000001000000111111011100111000111111100010010101000000001110011110001011
001001001000001011111001010010110011010010010010110101100010010100101000100111010000110100001001101011111011101010101001001001111000111111001011
101011100010101111101011101001111111000101001100100100101101001111111101000001101011111101111101011001000110000011111111010011100010011111101011
010100111011110001101011000101011000100001101101100111000101110101011010011111001000000101011111001110001000000010010100110011011111100101010111

projective group of automorphisms generated by:
11000110000
01000001100
11100111011
01100011010
10000001011
01110100011
00001111011
10000001111
11001000111
10011011101
00011001100