length n = 139
dimension k = 11
alphabet length q = 2

minimum distance d = 62

generator matrix:
0000000000001111111110000000000000000000000111111111111111111110011110000000000000000000000000000111111111111110000000001111111111110000111
0000111111110000011110000000000001111111111000000000011111111110000110000000000000000001111111111000000000011110001111110000000011110011110
0011000011110001100000000001111110000011111000000111100000111110100010000000011111111110000011111000001111100111110111110000111100111101010
0011000100010010100110011110000110111100001000011001100011001110100010001111100000111110011100011001110001101010011011110111011100111101010
0101001100111110101010000010001110011101111001101010011101010110111100110111100111001111111101111110110010011000101000110011001101010010010
0110110000111111010100101100000011111110011110111110001100001001101011011001100001000010100111111001000010011111010000110011110010010110000
1101011101100100111101000100011001000100110011011010100111011010011110111010100011110101101010101000110100110101001101001001000101000000111
1010001011011101110011101000101010100100101101100101100101001010000111101101101111010011100110011000000000011110111000011110001010100011110
0100010101001000101111011110000010001001111111000110010101010111010110101010111100000111010110110011011100001100000010100111110011011011101
0000111111110000011111000100010101001110101010001100000111111011110011101100011111011110000101111011110111110101100010011111100100111010110
0001011001110110000100000110100011110010111010010001111101110010111011011001001010011000001001001101011101111111011001000001100101111110011

projective group of automorphisms generated by:
11010111001
01110010011
11011001011
11100111000
01100000111
11101000011
00010100001
00001101000
10001111110
01011001010
10100111110