length n = 141
dimension k = 11
alphabet length q = 2

minimum distance d = 64

generator matrix:
000000000111111111111000000000000111111111001111000000000000111111111111111111111111111111000000000000000000000011111111111111111111000011111
000111111000000001111000011111111000001111000011000000111111000000000000001111111111111111000000000000111111111100000000001111111111001111011
001000111000000110000001100001111000110000010001001111000111000000011111110000000011111111000000111111000001111100000011110000011111110101101
001001000000001010011001100010001001010011010001010001001000001111100011110001111100011111111111000011000110000100001111110001100001110101101
010011001000111010101010100110011111010101011110100001011001010001101100110111111100100000000111011111000010001101110000010111100111001001101
011100001000111101010011011000011111101010110101110111001000101111101111110110011111000111011001101111000100111000011100001011111001011000011
001001110001010010001110101110110010011110001111101011111010010110100101000010100101101011101000100100001101000110101101101010101110000011111
011000110010010110101101000101101110111001000011000000111111011110011100010111100000011101001011010101010101010001010110111000101010001111011
011001111011000010100010001010100100010111101011000010010100100011001001000010101001010100011010110010010110100100001011111111100010101110001
110000011011101110011000011111111000001111111001111011111011111111011110111001010000110010000011010010011010101100010100010101111101101011000
000111001110100110010000101100111011000010011101111010001101001100110101100101010110110001110000010100000011000111000001010101001000111001001

projective group of automorphisms generated by:
11010111001
01110010011
11011001011
11100111000
01100000111
11101000011
00010100001
00001101000
10001111110
01011001010
10100111110